UKAEA Journals

Showing 1 - 6 of 6 Journals Results

To ensure optimal plasma performance at high Qfus for the baseline scenario foreseen for the International Tokamak Experimental Reactor (ITER), fuelling requirements, in particular for non-stationary phases, need to be assessed by means of integrated modelling due to different expected fuelling behaviour and additional challenges that need to be…

Preprint Purchase
The published version of this paper is currently under embargo and will be available on 05/05/2021

We have modelled self-consistently the most efficient ways to fuel ITER Hydrogen (H), Helium (He) and Deuterium-Tritium (DT) plasmas with gas and/or pellet injection with the integrated core and 2D SOL/divertor suite of codes JINTRAC. As far as we are aware, for ITER this is the first time modelling of the entire plasma has been carried out to foll…


The operation of a tokamak designed to test the sustainability of a thermonuclear grade plasma like the International Tokamak Experimental Reactor (ITER) presents several challenges. Among them is the necessity of fuelling the plasma to reach the density required to generate enough fusion power to achieve Q = 10 and, at the same time, to protect th…

Preprint Published

The Ion Cyclotron Heating and Current Drive (ICH&CD) system will reside in ITER equatorial port plugs 13 and 15. Shutdown dose rates (SDDR) within the port interspace are required to be less than 100 Sv/h at 106 s cooling. A significant contribution to the SDDR results from neutrons streaming down gaps around the port frame, and the mitigation of …

Preprint Published

ITER operations require effective fuelling of the core plasma for conditions in which neutral dynamics through the scrape-off layer (SOL) is expected to affect significantly the efficiency of gas penetration. On the basis of previous analysis for stationary conditions, pellets are foreseen to provide core fuelling of high-Q DT scenarios. In this pa…

Preprint Published

Advance tokamak scenarios are gaining more and more importance in operating tokamaks. These scenarios pose challenging control problems, since they require the simultaneous achievement of ambitious plasma parameters. The inherent coupling among the various variables calls for an integrated approach for the design of the controllers. This paper desc…