UKAEA Journals

Showing 1 - 10 of 19 Journals Results
2018

Access conditions for full suppression of edge localised modes (ELMs) by magnetic perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma respo…

Published
2015
CCFE-PR(17)16

Recent JET-ILW [1,2] experiments reiterated the importance of tuning the plasma fuelling in order to optimize ion cyclotron resonance frequency (ICRF) heating in high power H-mode discharges. By fuelling the plasma from gas injection modules (GIMs) located in the midplane and on the top of the machine instead of adopting the more standardly used di…

Preprint Published
2015
CCFE-PR(15)76

Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in JET-ILW. The steps that were taken for the successful use of ICRF heating in terms of enhancing the power capabilities and optimizing the heating performance in view of core impurity mitigation in these experiments w…

Preprint Published
2014

In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A 20% reduction of t…

Published
2014

The major aspects linked to the use of the JET auxiliary heating systems: NBI, ICRF and LHCD, in the new JET ITER-like wall (JET-ILW) are presented. We show that although there were issues related to the operation of each system, efficient and safe plasma heating was obtained with room for higher power. For the NBI up to 25.7MW was safely injected;…

Published
2014

In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the …

Published
2014

When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography me…

Published
2014

After the change over from the C-wall to the ITER-like Be/W wall (ILW) in JET, the radiation losses during ICRF heating have increased and are now substantially larger than those observed with NBI at the same power levels, in spite of the similar global plasma energies reached with the two heating systems. A comparison of the NBI and ICRF performan…

Published
2014

During the initial operation of the JET ITER-like wall, particular attention was given to the characterization of the Ion Cyclotron Resonance Frequency (ICRF) heating in this new metallic environment. In this contribution we compare L-modes plasmas heated by ICRF or by Neutral Beam Injection (NBI). ICRF heating as expected led to a much higher cent…

Published
2014

Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel str…

Published