UKAEA Journals

Showing 1 - 10 of 13 Journals Results
2020
UKAEA-CCFE-PR(21)63

The optimum conditions for access to and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Power Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed in order to identify key open R&D issues. The as…

Preprint
2020
UKAEA-CCFE-PR(21)62

The optimum conditions for access and sustainment of H-mode plasmas and their expected plasma parameters in the Pre-Fusion Operation 1 (PFPO-1) phase of the ITER Research Plan, where the additional plasma heating will be provided by 20 MW of Electron Cyclotron Heating (ECH), are assessed. The assessment is performed on the basis of empirical and ph…

Preprint Purchase
2019
UKAEA-CCFE-PR(20)23

To ensure optimal plasma performance at high Qfus for the baseline scenario foreseen for the International Tokamak Experimental Reactor (ITER), fuelling requirements, in particular for non-stationary phases, need to be assessed by means of integrated modelling due to different expected fuelling behaviour and additional challenges that need to be ad…

Preprint Published
2019
UKAEA-CCFE-PR(19)23

We have modelled self-consistently the most efficient ways to fuel ITER Hydrogen (H), Helium (He) and Deuterium-Tritium (DT) plasmas with gas and/or pellet injection with the integrated core and 2D SOL/divertor suite of codes JINTRAC. As far as we are aware, for ITER this is the first time modelling of the entire plasma has been carried out to foll…

Preprint
2018
UKAEA-CCFE-PR(18)22

The operation of a tokamak designed to test the sustainability of a thermonuclear grade plasma like the International Tokamak Experimental Reactor (ITER) presents several challenges. Among them is the necessity of fuelling the plasma to reach the density required to generate enough fusion power to achieve Q = 10 and, at the same time, to protect th…

Preprint Published
2016
CCFE-PR(16)47

Resonant magnetic perturbations (RMP) have extensively been demonstrated as a plausible technique for mitigating or suppressing large edge localized modes (ELMs). Associated with this is a substantial amount of theory and modelling efforts during recent years. Various models describing the plasma response to the RMP fields have been proposed in the…

Preprint Published
2016
CCFE-PR(16)10

The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It i…

Preprint Published
2015
CCFE-PR(15)101

Tokamaks are traditionally viewed as axisymmetric devices. However this is not always true, for example in the presence of saturated instabilities, error fields, or resonant magnetic perturbations (RMPs) applied for edge localized mode (ELM) control. We use the VMEC code (Hirshman and Whitson 1983 Phys. Fluids 26 3553) to …

Preprint Published
2015
CCFE-PR(15)29

ITER operations require effective fuelling of the core plasma for conditions in which neutral dynamics through the scrape-off layer (SOL) is expected to affect significantly the efficiency of gas penetration. On the basis of previous analysis for stationary conditions, pellets are foreseen to provide core fuelling of high-Q DT scenarios. In this pa…

Preprint Published
2015
CCFE-PR(15)114

The linear and quasi-linear plasma response to the n = 3 and n = 4 (n is the toroidal mode number) resonant magnetic perturbation (RMP) fields, produced by the in-vessel edge localized mode control coils, is numerically studied for an ITER 15MA H-mode baseline Scenario. Both single fluid and fluid-kinetic hybrid models are used. The inclusion of dr…

Preprint Published