UKAEA Journals

Showing 1 - 10 of 11 Journals Results
2018
UKAEA-CCFE-PR(20)64

The JET outboard divertor targets are the in-vessel components which receive the largest heat flux density. Surface delamination, radial cracks, and tie rod failures have been observed in the outboard tungsten-coated CFC tiles, while bulk tungsten special lamellas were intentionally melted in dedicated experiments. These different types of damag…

Preprint
2016
CCFE-PR(16)19

ELM control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is f…

Preprint Published
2015
CCFE-PR(17)36

Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent asignificant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has bee…

Preprint Published
2014

In order to preserve the integrity of large tokamaks such as ITER, the number of disruptions has to be limited. JET has operated previously with a low frequency of disruptions (i.e., disruption rate) of 3.4% [P. C. de Vries et al., Nucl. Fusion 51, 053018 (2011)]. The start of operations with the new full-metal ITER-like wall at JET showed a marked…

Published
2014

Analytical results of a complete JET cryopump regeneration, including the nitrogen panel, follow- ing the first ITER-Like Wall campaign are presented along with the in-situ analyses of residual gas. H/D mixtures and impurities such as nitrogen and neon were injected during plasma operation in the vessel to study radiation cooling in the scrape-off-…

Published
2014

The ITER-like wall (ILW) at JET is a unique opportunity to study the combination of material (beryllium and tungsten) that will be used for the plasma facing components (PFC) in ITER. Both the limiters (Be) and divertor (CFC W coated and bulk W) have been designed to maximise their power handling capability. During the last experimental campaign (O…

Published
2014

The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority funda…

Published
2013

This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding…

Published
2013

In this paper important aspects of Lower Hybrid (LH) operation with the ITER Like Wall (ILW) [1] at JET are reported. Impurity release during LH operation was investigated and it was found that there is no significant Be increase with LH power. Concentration of W was analysed in more detail and it was concluded that LH contributes negligibly to its…

Published
2012

The installation of international thermonuclear experimental reactor-relevant materials for the plasma facing components (PFCs) in the Joint European Torus (JET) is expected to have a strong impact on the operation and protection of the experiment. In particular, the use of all-beryllium tiles, which deteriorate at a substantially lower temperature…

Published