UKAEA Journals

Showing 1 - 10 of 25 Journals Results
2019
UKAEA-CCFE-PR(20)66

Similarity experiments are conceived to study on existing tokamak facilities, characteristics of scenarios found on other devices or planned for new machines. The possibility of doing similarity experiments is linked to the physics processes studied and it gives in any case partial views which can be found in integrated way only on the planned d…

Preprint
2019
UKAEA-CCFE-PR(20)23

To ensure optimal plasma performance at high Qfus for the baseline scenario foreseen for the International Tokamak Experimental Reactor (ITER), fuelling requirements, in particular for non-stationary phases, need to be assessed by means of integrated modelling due to different expected fuelling behaviour and additional challenges that need to be…

Preprint Purchase
2019
UKAEA-CCFE-PR(19)52

This work describes the behaviour of the global energy and particle confinement on JET observed in a massive database of H-mode plasmas covering almost whole lifetime of JET operations, both with carbon and metal wall. The analysis is focused on type I ELMy H-modes in stationary phases. It is shown that plasma density in that regime is determined m…

Preprint Published
2019
UKAEA-CCFE-PR(19)23

We have modelled self-consistently the most efficient ways to fuel ITER Hydrogen (H), Helium (He) and Deuterium-Tritium (DT) plasmas with gas and/or pellet injection with the integrated core and 2D SOL/divertor suite of codes JINTRAC. As far as we are aware, for ITER this is the first time modelling of the entire plasma has been carried out to foll…

Preprint
2019
UKAEA-CCFE-PR(19)21

The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall (ILW) and will benefit from an extended and improved set of diagnostics and higher additional heating …

Preprint Published
2018
UKAEA-CCFE-PR(18)22

The operation of a tokamak designed to test the sustainability of a thermonuclear grade plasma like the International Tokamak Experimental Reactor (ITER) presents several challenges. Among them is the necessity of fuelling the plasma to reach the density required to generate enough fusion power to achieve Q = 10 and, at the same time, to protect th…

Preprint Published
2018
UKAEA-CCFE-PR(18)13

For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JETTO [Romanelli M et al PFR 2014], using first principle-based codes : namely, QuaLiKiz [Bourd…

Preprint Published
2017
CCFE-PR(17)01

Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are “closed" (ie. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the …

Preprint Published
2017
CCFE-PR(17)74

Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to a…

Preprint Published
2017
CCFE-PR(17)12

This paper presents for the first time a statistical validation of predictive TRANSP simulations of plasma temperature using two transport models, GLF23 and TGLF, over a database of 80 baseline H-mode discharges in JET-ILW. While the accuracy of the predicted Te with TRANSP-GLF23 is affected by plasma collisionality, the dependency of predictions o…

Preprint Published