-
UKAEA-CCFE-PR(23)1352023
Nuclear data, describing neutron reaction probabilities (cross sections) and decay behaviour, are critical to the design and operation of fusion experiments and future fusion power plants. Equally vital, are the inventory codes that use the data to predict neutron-induced activation and transmutation of materials, which will define the radiologica…
-
UKAEA-CCFE-PR(23)842023
We present a numerical model to predict oxide scale growth on tungsten surfaces under exposure to oxygen at high temperatures. The model captures the formation of four thermodynamically-compatible oxide sublayers, WO2, WO2.72, WO2.9, and WO3, on top of the metal substrate. Oxide layer growth is simulated by tracking the oxide/oxide and oxide/metal …
-
UKAEA-CCFE-PR(23)172023
Tungsten (W) is considered a leading candidate for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield, and low long-term disposal radioactive footprint. However, t…
-
UKAEA-CCFE-PR(23)052023
Predictions of material activity in commercial fusion conditions predominantly rely on computational methods, due to a lack of data on long-term e ects of high-energy neutron irradiation on structural steels. Consequently, this could result in a bias due to uncertainties in nu…
-
UKAEA-CCFE-PR(24)2422022
Spinodal phase separation in SMART materials based on binary W-Cr with alloying 1 elements Y and Zr is systematically investigated by a combination of Density Functional Theory with Cluster Expansion Hamiltonian and large-scale Monte Carlo simulations with thermodynamic integration. Comparing alloying of Zr with those from Y, it is shown that there…
-
UKAEA-CCFE-CP(24)122022
Modern nuclear physics software is well-validated, providing advanced capabilities to support the engineering of the future generations of fission and fusion reactors. Transport simulators can model the transport of neutrons through reactor geometries and inventory codes can accurately predict transmutation and activation. Meanwhile, material mo…
-
UKAEA-CCFE-PR(24)052022
Effects of neutron irradiation on materials are often interpreted in terms of atomic recoils, initiated by neutron impacts and producing crystal lattice defects. We find that, in addition, there is a remarkable two-step process, strongly pronounced in heavy elements, involving the generation of energetic γ-photons in non-elastic collisions of n…
-
UKAEA-CCFE-PR(23)1122022
The transfer of heat through the breeder region of a future fusion reactor is a key component of its thermal efficiency. Development of advanced ceramic breeder materials based on Li2TiO3 seek to exploit its ability to accommodate significant non-stochiometry, however, it is not clear how deviations for the 50:50 mix of Li2O and TiO2 will affect…
-
UKAEA-CCFE-PR(22)392022
In the absence of official standards and guidelines for nuclear fusion plants, fusion designers adopted, as far as possible, well-established standards for fission-based nuclear power plants (NPPs). This often implies interpretation and/or extrapolation, due to differences in structures, systems and components, materials, safety mitigation systems,…
-
UKAEA-CCFE-CP(23)342021
The characteristically intense neutron source generated in deuterium-tritium (DT) fusion power presents notable challenges for materials comprising the structure of the device which are exposed to them. These include radiation damage effects leading to degradation of structural properties with impact on maintenance and replacement frequency, but…
Showing 11 - 20 of 84 UKAEA Paper Results