UKAEA Journals

Showing 1 - 10 of 20 Journals Results
2021
UKAEA-CCFE-PR(21)35

Sustained operation of high-performance, ITER-baseline scenario plasmas at the high levels of input power (~< 40MA) required to achieve ~ 15 MW of D-T fusion power in JET-ILW requires careful optimisation of the fuelling to avoid an unacceptable disruption rate due to excessive radiation, primarily from W impurities, which are sputter…

Preprint Published
2021
UKAEA-CCFE-PR(21)09

Ion cyclotron emission (ICE) driven by perpendicular neutral beam-injected (NBI) deuterons, together with the distinctive ICE driven by tangential NBI, have been observed from heliotron-stellarator plasmas in the Large Helical Device (LHD). Radio frequency radiation in the lower hybrid range has also been observed, with frequency dependent on plasm…

Preprint Purchase
The published version of this paper is currently under embargo and will be available on 05/10/2022
2020
UKAEA-CCFE-PR(20)93

Parametric dependencies of the linear stability of toroidal Alfven eigenmode (TAE) in the presence of neutral beam injection (NBI) are investigated to understand the beam drive and damping effect of TAEs in JET and KSTAR. It is found that the results depend on the drift orbit width of the beam-ions normalized to the characteristic mode widths. I…

Preprint Published
2019
UKAEA-CCFE-PR(20)67

Disruption prediction and avoidance is a critical need for next-step tokamaks such as ITER. The Disruption Event Characterization and Forecasting Code (DECAF) is used to fully automate analysis of tokamak data to determine chains of events that lead to disruptions and to forecast their evolution allowing sufficient time for mitigation or full av…

Preprint
2019
UKAEA-CCFE-PR(19)21

The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall (ILW) and will benefit from an extended and improved set of diagnostics and higher additional heating …

Preprint Published
2019
UKAEA-CCFE-PR(19)08

Intense bursts of suprathermal radiation, with spectral peaks at frequencies corresponding to the deuteron cyclotron frequency in the outer midplane edge region, are often detected from deuterium plasmas in the KSTAR tokamak that are heated by tangential neutral beam injection (NBI) of deuterons at 100 keV. Identifying the physical process by wh…

Preprint Published
2018
UKAEA-CCFE-PR(19)10

This paper outlines an approach towards improved rigour in tokamak turbulence transport model validation within integrated modelling. Gaussian process regression (GPR) techniques were applied for profile fitting during the preparation of integrated modelling simulations. This allows for rigourous sensitivity tests of prescribed initial and bound…

Preprint Published
2018
UKAEA-CCFE-PR(18)11

Chirping observed in ion cyclotron emission (ICE) from the KSTAR tokamak at sequential proton harmonics in the range 200 to 500 MHz has recently been interpreted (B. Chapman et al., Nucl. Fusion 57, 124004 (2017)) as due to fast, sub-microsecond, evolution of the local deuterium plasma density. This density evolution changes the plasma environment …

Preprint Published
2017
CCFE-PR(17)12

This paper presents for the first time a statistical validation of predictive TRANSP simulations of plasma temperature using two transport models, GLF23 and TGLF, over a database of 80 baseline H-mode discharges in JET-ILW. While the accuracy of the predicted Te with TRANSP-GLF23 is affected by plasma collisionality, the dependency of predictions o…

Preprint Published
2017
CCFE-PR(17)04

Ion cyclotron emission (ICE) is detected during edge localised modes (ELMs) in the KSTAR tokamak at harmonics of the proton cyclotron frequency in the outer plasma edge. The emission typically chirps downward (occasionally upward) during ELM crashes, and is driven by confined 3MeV fusion-born protons that have large drift excursions from the plasma…

Preprint Published