-
UKAEA-CCFE-CP(23)112020
Dimensionless experiments test the invariance of plasma physics to changes in the dimensional plasma parameters, when the canonical dimensionless parameters are conserved [1], [2]. Isotope identity experiments exploit the change in isotope ion mass A = mi/mp to obtain plasmas with identical dimensionless profiles in the same tokamak. However, condi…
-
UKAEA-CCFE-PR(23)872020
The isotope dependence of plasma transport has a significant impact on the performance of future D-T experiments in JET and ITER and eventually on the fusion gain and economics of future reactors. In preparation for future D-T operation on JET, dedicated experiments and comprehensive transport analysis were performed in H, D and H-D mixed plasma…
-
UKAEA-CCFE-CP(20)992020
Unraveling the conditions that permit access to H-mode continues to be an unresolved physics issue for tokamaks, and accurate extrapolations are important for planning ITER operations and DEMO design constraints. Experiments have been performed in JET, with the ITER-like W/Be wall, to increase the confidence of predictions for the L-H transition po…
-
UKAEA-CCFE-PR(20)192019
A study of mixed hydrogen-deuterium H-mode plasmas has been carried out in JET-ILW to strengthen the physics basis for extrapolations to JET D-T operation and to support the development of strategies for isotope ratio control in future experiments. Variations of input power, gas fuelling and isotopic mixture were performed in H-mode plasmas of the…
-
UKAEA-CCFE-CP(20)982018
-
UKAEA-CCFE-PR(20)1242018
NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters in the plasma core confinement region and same Ti/Te and Zeff. The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confine…
-
UKAEA-CCFE-CP(20)922018
Dimensionless identity experiments test the invariance of plasma physics to changes in the dimensional plasma parameters, e.g. ne and Te, when the dimensionless parameters are conserved [1] [2]. However, conditions at the plasma boundary, such as influx of neutral particles, may introduce additional physics. An isotope identit…
-
UKAEA-CCFE-CP(19)082019
Charge-exchange spectroscopy on JET has become particularly challenging with the introduction of the ITER-like wall. The impurity spectra are weaker and contaminated by many tungsten lines. We have therefore upgraded the instrumentation to allow the simultaneous measurement of impurity and fuel-ion charge exchange by splitting the light between two…
-
UKAEA-CCFE-PR(19)622019
The pedestal structure, ELM losses and linear MHD stability are analysed in a series of JET-ILW H and D type I ELMy H-mode plasmas. The pedestal pressure (pPED) is typically higher in D than in H at the same input power, with the difference mainly due to lower density in H than in D. At the same input power, the pedestal electron pres…
-
UKAEA-CCFE-PR(19)252019
Deuterium pellets are injected into initially pure hydrogen H-mode plasma in order to control H:D isotope mixture. The pellets are deposited in outer 20% of minor radius, similar to that expected in ITER creating transiently hollow electron density profiles. The isotope mixture of H:D ~ 45:55% is obtained in the core with pellet fuelling throughput…
Showing 11 - 20 of 28 UKAEA Paper Results