UKAEA Journals

Showing 1 - 6 of 6 Journals Results
2021
UKAEA-CCFE-PR(21)33

Prediction of material performance in fusion reactor environments relies on computational modelling, and will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the mode…

Preprint
2021
UKAEA-CCFE-PR(21)27

Tungsten is one the primary candidate materials for the high neutron flux, high temperature components of a future demonstrate fusion reactor. Despite this, there is a lack of data on W under fusion relevant neutron doses and irradiation temperatures. Transmutation reactions result in the production of Re and Os solute atoms, at a rate which is …

Preprint
2021
UKAEA-CCFE-PR(21)22

In this study, radiation-induced precipitation of transmutation products is addressed via the development of a new solute and vacancy concentration dependant Ising model for the W-Re-Os system. This new model includes interactions between both Os and Re atoms, thus facilitating more representative simulations of transmutation in fusion reactor …

Preprint
2020
UKAEA-CCFE-PR(20)106

The development of High-Entropy Alloys (HEAs) focuses on exploring compositional regions in multicomponent systems with all alloy elements in equal or near-equal atomic concentrations. Initially it was based on the main idea that high mixing configurational entropy contributions to the alloy free energy could promote the formation of a single so…

Preprint Purchase
2019
UKAEA-CCFE-PR(19)22

A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster fo…

Preprint Published
2018
UKAEA-CCFE-PR(18)77

A novel W-based refractory high entropy alloy with outstanding radiation resistance has been developed. The alloy was grown as thin films showing a bimodal grain size distribution in the nanocrystalline and ultrafine regimes and a unique 4 nm lamella-like structure revealed by atom probe tomography (APT). Transmission electron microscopy (TEM) and …

Preprint Published