UKAEA Journals

Showing 11 - 20 of 32 Journals Results
2019
UKAEA-CCFE-PR(19)25

Deuterium pellets are injected into initially pure hydrogen H-mode plasma in order to control H:D isotope mixture. The pellets are deposited in outer 20% of minor radius, similar to that expected in ITER creating transiently hollow electron density profiles. The isotope mixture of H:D ~ 45:55% is obtained in the core with pellet fuelling throughput…

Preprint Published
2019
UKAEA-CCFE-PR(19)23

We have modelled self-consistently the most efficient ways to fuel ITER Hydrogen (H), Helium (He) and Deuterium-Tritium (DT) plasmas with gas and/or pellet injection with the integrated core and 2D SOL/divertor suite of codes JINTRAC. As far as we are aware, for ITER this is the first time modelling of the entire plasma has been carried out to foll…

Preprint
2019
UKAEA-CCFE-PR(19)21

The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall (ILW) and will benefit from an extended and improved set of diagnostics and higher additional heating …

Preprint Published
2018
UKAEA-CCFE-PR(18)81

Fast ion synergistic effects were studied by predictive modelling of JET best performing pulses for various levels of Neutral Beam (NB) and Radio Frequency (RF) power. Calculated DD neutron yields were analysed with the intention of separating the impact of sheer synergistic effects due to changes in fast ion (FI) distribution function (DF) from su…

Preprint Published
2018
UKAEA-CCFE-PR(18)22

The operation of a tokamak designed to test the sustainability of a thermonuclear grade plasma like the International Tokamak Experimental Reactor (ITER) presents several challenges. Among them is the necessity of fuelling the plasma to reach the density required to generate enough fusion power to achieve Q = 10 and, at the same time, to protect th…

Preprint Published
2018
UKAEA-CCFE-PR(18)13

For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JETTO [Romanelli M et al PFR 2014], using first principle-based codes : namely, QuaLiKiz [Bourd…

Preprint Published
2018
UKAEA-CCFE-PR(18)12

Alfvén Eigenmodes (AEs) are routinely seen in present-day tokamaks and stellarators with energetic particles and they represent an attractive form of MHD spectroscopy that provides valuable information on background plasma and on the energetic particles. Possible use of AEs is assessed for MHD spectroscopy of plasma with high-velocity pellet injec…

Preprint Published
2017
CCFE-PR(17)74

Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to a…

Preprint Published
2016
CCFE-PR(16)19

ELM control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is f…

Preprint Published
2016
CCFE-PR(16)09

The complete refuelling of the plasma density loss (pump-out) caused by mitigation of Edge Localised Modes (ELMs) is demonstrated on the ASDEX Upgrade tokamak. The plasma is refuelled by injection of frozen deuterium pellets and ELMs are mitigated by external resonant magnetic perturbations (RMPs). In this experiment relevant dimensionless paramete…

Preprint Published