-
UKAEA-CCFE-PR(23)1222023
A fusion power plant requires not only the control of the high energy plasma but also advanced techniques for maintenance and assembly in order to generate electricity consistently and safely. Laser welding is a promising technique for cutting and joining pipes and in-vessel components made of Eurofer97, a European baseline structural material. How…
-
UKAEA-CCFE-PR(24)2442022
Zirconium alloys are widely used as the fuel cladding material in pressurised water reactors where a significant population of defects and dislocations is produced by exposure to neutrons. We present and interpret synchrotron microbeam X-ray diffraction measurements of proton- irradiated Zircaloy-4, where we identify a transient peak and the sub…
-
UKAEA-CCFE-CP(24)052022
A new Doppler backscattering (DBS) system has been installed and tested on the MAST-U spherical tokamak. It utilizes eight simultaneous fixed frequency probe beams (32.5, 35, 37.5, 40, 42.5, 45, 47.5, and 50 GHz). These frequencies provide a range of radial positions from the edge plasma to the core depending on plasma conditions. The system utiliz…
-
UKAEA-CCFE-PR(23)1282022
Predictions of the impact of charge-exchange (CX) reactions on beam ions in the MAST Upgrade spherical tokamak have been compared to measurements carried out with a fission chamber (neutron fluxes) and a Fast Ion Deuterium-Alpha (FIDA) diagnostic. A simple model was developed to reconstruct the outer-midplane neutral density based on Thomson sca…
-
UKAEA-CCFE-CP(23)442022
Due to their relatively higher Vbeam/VAlvén ratio, spherical tokamaks are ideal to investigate high-frequency modes such as Compressional Alfvén Eigenmodes (CAEs) and Global Alfvén Eigenmodes (GAEs), and so they have been previously studied in MAST [1, 2]. Besides, the recently installed scintillator-based Fast-Ion Loss …
-
UKAEA-CCFE-CP(22)102022
We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam’s electric field is not in the plane perpendicular to the magnetic field. Correcting …
-
UKAEA-CCFE-PR(22)322022
Vanadium base alloys represent potentially promising candidate structural materials for use in nuclear fusion reactors due to vanadium’s low activity, high thermal strength, and good swelling resistance. In this work, the mechanical properties of the current frontrunner vanadium base alloy, V-4Cr-4Ti, have been interrogated using in-situ high ene…
-
UKAEA-CCFE-PR(22)252022
Hydride precipitation and reorientation has the potential to embrittle zirconium alloys. This study aims to better understand the influence of the Zr microstructure on hydride precipitation and reorientation. Specifically, the crystallography, phase stability and morphology of hydride precipitation was correlated to microstructural variations due t…
-
UKAEA-CCFE-PR(22)112022
Solid titanium beryllide blocks will be used for neutron multiplication in the in the helium-cooled pebble bed (HCPB) blanket concept of EU DEMO. A combination of hot extrusion of Be-Ti powders and subsequent hot isostatic pressing (HIP) of the obtained Be-Ti composites has been proposed for manufacturing such blocks. This work is devoted to the st…
-
UKAEA-CCFE-PR(22)102022
The EUROfusion materials research program for DEMO in-vessel components aligns with the European Fusion Roadmap and comprises the characterization and qualification of the in-vessel baseline materials EUROFER97, CuCrZr and tungsten, advanced structural and high heat flux materials developed for risk mitigation, as well as optical and dielectric fun…
Showing 11 - 20 of 58 UKAEA Paper Results