Journals

Showing 1 - 4 of 4 Journals Results
2020
UKAEA-CCFE-PR(20)114

Achieving high neutron yields in today’s fusion research relies on high power auxiliary heating in order to attain required core temperatures. This is usually achieved by means of high Neutral Beam (NB) and Radio Frequency (RF) power. Application of NB power is accompanied by production of fast beam ions and associated Beam-Target (BT) reactions.…

Preprint
2015
CCFE-PR(17)35

The JET tokamak is unique amongst present fusion devices in its capability to operate at high plasma current, providing the closest plasma parameters to ITER. The physics benefits of high current operation have to be balanced against the risks to the integrity of the machine due to high force disruptions. The installation of the ITER-Like Wall (ILW…

Preprint Published
2015

The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). At JET, the neutron emission profile of Deuterium (D) or Deuterium-Tritium (D…

Published
2014

In order to preserve the integrity of large tokamaks such as ITER, the number of disruptions has to be limited. JET has operated previously with a low frequency of disruptions (i.e., disruption rate) of 3.4% [P. C. de Vries et al., Nucl. Fusion 51, 053018 (2011)]. The start of operations with the new full-metal ITER-like wall at JET showed a marked…

Published