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Monte Carlo has for a long time been the high fidelity model of choice in particle transport. The current state of
the art in uncertainty propagation in particle transport is the so called Total Monte Carlo (TMC) method, a method
which relies on the repeated execution of the same transport simulation. This however is often computationally
intractable even with modern high performance computing standards. In this paper we review the TMC method,
with a slight modification, and propose an alternative based on interval analysis; which provides a robust bound on

the uncertainty in a single model evaluation.

Keywords: Particle Transport, Nuclear Fusion, Monte Carlo, Uncertainty Propagation, Nuclear Data, Total Monte

Carlo, probability bound analysis.

1. Introduction

Particle transport, or radiation transport, is the
study of how radiation propagates through matter:
how it interacts, what with, how it effects the mat-
ter, and its general manipulation. The application
area for particle transport methods is very wide.
A partial list of current physics and engineering
research areas interested in methods for radiation
transport is:

e Solar radiation shielding of spacecraft

e Study of the radiative layers of stellar interiors

e Dynamics of charged particles produced from
collisions in particle accelerators

e Proton ray therapy in cancer research

e Neutron population dynamics in reactors

e Ray tracing methods in optics

Monte Carlo (MC) has for a long time been the
high fidelity method of choice for particle trans-
port?, due to its simplicity and ability to handle
complicated geometries (Wu (2017)). As apposed
to solving a mass balance equation, such as the
Boltzmann equation, an agent based modelling
approach is taken. Here the paths of individual
particles are tracked from their birth to death,
with their state at each point in their history being
stochastically updated following physical interac-
tion laws. Although the paths of individual parti-

2]t was proposed around the time nuclear technology was first
being developed.

cles may not be useful, the global behaviour of a
large number of simulated particles is physical.

There are three inputs that are fundamental to
a Monte Carlo particle transport simulation: the
particle source, the geometry of the problem in
question, and a definition of particle-matter inter-
action rules. The source defines the initial states
of the particles: their birth location, momenta and
their type (neutron, electron, proton or other). It
is usually defined as a probability distribution,
which is sampled at the beginning of a particles
history defining that histories initial state. The
geometry defines the universe of the problem in
question. For example, it could be a model of a
human body in radiation therapy applications, or a
fuel pin cell model of a fission reactor core. Along
with the geometric boundaries of the problem, the
material within the geometry is also defined: the
density of the material and its nuclide composi-
tion”. Finally the interaction rules of the particles
with the material (and its constituent nuclides)
needs to be defined. In nuclear applications, this
is known as nuclear data. Nuclear data usually
provides three things for every nuclide-interaction
pair:

b1t is important to make the distinction between different iso-
topes. Sometimes the lattice structure of the material needs to
also be defined, but for most applications the particle energies
are large enough for the material properties to be treated as
isotropic.
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(i) Interaction cross sections: characterises the

probability of a particular reaction

(i) Exit energy/angle distributions: if the reac-
tion has an exit particle, its next energy/angle
state is sampled

(iii) Covariances: the uncertainty, auto-
correlation and cross-correlation information
of the interaction cross sections

The distance that the particle travels in each ma-
terial is also sampled from a distribution derived
from the nuclear data. Figure 1 shows a simplified
flowchart for constructing particle histories. Since
the transport model itself is stochastic, there is an
inaccuracy associated with using a limited parti-
cle budget. Ideally an uncertainty quantification
method should handle and propagate uncertainties
from all three of these inputs; and should also
distinguish this uncertainty from the inaccuracy of
the Monte Carlo estimator.

Recently there has been a growing interest in
methods for quantifying and propagating uncer-
tainty in particle transport MC, particularly for
nuclear technologies. Most of these methods are
for nuclear data uncertainty propagation, and are
mostly either perturbation theory or sensitivity
based methods (Diez et al. (2015)). These meth-
ods have been effective for fission, but are yet
to be successful for fusion applications. This is
because a key assumption in perturbation methods
is that the response of the model is linear in the
range of the uncertain input. This is an assumption
that is too strong for fusion applications due to
the severity of the uncertainty in the nuclear data
inputs required in fusion®.

The current most rigorous method for propaga-
tion in fusion is the so called Total Monte Carlo
method, a second order Monte Carlo uncertainty
propagation method. However this is usually
intractable even with modern high performance
computing standards. In this paper we propose
an alternative to Monte Carlo for nuclear data un-
certainty propagation based on interval analysis,
which not only provides rigorous bounds on the
uncertainty in a single simulation, but we believe
it can also be extended to propagate source and
geometric uncertainty. In the following section we
discuss Total Monte Carlo in greater detail.

2. Total Monte Carlo: second order
Monte Carlo

The creation of the nuclear data inputs for nuclear
applications is a research field by its own right,
known as nuclear data evaluation. Here it is the
nuclear data evaluators task to statistically mix
experimental reaction data with reaction models to
produce his/her best estimate of the nuclear data

“fusion simulations often have sensitivities to a range of ener-
gies in the MeVs, where there are few measurements.
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Fig. 1.: A flowchart showing a simplified history
of a particle. The shaded boxes show where the
sampling is derived from nuclear data

quantities plus uncertainty. Due to the difficulty
and cost of conducting nuclear reaction experi-
ments, experimental data is sparse or often not
present for the vast majority of nuclides and re-
actions (excluding fission related nuclides, which
have been extensively studied).

The Total Monte Carlo (TMC) method was
originally proposed by Koning and Rochman
(2008) for general nuclear data evaluation and
uncertainty propagation. The method relies on
a nuclear reaction model code, such as TALYS
(Koning et al. (2019)), that can produce a com-
plete evaluated data set. Koning et al use Bayesian
updating, a now popular uncertainty characterisa-
tion method (Patelli et al. (2017)), to construct dis-
tributions for the input parameters of TALYS with
the available experimental data. This input distri-
bution can then be propagated through TALYS to
produce a set, or distribution, of evaluated nuclear
data quantities. It is then suggested that either
this set is condensed into a mean evaluation plus a
covariance matrix, which can then be propagated
using traditional perturbation methods, or that the
particle transport simulation is repeated for the
random instances of the evaluation: ie. by Monte
Carlo. Only this second method has so far been
effective for fusion (Rochman et al. (2010)). Fig-
ure 2. shows the TAYLS evaluated Fe56 elastic
cross section viewed at various dimensions.

Since the cross section is a particle energy de-
pendant function, an uncertain (in a probabilistic
sense) cross section can be thought of as a stochas-
tic process; where every point in energy is a ran-



3884

mean Fe56 elastic scattering crossection
T T T

@
E
1

&
c

K=
]
@
@
2
g
5

10° 10°
neutron energy (eV)

XS at 0.491 MeV (barns)

Proceedings of the 29th European Safety and Reliability Conference

850 852

w42 a4 86 0
XS at 0.386 MeV (barns)

Distributional Fe56 elastic scattering crossection

crossection (barns)

4.4
neutron energy (eV) «10°

Fig. 2.: Random TALYS evaluated Fe56 elastic scattering cross section viewed at various dimensions.
The top left shows the mean cross section, with two marked black lines. The bottom shows an expanded
view about these lines, with random instances of the cross section in red. The top right shows a two
dimensional slice of the distribution at the marked lines, with the samples in red and a kernel density
estimate of the marginals and the multivariate in blue.

dom variable with a precise distribution and with
a precise statistical dependence defined between
each random variable. The Bayesian updating
in the TMC method provides samples from this
stochastic process. The top right image in figure
2 shows a two dimensional slice of this process,
with the samples in red and a kernel density es-
timation of the marginals and the multivariate in
blue. What should be noted is that not only are
the marginals non-Gaussian, but the multivariate
is also non-Gaussian. If one condenses all the
random instances of the cross section into a mean
evaluation and covariance matrix, then this distri-
butional information is lost.

The great success of TMC is that all of this
complicated multivariate statistical information is
captured in the set of random evaluations; and
that this information can be propagated through

any nuclear application in a non-intrusive way by
Monte Carlo. For particle transport applications,
this uncertainty propagation scheme can be con-
sidered as second order Monte Carlo: that is, since
each execution of the MC particle transport sim-
ulation produces a distribution (a mean value and
deviation corresponding to the Monte Carlo error),
then repeated execution will produce a density of
distributions. Figure 3. 1is a illustration of this.
The overall dispersion of the distributions is due to
the uncertain nuclear data input, with the variance
of each individual distribution being due to the
Monte Carlo error of that particular simulation,
which in turn is dependant on the uncertain input
also. In general, this density of distributions is
the output to second order Monte Carlo, and is
what should be used in further uncertainty and risk
assessment. The statistical properties of second
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Fig. 3.: Anillustration of Monte Carlo uncertainty
propagation in deterministic and stochastic mod-
els.

order distributions are themselves distributional,
i.e. the mean and variance are distributional with a
dependency between them. This can make second
order distributions difficult to interpret and manip-
ulate, and so often approximations are made. For
example, the analyst might only use the distribu-
tion of means if they are confident that the Monte
Carlo error is negligible. Rochman et al. (2010)
in their Total Monte Carlo method suggest that
this second order distribution should be condensed
into a singular distribution with the following sta-
tistical properties:

KT otal = 71,4 2?21 i
(1)

2 =2 2
OTotal ® Tmc T OND

where [i7otq; and oot are the mean and stan-
dard deviation of this condensed distribution, with
1; being the mean of each individual simulation.
o pmrc 18 the mean of all the individual Monte Carlo
errors and o p being the deviation of the nuclear
data, which they give to be:

UJQVD = fil Z?:l(lii — UTotal)?

(@)

—2 1 2
oMC = n Zi:l OMmc,i

There are some arguments that can be made
against representing the uncertainty this way.
Firstly, any distinction between the Monte Carlo
error and the uncertainty from the nuclear data
is lost. Equivalently, this distribution mixes the
frequentest and Bayesian interpretations of prob-
ability: which represent aleatory and epistemic
uncertainty respectively. These are generally con-
flicting and should not be aggregated. This is

3885

because the cross section a single but unknown
function, and does not have a frequency. The
Monte Carlo error alternatively is rooted in the
variability of transport model itself. Secondly, this
representation assumes a Gaussian distribution. If
one wishes to perform further analysis or propa-
gate this uncertainty, we believe that propagating
this distribution would lead to an underestimation
of the uncertainty.

If one needs to reduce the second order distribu-
tion, our preferred representation is an imprecise
distribution or a probability box (Ferson et al.
(2015)): a distribution with interval moments.
This can be created from taking the outer two
envelopes of the all the CDFs of the second order
distribution. This is shown in figure 3 as the
grey region between all of the CDFs in the sec-
ond order distribution. This gives two bounding
distributions representing the two extrema of the
probability mass. With this representation the
distinction between the nuclear data uncertainty
and the Monte Carlo error is not lost. The nuclear
data uncertainty is represented by the difference
between these bounding CDFs. With a decreasing
nuclear data uncertainty, theses bounds eventually
meet creating a precise distribution. The Monte
Carlo error is captured in the interval variance
of the p-box. With a decreasing Monte Carlo
error, the bounds steepen eventually creating an
interval. The exact density within these bounds
is lost in this representation. Instead the inter-
pretation is that any distribution function that lies
within these bounds is a candidate for the precise
simulation, making no statement on how the prob-
ability mass is distributed within. This precise
distribution function is retrieved if the inputs are
known exactly. We believe that this is a more
honest characterisation of the TMC output; which
will yield the correct bounds in further analysis
and propagation.

For fusion applications, Total Monte Carlo is
usually intractable even with modern high per-
formance computing standards. A full fusion
reactor simulation would require of the order of
~10'2 particle histories for an acceptable Monte
Carlo error. Assuming that modern CPUs can run
around 1000 histories per second, a particle trans-
port MC calculation in parallel on 1000 CPU cores
would take ~1.5 weeks to complete. Repeating
this calculation is completely impractical. We
therefore investigate alternatives to Monte Carlo
for uncertainty propagation, which can be per-
formed in a single model query and yields robust
bounds on the uncertainty: the above mentioned
p-box output. This we base on interval analysis,
and discuss in the following section.

3. Interval particle transport

Ferson and Sentz (2016) describe a general frame-
work for extending agent based models to in-



3886

corporate and handle uncertainty within the sim-
ulation. Incorporating uncertainty into the cal-
culation itself would allow for a near automatic
propagation of the uncertainty, removing the need
for the above described Monte Carlo. Interest-
ingly they also compare this intrusive propagation
method to Monte Carlo, and they find that Monte
Carlo generally provides an underestimation of
the uncertainty in complex systems such as this.
They describe a number of features that must be
added to an agent based model for it to be gen-
eralised to an uncertain model. Following their
description, the following must be incorporated
into particle transport MC:

(i) Characterise stochastic drivers imprecisely
(ii) Specify particle attributes, tallies, geome-
tries, material properties and particle sources
as uncertain numbers
(iii) Execute rules in a way that respects uncer-
tainty in their conditional clauses

The above framework can work for all uncer-
tain numbers (scalars, distributions, intervals, p-
boxes, fuzzy numbers or other), including the in-
teractions between uncertain numbers of different
classes. We have selected to use intervals as our
model of uncertainty, since interval algebra has
been extensively studied (Moore (1979)). In this
section we describe how a number of these fea-
tures may be incorporated into the particle trans-
port MC algorithm for propagating nuclear data
uncertainty.

3.1. Particle interactions: imprecise
events

The stochastic drivers in particle transport MC are
the distributions which are sampled and change
the state, or attributes, of the particle. These are
the yellow shaded boxes in figure 1. Since they
are directly derived from the nuclear data input,
the first step is to convert the stochastic process
cross section (figure 2) provided by TMC into
something akin to an interval process. This can
be quite simply done by taking the maximum and
minimum values over all samples at every point in
energy. This can be thought of constructing a con-
vex hull or a 2 dimensional interval around all of
the samples of the multivariate distribution in the
top right of figure 2. Following the interpretation
that the interval represents the set of all probability
distribution functions defined on the real numbers
within its range (Ferson et al. (2007)), then this
multivariate, including its non-linear dependence,
is contained in this set. Although the exact dis-
tribution is lost, it will still be represented and
propagated by the interval.

The attributes of the particle are: energy
(scalar), direction (3 vector), position (3 vector)
and alive state (boolean). A weight, or a prob-
ability mass, (scalar) is also often included for
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advanced Monte Carlo simulation, such as impor-
tance sampling, but it will be omitted from the
current description; although we believe that it can
also be included in this framework. The above
particle characteristics will be intervals, which are
changed or updated from sampling of the stochas-
tic drivers. We will only consider two possible
events in the particles history: elastic scattering,
which changes the particles energy and angle, and
absorption, which will kill the particle and end its
history.

The probability of an absorption event is given
by:

Oabs (E)
Oabs (E) + Oscat (E)

where 045 1S the absorption cross section depen-
dant on the incident particles energy, and where
Oscat 1 the elastic scattering cross section. When-
ever an event is to be sampled, a U(0,1) random
number is selected and compared to this value. If
it falls bellow, an absorption event occurs and the
particles alive state is changed to a zero, ending
the particles history. Since P(abs) = 1—P(scat),
above P(abs) a scattering event occurs, where the
next energy/angle state of the particle is sampled
from a distribution derived from the physical laws
of elastic scatteringd. Since 0qps and ogeqr are
intervals, we have an interval probability for the
event. By rearranging the above relation to:

P(abs) =

3

1
1 + Oscat

Tabs

P(abs) = 4

and by inserting the cross sections as intervals
and following the interval algebra, the interval
probability for this event can be found to be:

_ 1 1
P(abs), P(abs)] = —, G
[P(abe). Plabs) = | s T o

(5)
where [0ubs, Oabs] and [Oscat; Oscar] are the
bounds on the interaction cross sections. By rear-
ranging the equation this way the double counting
problem often encountered in interval methods is
avoided.

Similar to the precise case, if the uniform ran-

dom number falls bellow P(abs) or above P(abs)
then either absorption or scattering occur. If it falls
between these bounds, then we are presented with
a situation where we cannot say for certain which
of these events has occurred. In this situation,

dThe derivation is out of the scope of this paper, but this func-
tion can be extended to include the interval particle attributes
as inputs.
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both options must be concurrently considered and
propagated in the simulation. This is the main
technical challenge in this scheme. For this simple
case where we are only considering absorption
and scattering, if the event is imprecise we can
change the particles alive state to [0, 1], and now
consider it to be both alive and dead. Since an
absorption event ends the particles history, only
the scattering event needs to be further propa-
gated, and so the particle continues its history as
if scattering has occurred, but with an updated
[0,1] alive state. The effect of this uncertainty
in the simulation is that whenever this particle
contributes to a tally, the lower bound of this
contribution will be a zero for every contribution
in the particles history after this imprecise event.

In general there are multiple events that can oc-
cur in a particles history: fission and inelastic scat-
ter are examples. In such cases, where the particle
continues to live but has different energy/angle
outputs, we believe that the appropriate action
is to split the particles attributes and propagate
both options. We believe that this action is also
appropriate when the particles interval position
intersects a geometric barrier, which itself can be
uncertain. This however remains untested. In the
following section we describe how these rules can
be used to construct particle histories.

3.2. Particle histories: imprecise
exponential branching walks

A particles history begins by sampling the par-
ticle source, the stochastic driver which defines
the particles initial attributes. Uncertainty in the
source can be included by defining this stochastic
driver as a p-box, which may be sampled to give
the particle random interval states. The distance
that particles travel between events follows an
exponential distribution, the parameter of which
depends on the properties of the material the par-
ticle resides in. While the particle lives, this
exponential distribution is sampled defining the
particles next position. From its birth to death, the
particle follows an exponential random walk. The
distance to next interaction is defined by:

_In(§)
d‘_EAE)

where £ is a random number between 0 and 1,
and X, is known as the total macroscopic cross
section, a cross section which is constructed from
the sum of all interaction cross sections the parti-
cle can have with the particular material it resides
in. This quantity depends on material properties
such as density, whose uncertainty may also be
represented as an interval. If X, is an interval,
the above exponential distribution is a p-box. An
interval sample can be generated from this p-box
by:

(6)

3887

o | &) ()

[dad} - T s T v (7)

X Z

The interval [d, d] is added to the particles interval
position in the direction of its travel, defining
the particles next uncertain interaction location.
Following the above description, imprecise par-
ticle histories may be simulated. Due to the
imprecise events, the same particle history will
branch into different reaction channels, splitting
the convex hull defined in the particles phase or
attribute space. Interestingly if one reduces all
uncertainty to zero, the precise transport algorithm
is retrieved.

Figure 4 shows various instances of a particles
history in its phase space. For simplicity only
the energy and distance from the source is shown.
The top left shows a precise history. The top
right shows a particle history with an initial un-
certainty in energy. The black box is the convex
hull simulated in the interval MC simulation, with
individual Monte Carlo samples shown as points.
All the histories simulated by Monte Carlo fall
within this interval. The bottom left figure shows
an expanded view of the final interval state of the
history of the top right. What can be observed is
that the complicated correlated structure produced
by Monte Carlo falls within the interval bounds.
Finally the bottom right show a history where
initial energy and position are uncertain, with also
uncertainty in the nuclear data. Again, all histories
fall within the interval bounds. Interestingly, the
uncertainty in the particle position increases the
more imprecise events it undergoes, suggesting
that the further from the source you would like to
tally the greater the uncertainty will be.

3.3. Descriptive statistics for tallies:
p-boxes

An entire interval transport simulation may now
be run. The main quantity of interest is the particle
energy spectrum, the number of particles in a par-
ticular volume at a particular energy; since most
other transport properties can be derived from it.
The Monte Carlo estimator for flux spectrum is:

o(E) = S ®)

a weighted sum of the distances particles have
travelled at a particular energy within that volume.
Identical transport simulations may be run, with
different random number seeds, producing vari-
ations in the Monte Carlo estimator. The mean
and variance over all of the repeated simulations
is taken, giving an estimate of the Monte Carlo
error. The interval extension to this estimator is
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Fig. 4.: Various imprecise particle histories compared to Monte Carlo. Top left shows the precise case.
The top right shows a history with an initial uncertainty in energy. Bottom left shows an expanded view
of the convex hull of the particles final state of the top right history. Bottom right shows a history with
an initial position and energy uncertainty and imprecise events

Particle energy spectrum

flux (arb units)

108 107

particle energy (V)

Distributions at: 1.5MeV.

0 500 1000 1500 2000 2500 -50 0 50 100 150 200 250 300
flux (arb units) flux (arb units)

Fig. 5.: The energy spectrum output of an interval MC simulation, compared to Monte Carlo. Top image
shows this spectrum, with the means of the individual Monte Carlo simulations in red and the bounds on
the mean from the interval calculation in blue and brown. The bottom two images shows the p-boxes at
the two marked lines in the spectrum, with the individual Monte Carlo simulations in red
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straight forward, where a the lower bound of the
estimator is found using the lower bound of the
distance, and the upper bound using the upper
distance. If a particle undergoes an imprecise ab-
sorption event, the contribution to the lower bound
is zero from that event forward. By repeating the
interval simulation with different random number
seeds, a distribution of intervals is created. Ferson
et al. (2007) describe an algorithm for performing
descriptive statistics on interval data. In this case
an interval value for the mean and the variance
is produce, which may be used to construct a p-
box over this interval data. Figure 5 shows the
output of the interval transport simulation with
comparison to Monte Carlo (the source energy
has been excluded). The above images shows the
bounds on the mean from the interval transport,
with the means of the individual Monte Carlo
simulations in red. All means fall within these
bounds. The bottom two images show the dis-
tributions expanded at the marked lines in the
spectrum. In red is the second order distribution
produced by Total Monte Carlo, with the p-box
produced from the interval particle transport in
blue and brown. All Total Monte Carlo samples
fall within the distribution bounds of the p-box.

4. Conclusions and open questions

In this paper we present an alternative to Monte
Carlo for uncertainty propagation in particle trans-
port, based on interval analysis. For a very simple
simulation setup, without any geometric barriers
and only considering elastic scattering and ab-
sorption events, the interval transport can propa-
gate uncertainty in a single transport simulation,
bounding the Monte Carlo result. For this method
to be generally applicable there are a number of
open questions:

e The action to be taken when the particle inter-
sects a geometric barrier.

e The simulation of a material with multiple nu-
clides.

e The concurrent propagation of interval hulls
which have been split from imprecise events.

The last of these is the most challenging. We
believe that if these questions are answered, un-
certainties from all inputs to the transport model
can be propagated in a single simulation. All of
the above depends on the quality of the nuclear
data evaluation.
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