UKAEA Journals

Showing 1 - 10 of 16 Journals Results
2021
UKAEA-CCFE-PR(21)46

The fusion performance of ELMy H-mode DT plasmas with q95 = 3 and \\beta_N = 1.8 (also referred to as medium-\\beta_N baseline scenario in the rest of this paper) are predicted with the JINTRAC suite of codes and the QuaLiKiZ transport model. The predictions are based on the analysis of DT plasmas from the first DT campaign on JET in 1997 (DTE1…

Preprint
2020
UKAEA-CCFE-PR(20)118

In this work the mechanisms that can lead to disruptive MHD instabilities in the termination phase of plasma pulses on JET are investigated. It is shown that the broadening or the shrinking of the current density profile, as a consequence of a core hollowing or a edge cooling of the electron temperature profile, can lead to the destabilization o…

Preprint Purchase
The published version of this paper is currently under embargo and will be available on 12/03/2022
2020
UKAEA-CCFE-PR(20)114

Achieving high neutron yields in today’s fusion research relies on high power auxiliary heating in order to attain required core temperatures. This is usually achieved by means of high Neutral Beam (NB) and Radio Frequency (RF) power. Application of NB power is accompanied by production of fast beam ions and associated Beam-Target (BT) reactio…

Preprint Published
2019
UKAEA-CCFE-PR(19)21

The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall (ILW) and will benefit from an extended and improved set of diagnostics and higher additional heating …

Preprint Published
2019
UKAEA-CCFE-PR(19)20

The paper presents an analysis of disruptions occurring during JET-ILW plasma operations covering the period from the start of ILW (ITER-like wall) operation up to completion of JET operation in 2016. The total number of disruptions was 1951 including 466 with deliberately induced disruptions. The average disruption rate of unintended disruptions i…

Preprint Published
2018
UKAEA-CCFE-PR(18)81

Fast ion synergistic effects were studied by predictive modelling of JET best performing pulses for various levels of Neutral Beam (NB) and Radio Frequency (RF) power. Calculated DD neutron yields were analysed with the intention of separating the impact of sheer synergistic effects due to changes in fast ion (FI) distribution function (DF) from su…

Preprint Published
2015
CCFE-PR(17)35

The JET tokamak is unique amongst present fusion devices in its capability to operate at high plasma current, providing the closest plasma parameters to ITER. The physics benefits of high current operation have to be balanced against the risks to the integrity of the machine due to high force disruptions. The installation of the ITER-Like Wall (ILW…

Preprint Published
2015
CCFE-PR(15)31

New experiments in 2013-2014 have investigated the physics responsible for the decrease in H-mode pedestal confinement observed in the initial phase of JET-ILW operation (2012 Experimental Campaigns). The effects of plasma triangularity, global beta and neutrals on pedestal confinement and stability have been investigated systematically. The stabil…

Preprint Published
2014

The JET ITER-like Wall (ILW) provides the same plasma facing component configuration as ITER during its active phase: beryllium in the main chamber and tungsten in the divertor. Moving from a carbon-based wall to an all metal wall requires some operational adjustment. The reduction in radiation at the plasma edge and in the divertor can lead to hig…

Published
2014

In order to preserve the integrity of large tokamaks such as ITER, the number of disruptions has to be limited. JET has operated previously with a low frequency of disruptions (i.e., disruption rate) of 3.4% [P. C. de Vries et al., Nucl. Fusion 51, 053018 (2011)]. The start of operations with the new full-metal ITER-like wall at JET showed a marked…

Published