RESEARCH ARTICLE | JANUARY 02 2024
On the transport of tracer particles in two-dimensional
plasma edge turbulence

T. Gheorghiu ¥ @ ; F. Militello ® ; J. Juul Rasmussen

’ '.) Check for updates ‘

Phys. Plasmas 31, 013901 (2024)
https://doi.org/10.1063/5.0172484

. CrossMark
@

View Export
Online  Citation

2]
©
=
2]
T
o B
T
o
/)]
O
2]
>
e
Q.

APL Machine Learning

Latest Articles Online!

Read Now Zz. Publishing

IP
AIP
é/_‘_ Publishing

L€:.1:01 v2og Aenuer g0


https://pubs.aip.org/aip/pop/article/31/1/013901/2932196/On-the-transport-of-tracer-particles-in-two
https://pubs.aip.org/aip/pop/article/31/1/013901/2932196/On-the-transport-of-tracer-particles-in-two?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pop/article/31/1/013901/2932196/On-the-transport-of-tracer-particles-in-two?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0003-4254-9790
javascript:;
https://orcid.org/0000-0002-8034-4756
javascript:;
https://orcid.org/0000-0002-3543-690X
javascript:;
https://doi.org/10.1063/5.0172484
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2281281&setID=592934&channelID=0&CID=837567&banID=521596642&PID=0&textadID=0&tc=1&scheduleID=2201582&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fpop%22%5D&mt=1704710851350096&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpop%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0172484%2F18283601%2F013901_1_5.0172484.pdf&hc=5ca4ad38c7c31f6dc0cfd1c96f2ff469e03dc70f&location=

ARTICLE

Physics of Plasmas

pubs.aip.org/aip/pop

On the transport of tracer particles in
two-dimensional plasma edge turbulence

Cite as: Phys. Plasmas 31, 013901 (2024); doi: 10.1063/5.0172484 @ 1 @
Submitted: 16 August 2023 - Accepted: 6 December 2023 - (Rl
published Online: 2 January 2024 View Online Export Citation CrossMark

T. Gheorghiu,"*? (%) F. Militello,' () and 3. Juul Rasmussen®

AFFILIATIONS

TUnited Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB,
United Kingdom

?York Plasma Institute, Department of Physics, University of York, Heslington, York YO105DD, United Kingdom

*Physics Department, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

2 Author to whom correspondence should be addressed: theo.gheorghiu@ukaea.uk

ABSTRACT

Shear flows in turbulent fluids have been known to act as transport barriers for some time. An example of a shear flow generating
mechanism is the E x B shear in plasma, which has a substantial impact on the dynamics of magnetic confinement fusion devices. The
influence of this may be seen in the scrape-off layer where blobs or filaments may be sheared and velocity impacted, and in the edge and core
of the plasma, where the formation of transport barriers and suppression of turbulence is strongly associated with such shearing effects. A
dynamical picture of transport through these effects has been elusive—the development of a reduced model would be beneficial. We consider
the application of an “observational” random walk to such transport, in order to determine whether it is a suitable approach upon which to
base the development of reduced models. The observational random walk is modification of the random walk approach, introducing an
intrinsic time separating observations, which reproduces the basic results of previous random walk models given a Gaussian jump function,
assuming spatially homogenous jump function. We demonstrate that the jump function can be inferred from the statistics of passive particles
propagated by E x B drift on a synthetic turbulence field and that the transport equation found from the jump function matches the expected
diffusive transport very well. We, then, consider passive particles on simulations of the classic and modified Hasagawa-Wakatani equations
in a statistical steady state for a variety of adiabaticity values and find normal transport in the near-hydrodynamic limit. When zonal flows
appear, we find jump functions with non-Gaussian features, which result in transport equations with fractional differential terms in addition
to, or in place of, diffusion terms. We surmise that the non-local fractional terms are related to the zonal flows acting as transport barriers.
Overall, we find that the approach developed is a suitable starting point for the development of reduced models.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0172484

I. INTRODUCTION

Macroscopic coherent vortices in turbulent fluids have been
understood to act as transport barriers, which can trap and transport
Lagrangian tracer particles;"”” other shear structures, such as zonal

The formation of the H-mode is likely to be significant to the
construction of fusion reactors of a reasonable size, due to the increase
in the energy confinement time in comparison to the L-mode—this is
attributed to the presence of edge transport barriers which have been
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flows, are well known to suppress turbulence in a variety of fluid sys-
tems, such as planetary atmospheres and toroidal plasmas—these have
been studied extensively.”

In toroidal plasmas, both inside the last closed flux surface
(LCES) and beyond in the scrape-off layer (SOL), poloidal shear in
E x B drift flows has substantial impacts on transport and dynam-
ics, playing a dominant role in suppressing turbulence, forming
transport barriers,” and influencing radial propagation of plasma
in the SOL.

observed to hinder particle and energy flow; internal transport barriers
have also been observed to result in improved confinement times—in
both cases, there is evidence that E x B generated shear flow sup-
presses turbulence and so reduces radial transport;” in experiments
with biased electrodes, the L-H transition can be induced by enhanc-
ing the radial electric field, therefore enhancing the E x B flow.”
Plasma from the core is transported into the scrape-off layer
(SOL) and then toward material surfaces, and it has been observed
that turbulence in this region is characterized by the ejection of
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coherent structures known as filaments or blobs.”'’ Understanding
the balance of radial (or cross field) and parallel transport in the SOL
is critical for understanding the transport of heat to the divertor target,
as well as understanding the expected loads on plasma facing materi-
als—we refer to Ref. 11 for a comprehensive discussion of these issues.
Cross-field transport in this region cannot be characterized as purely
advective or diffusive'” and simulations indicate that the transport is
non-Fickian."” "> Theoretical considerations of filament structures
indicate that shear flow can impact the dynamics of filaments, sugges-
ting that filaments can be torn apart or trapped by shear flows of suffi-
cient magnitude.'®"” Experimental work on NSTX finds a correlation
between reductions of edge turbulence and poloidal flows,””*" sugges-
ting strongly the role of poloidal flows in suppressing turbulence.

Given the importance of E x B shear and suppression, we wish
to understand the impact it has on radial transport and flux—it would
be useful to develop a simple model of this process. We know the inad-
equacy of the advective-diffusive approach in understanding aspects of
transport, and so we look for an alternative that we may justify as being
physical and relevant. Statistical concepts based on the random walk
have been considered””* ** for application in magnetic confinement
fusion (MCF) devices, due to the natural appearance of “strange kinet-
ics”—in which the diffusion is no longer Brownian in nature”” (this is
called anomalous diffusion in statistical physics, but we avoid this term
due to its other connotations in fusion)—in these models, and so they
may be particularly well suited to understanding the shear phenomena
we wish to characterize.

If we are able to demonstrate that MCF plasmas feature
strange kinetics, this could justify the use of fractional “diffusion”
to describe transport and, therefore, justify models based on this
approach, such as in Ref. 23. If this statistical approach is successful
in characterizing transport, it will help with the development of a
reduced model which could capture the essential features of radial
transport influenced by E x B shear. The approach we take in this
paper describes only the E x B flow field—a model describing the
transport of density and energy would combine this with a model
describing the correlations between thermodynamic variables and
the E x B drifts—but this may nonetheless allow us to begin to
understand the dynamics present.

We consider the continuous time random walk (CTRW) and
classical random walk (CRW) and their application for use in the anal-
ysis of turbulent plasma systems.

Montroll and Weiss™ in their work “Random Walks on Lattices
II” derived what was later referred to as the continuous time random
walk,” starting from a toroidal lattice and then considering the statisti-
cal properties of discrete particles moving between points on this lat-
tice. Time is initially discretized, effectively being a counter of the
number of steps taken by a particular particle. The analysis is extended
to continuous time by assuming that

jumps are made at random time #, f, t3... where the random
variables T} =1t,T, =t —t,... have a common
[probability] density “y(t)”

then relating this to the nth step taken. The recursion relation in
between system state probability distributions used initially as a way to
explore these statistics is the discrete form of Bachelier’® and later
Einstein’s™ recursion relation:
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00
flrtr) = | flxt Anad)an, )

—00
which is a statement that the distribution of particles at ¢ + 7 can be
written in terms of the previous distribution at f, where the system
contains 7 particles, and f(x, t) is the number of particles per unit vol-
ume; and that in a time interval, 7, the x-coordinate of each particle
increases by a A, where the probability distribution of any A occurring
is given by q(A), named a jump function for brevity. This was used by
Einstein”” to show that the random motion of microscopic particles
caused by thermo-molecular motions can give rise to a diffusive pro-
cess like those observed in nature. The time interval used in this analy-
sis was assumed arbitrarily small—in that paper, there were no explicit
links to the number of steps a particle would make, only consideration
of two states separated by this time interval.

The work of Montroll and Weiss*® was initially applied in the
realm of solid-state physics and semiconductors, which was of interest
to the authors: later the concepts developed were applied to transport
and diffusion in fluid systems.”” While the CTRW is appropriate to
apply in highly structured scenarios such as solid-state, condensed
matter, semiconductor physics, and many other fields””"” which con-
cern behavior on a highly ordered grid or analogous—e.g,, a crystal, it
does not appear entirely appropriate for the case of unstructured fluid.

Vlahos et al’ consider random walks to be of two kinds,
broadly—classical random walk models (CRW), wherein time is a
dummy variable acting as no more than a counter for the number of
particle steps, and the continuous time random walk (CTRW), where
the waiting time of a particle at a particular lattice point before jump-
ing varies continuously.

There has been substantial work attempting to apply the CTRW
methodology to fluids and plasmas, perhaps starting with Balescu sug-
gesting a possible application of such a statistical concept in the edge
region of tokamak devices,” after reading Shlesinger, Zaslavsky, and
Klafter’s review paper “Strange Kinetics.”” Balescu”” had recognized
that anomalous transport (in the MCF sense) in magnetized plasmas is
a particularly difficult problem, and acknowledges the difficulty in the
application of the kinetic and Langevin approach to the issue of anom-
alous transport. This is followed by later works attempting to apply the
CTRW method to magnetically confined plasmas.””>** Additionally,
Mier et al.”" attempt to characterize non-diffusive transport in plasmas
using Lagrangian tracer particles: Unlike the treatment in this paper, a
form of the transport equation is assumed rather than inferred. The
form assumes a single space and time fractional derivative, which is
not obviously justified prima facie.

Here, we consider what we would term an “observational random
walk” (ORW) formulation which differs from previous random walk
formulation by considering a physical time interval separating
observed states for the purpose of the recursion relation, and so impos-
ing a physical scale—perhaps also providing a connection between the
continuous theories and the discrete theories. It is based on a more
“diagnostic” approach, allowing only what can possibly be observed to
be considered. We consider some of the properties of the ORW,
whether it confirms previous findings, and whether this can be used to
capture the dispersive behavior of tracers in turbulent systems, and so
whether it may be used to develop a reduced model of transport.

The remainder of the paper is organized as follows. In Sec. II, we
discuss the ORW and its predictions in the case of Gaussian statistics.
In Sec. 1II, we outline the general method we have developed. In
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Sec. IV, we apply the ORW to a simple synthetic field with features at
every observable scale, which is designed to replicate the conditions of
normal diffusion and then see if this is found with the ORW method.
In Sec. V, the ORW is applied to the classical and modified
Hasegawa—Wakatani equations, simulated over a range of adiabaticity,
identify the conditions in which we may observe normal diffusion, and
then consider the impact of zonal flows. In Sec. VI, we discuss the
results and possible interpretations, before concluding in Sec. VII.

Il. THE OBSERVATIONAL RANDOM WALK

The observation of test particles in a field, where the observations
occur at discrete intervals, can be used to provide statistical informa-
tion about the behavior of the field. As particles move in the field, they
can be considered to be individually undergoing a kind of random
walk, with the interval between observations of the test particles intro-
ducing a timescale. We then introduce an observational random walk
(ORW) model in order to formulate the dynamics of the test particles
as being random walkers. We will show this can be used to infer the
nature of transport experienced by the test particles.

While random walks have been considered in terms of the num-
ber of jumps an identifiable random walker makes, we consider the
random walk to be the observed jumps made by a random walker.

When a time-varying system is observed via instrumentation,
each distinct observation is taken at a different time—this way, each
observation generates a snapshot of the system (or a subset). Consider
a system of N identical particles undergoing some kind of random
motion in a box and observed by a device capable of measuring all the
particle positions at specific time intervals. Over multiple snapshots
separated by the observation interval, we would observe changes in
position. The observed series of jumps for each individual particle is
the observed random walk.

An observational random walk has a fixed timescale, as the obser-
vation interval is controlled by the observer. Consequently, the set of
positions that a particle can be observed at is limited by this timescale.
For example, an infinitesimally small observation interval would result
in particles existing at an infinite set of positions—in reality, such an
observation is unachievable, so we should consider systems as being
composed of observational snapshots separated by a measurable, finite
observation time, as an acknowledgment that we cannot observe sys-
tems evolve continuously.

We construct the recursion relation relating current and past
states, by considering a particle in an infinite n-D space. At a previous
observation time, t —  (where 7 is the observation interval), the parti-
cle could have been at a set of positions, ¥ — A7—two of these previous
possible particle positions are shown in Fig. 1.

We define a distribution function for our observed jumps (or
“jump function”), gay - (A7, ), assuming it is a function of observa-
tion interval and displacement. The jump function can be considered
as the probability of a particle having a measured spatial A7, if the time
between two observations is 7. Particle conservation is assured via Eq.
(2), which is effectively a statement that a particle will have some
jump, including a zero length jump, over an observation interval.

1= J qar(AF, 1) dATF. @)

—00

Considering the position of interest, 7, 7, the only way a particle
exists there at a current snapshot is if a particle at a previous snapshot,
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FIG. 1. The current particle position, r, {, and two possible prior positions.

7 — A7y, t — 1, was displaced by an A7;. A jump of this length has a
probability gay . (AF1, 7). So, the probability density of a particle being
found at a current point of interest, P(7., t.), is then the sum over all
paths, appropriately weighted.

For the purpose of this paper, we consider 7 to be constant over
any number of observation intervals, such that there is no dependence
of P on the observation interval. By permitting there to be an infinite
number of possible paths to the current position, we find

00
P(7e, t.) = J P(7. — A7, t. — 1)qar . (A7, 1) dAT, (3)
—00

which is similar to Eq. (1) except we have an explicit dependence of
the jump function on the observation interval. As we consider only the
constant T case, we then essentially consider only a selected slice of
the jump function—this can be done simply with a convolution with
the delta function. In this paper, we consider only the one dimensional
case, such that 7. = x., and A¥ = Ax.

It can be shown that in the spatially one-dimensional case, using
two-dimensional (space and time) Taylor expansion and making the
assumption that the first moment of the jump function is zero, and the
second moment is o2 (equivalent to assuming a Gaussian jump func-
tion), we recover the equation governing the evolution of P(x., t.),

OP(x., t;) izazP(xc, te) <77283P(xc7 te) @

o, 2t 0Ox2 2 Ox2ot,

This reduces to the classical diffusion equation when Eq. (5) is
satisfied, which suggests that the smaller the time between observa-
tions, the more time variation of P is permitted before the rightmost
term in Eq. (4) begins to be significant.

1 S 1 OP(x, t) . 5)
T P(x, t) Ot

Note that if we consider the limit of locality as being the “hardest”
case, then given that the jump function is the distribution of jumps
that are physically possible, then it becomes obvious that for a given
lab observation interval 7, the maximum possible distance that can be
moved by a non-interacting particle is |A7| = ct, where c is the speed
of light in the medium. As such, the probability of a particle being
observed to make a jump greater than this magnitude must be zero. It
is then possible to see that in the very small limit t — 0, the jump
function will tend toward a delta distribution. This is simple recogni-
tion of the fact that as observation interval tends to zero, the particle
will be increasingly likely to appear closer and closer to the location of
the previous observation, which can be represented in the zeroth
moment of the jump function as
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Tc
= [ awe(ar, ) an ©
—Tc

which imposes a strong condition on the shape of the jump function
in the limit of small 7 and demonstrates the impact on shape overall.
In real particle systems, locality may not be the primary limit on the
distribution of particle jumps—it is suggested that interactions with
other particles will provide more dominant limits. For example, colli-
sions will limit the distance a particle can travel in a time and so may
impact the jump function, though perhaps in a less absolute way than
locality.

The 1D case is a convolution, with a Fourier representation
(where x, — k) as

P(k, t.) = P(k, t. — 7)g; . (k). 7)

In order to be able to apply Fourier analysis, we assume that P(x)
and g(Ax) tend to zero as x, Ax — oc. To find the equation for P, all
that has to be done is the two dimensional Taylor series expansion of
Eq. (7), followed by an inversion to find the x, space representation.
The two dimensional expansion captures the cross terms and results in
the appearance of the time derivative. For example, in the case of a
Gaussian-like jump function with characteristic function (the Fourier
transform of the jump function) as in Eq. (8), we can recover Eq. (9),
which is then the full solution of the recursion relation for the case that
observations are at a constant interval, with Gaussian character and no
net drift,

G (k) =29 r=2, @®)
> J+1’E fOP(x,, t.) _ > 'E_Ji{ > Zaz”P(xc, tc)} ©)
; ot ;j! ot Z:l n! Ox2n '

It can be shown that by neglecting terms of O(x?),O(7?) or
greater, we return an equation of the form of Eq. (4), with the same
conditions on tending to the Fickian diffusion equation.

Equation (9) represents an infinite series, in which, for the nor-
mally diffusive case, only certain terms are relevant, based on the mag-
nitude of the coefficients and differential order. For the general
function f(x, t), we can define a general differential equation composed
of all possible combinations of the partial integer order derivatives in
both directions, as in the following equation:

0 1s] 0? 0
f+C01f+611 f+20 /

0=coof +ci0

Ox ot " Ox0t Ox?
2f 821f
toagy o Faigas (10)

We introduce the differential coefficient symbol, ¢, , for simplic-
ity of reference. In this case, the first subscript indicates the coefficient
belonging to the spatial derivative, with the value of the coefficient
indicating derivative order, and the second is the same but for the time
derivative. Some of these terms feature in equations describing phe-
nomena across various disciplines in the sciences, so we call “co” the
damping term, “cy;” the Fickian term, “cy,” the telegraphers term,
“c10” the advection term, and “c,” the diffusion term. Odd spatial
derivatives tend to have an advection-like character, while even deriva-
tives tend to have a diffusion-like character. This notation is easily
extended to derivatives of fractional order.
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While we have called “c, ” the diffusion term, as the Fickian dif-
fusion equation,
0, 0?
_f —d _f , (11)
ot Ox?
the classical diffusion term is then easily expressed in terms of the
coefficients,
c
d=—-22 (12)
Co,1
Based on the assumption of a Gaussian jump function with
drift—a jump function of Gaussian character, but a non-zero mean—
we can find the coefficients of each differential term. In the one dimen-
sional case, drift is easily imposed using the Fourier shift identity.

FT{qae— «(Ax — 1)} — e ™q, (k). (13)

Equation (8) is easily modified to incorporate particle drift. It is,
then, possible to express the characteristic function of the jump func-
tion as the sum of a real and imaginary part, which for the shifted-
Gaussian jump function can be shown to have the following form:

4. (k) = Ae™® + ikBe P (14)

The imaginary component originates entirely from the drift in
the jump function. Some of the coefficients of the general differential
equation for the jump function with characteristic function of form 14
are presented in Table I. This is clearly a simple case, but nonetheless
instructive given that the assumption of a Gaussian jump function
appears to be appropriate in some cases, since this gives normal
diffusion.

By acquiring some jump function of any form, it is possible to
find an evolution equation. For a jump function well described by

qax:(Ax) = l"e”/A"z7 (15)

this is transformed to the following equation:

4. (k) = F\/ge_% (16)

Via substitution, we may find the damping, Fickian, and diffusion
terms using Table I and Eq. (14), and so find the classical diffusion

TABLE 1. Coefficients, c,, for the first three temporal and first five spatial derivative
orders, in the case that the jump function is Gaussian.

Phys. Plasmas 31, 013901 (2024); doi: 10.1063/5.0172484
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coefficient. Due to the zero-value of the imaginary terms in this case,
by inspection of Table I, it is clear that all the highest order odd deriva-
tives are equal to zero—hence the previous reference to odd derivatives
being advection-like, and even ones being diffusion-like.

Co,0 = <F\/—§— 1) $7 (17)

I
C1 = — . ) (18)
' VAany
Fy*%
= , 19
(&X0] 8\/5 (19)
1
- (20)
4yt

Enforcing the zeroth moment condition of Eq. (2), and introduc-
ing the standard deviation (), we then have

r=—— 7= %
O’\/QE 20

which can then be used to recover the classical result d = g—i, and that
o0 = 0, in addition to the fact that higher orders are much less signifi-
cant. The forms of the differential coefficients become more cumber-
some with less ideal jump functions, but the Fourier method allows
any form provided the jump function is well characterized. We note
also that, if a structure function is understood to be the characteristic
function of a random walk, then the method here calculates the trans-
port equation from the structure function. In principle, if we can iden-
tify a jump function between system states then we can find a
differential equation governing the evolution of the system. It is impor-
tant to note that the jump function can be extended to vary in space
and time. Here, we limit ourselves to applying the ORW to steady state
systems with no boundaries.

1. METHOD

Using the recursion relation, Eq. (7), it is possible to infer a trans-
port equation with knowledge of the jump function, g, or its pair g.
We may estimate the jump function over an observation interval, 7, by
considering the motion of tracer particles in a statistically stationary
system as follows:

21

1. Propagate a statistically significant number of test particles on
the system.

2. Separate the acquired time series of particle locations into non-
overlapping sections with length 7.

3. For each time series of length 7, calculate the absolute dispersion—
the distance between the initial and final location—for each particle.

4. The jump function over the observation interval is the probabil-
ity distribution of the absolute dispersion over the interval 7.

5. Examine the jump function and find the most appropriate fit.
Alternatively, one may find the Fourier transform of the jump
function (the complementary function) and find the fit in
Fourier space. This may be more appropriate since the symmet-
ric a-stable distributions are well defined in Fourier space.

Once one has estimated the jump function, it is then possible to
find the transport equation by using Eq. (7), as demonstrated for the
Gaussian case in Sec. I1.
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IV. TRACERS IN ISOTROPIC TURBULENCE

We examine the properties of the jump function in a well-defined
simple case, in order to validate the methods to be used on more com-
plicated systems. We will do this by considering the jump function of
Lagrangian tracer particles propagated on a synthetic field.

We consider 10° Lagrangian tracers in an isotropic 2D “turbu-
lent” system at steady state. A synthetic field, ¢, is generated on a grid
of n, and n, cells in each dimension, and #,,, output steps. The field is
initialized such that features exist at every scale and given by

Ny Nz

¢ =D 3 cos (ke + &) cos(zk, + &), (22)
n=1 m=1
where
2 2
kx = Tcnv kz - o (23)
Ny n,
and
éx = a)r(l,mnomnv 62 = aift,n,nomn7 (24)

where a can be understood to be an array of phases. The approach
here is somewhat similar to synthetic fields used previously in the liter-
ature for a similar purpose, e.g., Pettini et al.” It should be noted that
since the contribution of each frequency is equally weighted, the spec-
trum of the synthetic field is uniform. For pure white noise, the phases
in a for all output steps are unrelated and selected from a normal dis-
tribution with zero mean and standard deviation equal to unity—we
refer to this case as zero correlation. Brownian noise is implemented
by selecting the 7,,, = 0 as for white noise for both a, then generating
the subsequent 7, values for a based on the previous values but add-
ing a value selected from a Gaussian distribution with the zero mean
and standard deviation being a proportion of the standard deviation
used to generate the initial values, typically 0.1. The Brownian genera-
tion of a leads to a system which evolves with a finite correlation, such
that randomly generated structures on various scales can be observed
propagating across the system in a manner similar to the characteristic
behavior of turbulence—we refer to this case as finite correlation. The
effects of this are visible in Figs. 2 and 3, which show snapshots of zero
correlation ¢-field and finite correlation ¢ field, respectively.

Once the synthetic ¢-field is generated, we propagate tracers
on top. Massless particles are propagated by the E x B drift velocity
as in Eq. (25). A third-order Adams-Bashforth integrator was used.
We consider the ExB drift as this is particularly relevant in MCF
plasmas. It arises due to gradients in the electric potential, which
occur spontaneously. Other drifts can also be considered, but the E
x B velocity is reasonable for the case of ideal massless particles
with zero inertia—this is standard for tracking passive particles in
plasmas,33
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FIG. 2. Evolution of the zero correlation synthetic field between two frames on a 50 x 50 grid. Frames appear to share no similar features.
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FIG. 3. Evolution of the finite correlation synthetic field between two frames on a 50 x 50 grid. Similar features can be seen in both frames.

E=-V¢. 27)

Here, the unit vectors are denoted X and z. E for each particle is
calculated from the grid value of ¢ at the position of the particle, and
E is calculated using a second order central difference method. Due to

a focus on plasma systems, it is convenient to specify some parameters
largely used for (Bohm) normalization: By = 0.5 T, T =40 eV, ot =1

x107%s, Q; = %?, ¢ = /% and p, = (CTS, The size of cells is deter-

mined by dx = ﬁ—i ,dz = %, where L, and L, are set in units of p, (the
ion Larmour radius at the electron temperature). In the context of
the edge of a plasma device, x is the radial direction in which equilib-
rium gradients occur, and the direction perpendicular to the plane
(y) would be the direction of the magnetic field, and z is the

binormal direction. The zero correlation case has uncorrelated
velocity and a time average of zero, as expected, with the mean
velocity for each time step having Z—j < 1. The finite correlation case
contains some correlation in the velocity fields, but again has a time
average of zero. There is a small net E x B field in each frame similar
in magnitude to the white noise case, and these are due to numerical
error.

We can consider the Eulerian single-point velocity correlation as
in Eq. (30), which in this case is the spatially averaged auto-covariance
of the velocities at the grid points—a measure of how the field varies
with itself. In the homogeneous, Gaussian, and stationary turbulence
case we expect the synthetic field to have the auto-covariance of form
as in Eq. (31).”" This is indicative of pattern persistence in the system.
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FIG. 4. Normalized Eulerian velocity correlation over time steps, finite correlation
synthetic field on 200 x 200 grid.

R, is the correlation time, the measure of how long a system retains

correlation—a system observed at intervals much longer than its corre-

lation time will appear to have little similarity. ~
Throughout this paper, we define the fluctuation part of f, f, as

where the average is as
1
(=1 [ 9)
and L, is a normalizing length in the a-direction,

E,(t) = (5(0)0(t + 1), (30)

E (t) ~ e . (1)
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The Eulerian velocity correlations of the finite correlation synthetic
field (averaged over the grid) are displayed in Fig. 4. The fits suggest a
correlation time of R, ~ 10 time steps. The same graph for the zero cor-
relation synthetic field has a correlation time R, = 0, as expected.

Propagated particles experience periodic boundary conditions
such that once they pass over any boundary they reappear on the
opposite boundary. The primary output data from particle tracking are
absolute coordinates in z-x at every time step, the absolute displace-
ment in infinite space from the initial seeded location, and a record of
whether the particle crossed a boundary or boundaries during a partic-
ular step. We generally use particle systems of 10° particles. A particu-
lar particle path can be seen in Fig. 5 on top of the 200 x 200 grid used
for the finite correlation isotropic case.

The PDFs of the velocities experienced by the particles
(Lagrangian) and at the grid centers (Eulerian) are shown in Fig. 6. We
see they are nearly identical, which suggests the tracer statistics are a
good proxy for the field statistics, as discussed by Basu et al.”

This setup is similar to thought experiments that lead to the
Brownian motion concept—particles being driven by random
impulses. We have a system which evolves—the particles on the syn-
thetic ¢ field which develops. Provided the statistical properties of the
particle evolution remain approximately the same over the system
time, and that it remains isotropic, then we can consider applying the
ORW to the system. We suggest that the jump function can be repre-
sented by the probability density function (PDF) of the absolute parti-
cle displacement between any two times separated by an observation
interval, and as a result the jump function can be constructed by exam-
ining the statistical properties of the propagated particles—specifically,
by fitting an expression to the complementary function of the jump
function. The jump function PDF is generated via histogram.

A large variety of measurements have nonlinear scaling such that

() ~ ¢, (32)
describes the mean square displacement (MSD).”” The mean square
displacement is calculated from particle positions as

1500

FIG. 5. Particle undergoes E x B motion on a 200 x 200 synthetic field with finite correlation (evolved with Brownian noise). The step interval is 1079 s. The particle motion
starts at the full cyan cross and ends at the empty cyan point, with the displayed frame being the end frame.
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FIG. 6. PDF’s of the Lagrangian and Eulerian velocities in the x-direction.

1 N

(1) = 5 D [r()) = () (33)

i=1

and 5 # 1. Other patterns of nonlinear MSD have been observed,”

but this particular fitting has proved of interest since it can be inferred

from stochastic theoretical models.”” Values of 5 greater than 1 are

referred to as “superdiffusive” and values less than 1 named “subdiffu-
» 37

sive”,”” while 7 =1 is the normally diffusive case. The diffusion coeffi-
cient is here defined as
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Mean Square Displacement, <r2> (m?)

Mean Square Displacement, <r2> (m?)

107° 108 1077
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(1)

d= oTa (34)
where this is in principle the same d as described in Sec. I1. The diffu-
sion coefficient is also found as half the time derivative of the MSD.
For both the isotropic zero correlation and finite correlation evolved
cases, we expect /=1 such that normal diffusion is observed. We
expect normal diffusion in the isotopic zero correlation case due to the
central limit theorem. The mean square displacements for both the
zero and finite correlation cases are as shown in Fig. 7. The behavior in
both cases tends to a constant diffusion coefficient, approximately
13.7 m?s~! for the zero correlation case and approximately
37.3m?s™! for the finite correlation case, calculated from the gradient
of the mean square displacement.

The mean squared displacement tends to linear, indicating a con-
stant diffusion coefficient which is consistent with # =1 and so is rep-
resentative of a normally diffusive process occurring. There also
appears to be a short time ballistic regime, which is expected. This syn-
thetic field is then ideal for testing our numerical tools. We expect for
the isotropic normally diffusive case that the jump function be spatially
separable—we assume the jump functions are statistically indepen-
dent—and have a Gaussian shape, since this is a core assumption that
leads to normal diffusion in Sec. II. We find that this is essentially the
case, both for particles evolved on the finite correlation ¢ field, and for
particles on the zero correlation ¢ case, and that the jump function is
well described as being spatially separable.

Jump functions formed with observation intervals closer to 1
tend to be less well fit to a Gaussian, being visually obvious for time
steps/observation intervals less than 10, for both the finite and zero
correlation cases. This can be seen in Fig. 8, which confirms that there
is a trend of an increasingly less Gaussian fit for smaller observation
interval/time step. This strongly suggests that the information acquired
via fitting to jump functions with observation intervals < 10 should
not be considered as being particularly accurate. After collecting histo-
grams of the jump function and finding the discrete Fourier trans-
form—the characteristic function—we fitted to the characteristic
function, Eq. (14), over a variety of time steps, assuming no spatial

1076 4

1077 1

10-° 10-8 1077
Time (s)

FIG. 7. Mean square displacements for Brownian evolved (left) and White noise evolved (right) synthetic fields.
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FIG. 8. Gaussian fitting error to the jump function for each time step for the
Brownian evolved case.

dependence. This suggested that the imaginary component is essen-
tially zero except for a small amount of noise—this corresponds to
B=0. From Table I, we expect that for small o, increasing even spatial
orders will get smaller quickly. Ideally A =1, as this is essentially a
measure of conservation of the transported quantity—A ~ 0.90 at the
first time step, but by time step 17, it exceeds 0.99 and then reaches an
approximately constant value. This would seem to correspond with
the fitting error. o typically takes a value on the order of 107#-107%, so
higher spatial orders are negligible. Our time step is equal to
1 x 107? s, and since we have run for 100 time steps, the maximum
time we may observe a particle over is 1 x 1077 s. We find the diffu-
sion coefficient via Eq. (12) and a fit to the jump function in the finite
correlation case to be d, ~ d, = 37.7 m?s~!, and in the zero correla-
tion case to be d, ~ d, = 14.3 m?s~! which in both cases are within
5% of the value found with the mean squared displacements. For these
cases, the coefficients are independent of the observation interval for
observation intervals larger than the correlation time.

This fitting to the complementary function of the Jump function
then delivers transport coefficients similar to those provided by previ-
ous methods in this simple case. The relative scalings indicate that
other forms of transport are essentially negligible in comparison with
diffusion, which also confirms the assumption of normal diffusion in
these isotropic cases.

V. HASEGAWA-WAKATANI TURBULENCE

In this section, we examine the behavior of tracers propagated on
a background created by evolving the Hasegawa—Wakatani equations
(HWE), which provides “real” turbulent features and structures. The
modified (MHWE) and classical Hasegawa-Wakatani equations
(cHWE) are used contemporaneously to study aspects of turbulence
(Refs. 33 and 38, etc.) and is specifically used to examine certain
dynamics of the edge in magnetic confinement fusion devices. These
systems are some of the simplest that feature nonlinear interactions.
We will apply the observational random walk methodology to these
variants of the Hasegawa—Wakatani system, in a similar manner as
before, and see whether this yields an equation which captures the dis-
persive behavior of the tracer particles—previous study indicates that
the use of Lagrangian tracers to examine the statistics of the HWE
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system is reasonable; further details on the connection between tracer
particles and plasma density transport can be found in Basu et al.”
The cHWE and mHWE systems are both solved using the BOUT-++
code,”” on a double periodic (or toroidal) space, with a cyclic Fourier
solution method used to solve the Laplacian. The systems are first run
to a steady state, and then we propagate the particles on the back-
grounds simulated after steady state.
The classical Hasegawa—Wakatani equations are

on - 09
o T{dn} = C(¢ —n) =5 =D, V'n, (35)
O (9.0 = C( )~ DIV, 66)

where D are dissipation coefficients, C is a measure of conductivity/
adiabaticity, and « is a the density gradient drive/coefficient. We use
hyper-viscous dissipation terms, in order to introduce grid-scale dissi-
pation. The vorticity is as

{=V’¢. (37)
The Poisson bracket is defined as

_0adb 0adb 38
&b = 5ee " ozox 9
In the limit C — oo such that the system becomes adiabatic and
¢ ~ n, it can be shown that the system of equations tends to the
Hasegawa—Mima system, also known in geostrophic fluid dynamics, and
so occasionally called the Charney-Hasegawa-Mima system. In the limit
C — 0, the two equations become decoupled, resulting in the hydrody-
namic regime, characterized by long-lived coherent vortices.”**"**
The modified HW equations are

on ey @ B 4
EnL {p,n} = ( n)—rK B d,Vn, (39)
2 9.0 =Ch 1)~ 4V, (40)

where the quantities with the over-tilde are defined as the quantity
minus the binormal mean (or a zonal average), as in Eq. (28). The modi-
fication is in contrast to the classical HW equations, which do not fea-
ture the zonal averaging operation. This modification was introduced
for the reasons discussed in Sec. 5 of Hammett ef al.,*’ and causes stron-
ger zonal flows in the z-direction—as in Numata et al.,"* who then con-
sider the behavior of the mHWE extensively, over a range of x and C
values. They find that there are typically two saturated states: a near iso-
tropic turbulent state and a zonal flow dominated state with suppressed
turbulence. They find that the drift wave instability is strongly driven by
increasing , the isotropic turbulent state is likely to be reached, and
large values of C typically results in zonal flows. Kadoch et al.” note that
the choice of viscous dissipation term does not appear to impact the sys-
tem dynamics when comparing their results to previous works. In the
case of small C, the mHWE case tends to the hydrodynamic case.

A. Classical and modified Hasegawa-Wakatani
simulations

We use the Bohm normalization as stated previously, with similar
normalization parameters: By = 0.5T, T = 40eV, 5t =1 x 10785,

Q :%, ¢ = /oy ps =G The size of cells is determined by
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dx = ﬁ—i ,dz = ﬁ—i Our mHWE and cHWE simulations are conducted
on a grid of nx =512 by nz =256, with L, = 327 and L, = 167, and
use a d: =d, = 107* and x = 0.2. We vary the adiabaticity from
C = 0.01 ~ 4, as this accesses a range of flow regimes,”® for both the
mHWE and cHWE systems, giving us a total of eight simulations, four
each of mHWE and cHWE. As in the synthetic field section, we exam-
ine the behavior of 10° particles initially dispersed uniformly over the
space.

We examine the Lagrangian and Eulerian velocity probability
density functions (PDFs) at the end of each simulation, with the veloc-
ity normalized to the dataset standard deviations, in order to ensure
the particle statistics can be considered as being representative of the
system statistics and to gain a basic understanding of the system
behavior. These are seen in Fig. 10 (corresponding to the mHWE sys-
tem) and Fig. 9 (corresponding to the cHWE system). Aside from
some variation in the tails, where we have substantial noise, the
Lagrangian and Eulerian distributions correspond very well with each
other in both the mHWE and cHWE cases. This indicates that the
tracer particles accurately reproduce the velocity dynamics, throughout
the simulations.

The cHWE case PDFs demonstrate substantial self-similarity
over values of C, retaining approximately Gaussian shape. There is
vanishing asymmetry, and the velocity variation is similar in both
directions and so demonstrating vanishing anisotropy. We then expect
these to have normal diffusion.

In the mHWE case, the x-velocity distribution tends to be sym-
metric, while the z-velocity is less symmetric for larger C. The asym-
metric cases demonstrate skewness, as they retain a near-zero mean.
The x- and z-velocity distributions in the C=0.01 case are close to
Gaussian with similar velocity variation, indicating isotropic normal
diffusion. The C=1-C=4 cases display clear anisotropy—from
inspection, the C=0.1 case appears approximately Gaussian but does
display a heavier tail than in the C=0.01 case. Generally, the mHWE
x-velocity PDFs demonstrate heavier-tailed behavior, as well as a dis-
tinct spike in the center in the C=1 and C=4 cases, both of which
are indicative of non-Gaussian behavior.
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Comparing Figs. 9 and 10, we see that the C=0.01 cases have
similar profile and variation, which is to be expected when both the
cHWE and mHWE tend to the hydrodynamic case for small C.

A snapshot of each simulation is presented in Fig. 11, with the
path of a single particle selected at random displayed for illustrative
purpose. The distinct bands due to the zonal flows in the mHWE sys-
tem are visible in (a)-(d) in contrast to the more isotropic turbulence
in the cHWE system (e)-(h). The particle paths occur over 500 time
steps for all simulations.

In the mHWE cases, the zonal motion of the particles is distinct
and clear in comparison with the cHWE cases in which the traced par-
ticle appears to express more isotropic motion. We note also that (a)
lacks distinct bands and is visibly more isotropic than (b)-(d), which
then seems to justify the near Gaussian velocity PDF in the C=0.01
case.

The non-Gaussian velocity PDFs seem to correspond to the cases
in which we observe the presence of zonal flows, especially the C=1
and C= 4 cases. If zonal flows are indicative of non-Gaussian velocity
PDFs, then this indicates that the C=0.1 should also be non-
Gaussian, but this is less obviously the case than in the C=1 and
C=4 cases.

We examine the mean square displacements (MSDs) for the dif-
ferent simulations, in Figs. 12 and 13, the cHWE and mHWE, respec-
tively. Note the comparative dotted lines (black) which are o t*> and
o t, corresponding to ballistic and normal diffusion respectively.

The cHWE simulations have MSDs which are ballistic for small
time, and reasonably o ¢ for long time in the cases C=0.01-1, in both
x- and z-directions. A transition from ballistic in the early time to nor-
mal diftusive behavior after the Lagrangian correlation time is expected,
as for small scales particles simply convect with minimal interaction,
whereas for larger times they would interact with structures in the field.
These cases therefore demonstrate the attributes of normal diffusion.
Particles experience a similar displacement in both directions over a sim-
ilar time, apparently relatively isotropic for the C=0.01 case—there is a
small but persistent anisotropy for the C= 0.1 case. For the C=1 case,
particles appear to travel approximately one order of magnitude further
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FIG. 9. Normalized velocity probability density for the classical HWE system.
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FIG. 10. Normalized velocity probability density for the modified HWE system.

in the z-direction than the x-direction, and along with C= 4 appears to
be anisotropic. The C=4 case features a decline in the MSD beyond
t = 0.5 x 10~*s. Note that a similar phenomenon is observed for the
case of passive tracers seeded in a two-dimensional turbulence domi-
nated by coherent structures in a study by Elhmaidi et al.' for tracers
seeded in a coherent structure. We surmise that the reason for this MSD
behavior in the mHWE case is due to trapping by the zonal flows which
persist over the simulation time, consequently limiting the dispersion.
We also note in Bos et al.*” similar behavior for C= 4 case—a key differ-
ence between this work and the work of Bos et al. is that they do not dis-
aggregate the MSD into the x- and z-components. In Bos ef al., we note a
slight decay of the MSD before the long time superdiffusive behavior
becomes predominant, which suggests a similar behavior to what we
have observed here. Given that the cHWE tends to the Hasegawa-Mima
(HM) system for large C, it is perhaps the case that wave-like behavior
will be observed—If there is an element of periodicity, this does suggest
that these simulations cannot be completely considered as being exam-
ples of steady state turbulence over the time. In the Mima limit of the
cHWE equations, there is no inherent instability—toward the limit, and
the growth rate is, therefore, decreasing toward zero.

The mHWE simulations demonstrate clear anisotropy in their
MSDs. Bulk displacement of particles in the z-direction is universally
greater than in the x-direction by at least an order of magnitude.
Comparison to the reference indicates that the x-direction MSD has
the initial ballistic phase, followed by a decline to more o t behavior.
The z-direction MSD seems to remain ballistic for all cases except in
the C=0.01 case which seems to become more normally diffusive for
long time, but is still superdiffusive for the considered time. Given the
presence of the zonal flows in the C=0.1, C=1, and C=4 cases,
superdiffusive MSDs in the z-direction may be expected. The x-MSDs
overall demonstrate marked decline in transport with increasing C,
which is far more pronounced than any similar decline for the
x-MSDs in the cHWE cases. The C=0.01 case seems to demonstrate
similar dispersive behavior for both cHWE and mHWE cases; in the

x-MSDs, (r?) ~107* at t =105 as well as having a final x-
displacement on the order of 107%. The z-MSDs for the C=0.01 case
suggest that the mHWE case does have greater transport in the z-
direction than for the cHWE case, with a fitted line having a gradient 4
times greater than in the cHWE case in long time, suggesting aniso-
tropic behavior despite the lack of distinctive zonal flow bands and
Gaussian velocity PDFs.

The correlation times are estimated as in Sec. I'V on isotropic syn-
thetic turbulence. In the cHWE C = 0.01 case, the correlation times in
x and z are similar, being 51.4 and 43.6 time steps, respectively. The x
and z correlation times diverge for increasing adiabaticity, staying at
~ 39 timesteps in x for the C=0.1 and C= 1 cases, but with z correla-
tion times increasing from 57.3 to 86.5 time steps, respectively. The
C =4 case demonstrates long time correlations.

The mHWE cases show long range correlations in the z-direction
for C > 0.1. In the mHWE C=0.01 case, we have x and z correlation
times of 33.2 and 82.0 time steps, respectively. The mHWE C=0.1
case has x correlation time of 11.38 time steps, the C=1 case has x
correlation time of 49.8 time steps, and the C = 4 case has x correlation
time of 104.2 time steps.

B. Jump statistics for cHWE and mHWE cases

It is clear that transport in the cHWE and mHWE cases is less
straightforward than in our synthetic turbulence case, but there is still
some basis for comparison. Diffusion coefficients can be inferred from
the mean square displacements in the C = 0.01,0.1 cHWE cases, as
we appear to be having normal diffusion in those cases over relevant
timescales. We may also infer normal diffusion coefficients in the x-
direction the C=0.01 case of the mHWE. We will then be using these
coefficients, found from fits, to compare to the MSD’s and so confirm
that the fitting method is working in this case.

We first examine whether the jump functions are stationary or
not, which is done by examining ten jump functions at ten different
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FIG. 11. Particle tracks over first 500 time steps, corresponding to 5 x 10~°s. (a)~(d) are the mHWE cases and (e)—(h) the cHWE cases. The particle motion starts at the full
cyan cross and ends at the empty cyan point, with the displayed frame being the end frame.
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FIG. 12. Mean square displacements for the classical HWE simulations, with x MSD (left) and z MSD (right), with reference.

start points covering the simulation time, each with 7= 100 time
steps—this is typically larger or on the order of the x correlation time.
Each jump function will then contain the statistical information about
the displacement of particles for 10% of the simulation—smaller varia-
tion will, therefore, not be captured. By way of example, we provide
the C=0.1 case for cHWE and for mHWE in Fig. 14, in both x- and
z-directions. The C=0.1 case is used as it is the first case in the
mHWE where the zonal structures are distinct, so the key differences
between the cHWE and mHWE jump functions should be evident.
Examining Fig. 14, we note that barring statistical noise, the
jump functions seem to have very stationary behavior. This is com-
mon to all the datasets barring cHWE C=1 and C =4, suggesting
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that considering the systems to be in a statistical steady-state is rea-
sonable, and so our current ORW model is applicable. The cHWE
C=0.1 case demonstrates slightly anisotropic behavior, with very
similar jump functions in both the x- and z- directions, as well as
both being highly Gaussian. We can confirm this by examining
the standardized moments. The third standardized moment
(skewness) of a Gaussian is 0, and fourth standardized moment
(kurtosis) of a Gaussian is 3. The x jump function in the cHWE
case has a skewness of 0.058 and a kurtosis of 2.95, and the z jump
function has a skewness of -0.041 and a kurtosis of 2.93. Both
jump functions have a mean on the order of 10~ and standard
deviations on the order of 107>.
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FIG. 13. Mean square displacements for the modified HWE simulations, with x MSD (left) and z MSD (right), with reference.
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FIG. 14. mHWE (left column) and cHWE (right column) jump functions for the C = 0.1 case, with progressing start time steps, covering the simulation time.

The mHWE C= 0.1 case is obviously anisotropic, and the z jump
function demonstrates approximately an order of magnitude greater
transport than in the x direction. This feature is common in all the
mHWE simulations with the exception of the C=0.01 case, which is
relatively isotropic. This is consistent with superdiffusive behavior in
the z direction of the mHWE cases, as suggested in the MSDs.
Examining the standardized moments in the C= 0.1 case, the x jump
function has a mean of 4.8 x 1077, standard deviation of 2.01 x 1073,
skewness of 0.036, and kurtosis of 4.09; the z jump function has a
mean of 1.9 x 1074, standard deviation of 0.016, skewness of 0.17,
and kurtosis of 2.01. We see from the standardized moments that the
jump function for the mHWE C=0.1 case are not straightforward
Gaussian distributions. The kurtosis of all the mHWE x jump func-
tions are significantly in excess of 3, with the exception of the C=0.01
case, which has kurtosis of 2.93.

The z-jump function demonstrates a variety of features, indicat-
ing a variety of particle behaviors, and this is again a feature of all the
mHWE cases with distinct zonal bands. Given that the zonal bands
can be described as anisotropic in the x-direction, and that the jump
functions are acquired from the aggregate particle behavior regardless
of location, the z-jump functions are then incorporating all these
behaviors into a single jump function. While this is then an accurate

descriptor of the z displacements in the mHWE cases on average, we
suggest that this could indicate spatial non-uniformity in the jump
function which would become evident if we examined it in subsets of
the x dimension. We will consider the spatially non-uniform case in
future work.

As discussed in Sec. II, we must have a Fourier-space representa-
tion of the jump function in an analytical form in order to be able to
find a transport equation for the relevant quantity. We are particularly
interested in the impact of the zonal structures on x transport, so we
will consider fits to the x-jump functions in the mHWE cases. The x-
jump functions do not appear to demonstrate a wide variety of behav-
ior at similar scales, suggesting that a fit composed of a small number
of functions will be appropriate. Given that the system is statistically
stationary, we take the ensemble average of the ten jump functions for
each case as being representative of the jump function overall, a mea-
sure taken to reduce statistical noise. A wide variety of fits were consid-
ered, and it was found that a particularly good fit was achieved in
general, for the C=0.1, C=1, and C=4 cases with an equation of the
following form:

|Ax—ry |4 _(Axry)?

Grc:(Ax) =re » +r1se " , (41)
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which is the linear combination of a symmetric Levy distribution and
a normal distribution.

These fits are displayed in Fig. 15. The C=0.01 case is well
described with a simple Gaussian distribution down to nearly two
orders of magnitude from its peak. The C=0.1 case is very well
described by a pure symmetric Levy distribution at almost every scale,
and both C=1 and C=4 cases are well described by Eq. (41) down
two orders of magnitude from the peak at least. Note that the symmet-
ric Levy distributions in every case have very small values of r, in every
case, and that r,, the exponent, invariably has a non-integer value.

Unfortunately there is no closed form expression of the Fourier
transform of the Levy distribution. While we could expand and per-
form a transform in the case ry < —1, for which there is a defined
transform, there are concerns about convergence and the fact that not
all the exponents lie in that range. It is more straightforward and reli-
able to find a fit for the transformed ensemble jump function, in
Fourier space. The fits in Fourier space typically also have the form in
Eq. (41), and are given in Table III. We estimated the error of fit
parameters by examining the covariance matrix of the fit and taking
the square root of the diagonal values, and then propagating those
quantities through the analysis. The errors for the coefficients cHWE
cases were typically ~ 0.2%. The errors for the [;, 5 [see Eq. (48) for
definition of ;] coefficients were typically ~ 2%, but the I, coefficients

C=0.01

PDF(x) = e~ =1

—— raw pdf
— fit

101 = 46.83, r,,70.01202,
r3=-0.000¥104

100 4
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had much larger errors, on the order of 10%. To acquire better statis-
tics, we could reduce uncertainty in the ensemble average by taking a
larger number of samples and also increase the number of particles.

When these fits over the frequency space are transformed to the
x-space, there is a truncation as a result of the finite frequency range—
this consequently provides a better fit than displayed in Fig. 15 for the
C=1 and C=4 cases. Due to the high symmetry, the imaginary com-
ponent is negligible.

The symmetric Levy distribution can be expanded using Taylors
method as

RS |k|T LK
= | =1 — ... 42
=2 [ bl b T (42)
j=0

This may be truncated to the first few terms in the case of small @
This suggests that for truncation to be reasonable, the distribution
“width” parameter b should be much smaller than the spatial extent of
the system in which we are considering transport. The handling of |kf*
terms with non-integer { is non-trivial, and requires discussion of the
fractional calculus—there is a useful identity for the inverse transform of
a non-integer power in Fourier space, given in Eq. (46), as in Ref. 2 and

other places. The Reisz fractional derivative is typically given as the com-
bination of the Riemann-Liouville left- and right- fractional derivative as

c=1
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FIG. 15. Fits to the ensemble averaged x jump functions for the mHWE case, semilog plot.
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TABLE II. Coefficients, c, 5, for the first three temporal and first four spatial fractional
derivative orders of a jump function composed of the sum of a Gaussian [Eq. (14)]
and a Levy distribution [Eq. (48)]. Note that the other integer order terms are given in
Table I.

s-order  Zeroth t-order First t-order Second t-order
2
R YT S P
l b e _ b
3 B0 = 2nl, 1 = 2nl, 2 = 2! 27,
21 6210:—1—1 Czllzll—r Czlz:—L
> 212n2 1 22ni3 > 2121272
3L C3lo=l—1 Csllzfll—r 5312=L
T 32l > 32nl3 > 21312003

=t L

and

zDZf (z) =

(-1’ d”r( A (44)

F(p — 6) dzP . (2 — z)£7p+1
respectively, where p —1 < & < p and I is the well-known Gamma
function.

Combining the left- and right- single sided derivatives creates the
symmetric Reisz fractional derivative

af (2) = —@ngw;)f(z). (45)

Finally, it can be shown given the above-mentioned definitions
that the Fourier transform of the Reisz fractional derivative is

FT{D}f(2)} — —|K|*f (k) (46)
As such, the fits in Fourier space indicate that in the mHWE
C=0.1,C=1, and C=4 cases in concert with the Eq. (46), the

x-Jump functions result in an evolution equation with fractional order

TABLE lll. Fourier fits and fit coefficient values for the ergodic x-jump functions.
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terms. The fractional derivative is also referred to as a “diffintegral”
and is typically indicative of long-range interactions and non-
locality—this property can be inferred from Eqs. (43) and (44), where
integration over the space is required to calculate the fractional deriva-
tive. In the case of a jump function in Fourier space comprised of the
linear combination of a Gaussian and a symmetric Levy distribution,
as we have found, our general differential equation will have the fol-
lowing form:

0
0=coof + Cloaf + CeODMf
0 0 0?
+ co,1 af + ¢, 1D‘X‘ aJ: +c11 W(J;t
? 0?
+5208€+sz0D\xu‘+5028{
. O'f of
+ Cig,i \x\ 81” + ¢ ”atlax’ (47)

In the dual symmetric Levy fit case, there would be no nonzero
integer-order spatial derivatives. The zeroth-order spatial derivatives
are always present given the Taylor expansions, and so the Levy distri-
butions contribute to the ¢y ; coefficients. The symmetric Levy terms
with noninteger powers do not contribute to the nonzero integer order
spatial derivatives, so Table I is accurate in relation to the Gaussian
component. As such, we can present Table II which contains ¢ ; coeffi-
cients and the noninteger spatial derivatives, given a symmetric Levy
distribution of the following form:

k'3

4y (k) = he v (48)
This allows us to present evolution equations for the cases in
Table I11. As before, we note that the fits are not perfect, as such they
typically do not have an area equal to unity—but since the number of
test particles is conserved, we can guarantee that this is the case; as
such the damping term is zero in every case.
For the mHWE C=0.01 case,

of _, Of

_ 2 1
o= gz A=36120108m’s (49)

System Fourier space fit Coefficient values
mHWE, C=0.01 a4y (k) = ge &k g1 = 0.998+0.00144, g = (3.61=0.0121) x 107°
s
mHWE, C=0.1 QoK) =he & +geek I, = 0.46+0.0117, I, = (6+1.16) x 10%, Iy = 1.57+0.0245,
g1 = 0.54+0.0109, g = (2.58+0.0258) x 10~°
I
mHWE, C=1 . (k) =1, {1 - ‘l| + ge &k I, = 0.742%0.007 18, L, = 250%21.2, 5 = 0.470%+0.007 22,
2 g1 = 0.266+0.0053, g, = (4.05+0.0571) x 108
JAES kls
mHWE, C=4 Gi.(k)=he ™ +Le & I, = 0.283+0.00853, L, = (3=1.07)) x 10%, I; = 1.09+0.0296,
I, = 0.737+0.00961, Is = (4.229%+0.529) x 10%, s = 1.40+0.0166
cHWE, C=0.01 dy.. (k) = gre @k g1 = 0.995+0.002, g = (4.26+0.0196) x 10~
cHWE, C=0.1 (k) = gre &k g1 = 0.998+0.0015, g = (2.657+0.00904) x 10~°
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As indicated in Eq. (34), the half-gradient of the MSD should
give us the diffusion coefficient. The half gradient in the mHWE
C=0.01 case is 35.23 m? s~!, which is very close to d, in this case.

For the mHWE C=0.1 case:

o _ O,
ot * Ox2
dy =1.4+0.042 m?s7!,

4 1.
+(7.59+1.52)D};7f, (50)

where the fractional coefficient is found via — 0— The next largest term,
% ®is O(107°), which is very small in comparison and suggests that
these terms have negligible impact on the nature of the transport.
For the mHWE C=1 case,

of _ &f 0.47
5 = g3+ (2900 + 249) DY, 51)

d, = 0.011 = 0.0003 m?s .

Here, the first order truncated symmetric Levy distribution in
addition to a Gaussian distribution was an excellent fit at all scales in
Fourier space, and this is equivalent to having the higher order frac-
tional order coefficients set to zero.

For the mHWE C =4 case,

of _
ot

where again the next largest term is O(1074).

For the cHWE C=0.01 case, we find d, =42.6+0.2 and
d, = 40.0+0.15m? s~!. The half-gradient of the x and z MSDs in the
cHWE C=0.01 case are 42.64 and 45.27 m? s™!, respectively, which
closely match the diffusion coefficients found using a Gaussian fit to
the jump function, strongly supporting the assumption of isotropic
normal diffusion in this case.

For the cHWE C=0.1 case, we find d, = 26.6+0.09 and
d, = 25.620.07 m? s}, respectively. The half-gradients in this case are
18.65m?s! in the x MSD and 29.20 m? s~ ! in the z MSD. While rea-
sonably close in the z direction, there is disagreement in the x-direction,
suggesting that the assumption of a Gaussian distribution does not fully
capture the tracer transport in the x-direction: however, the diffusion
magnitude does agree closely with the magnitude from the MSD.

The fits to the complementary function of the Jump functions
typically return the classic Fickian diffusion equation when expected,
which occurs when the Jump function is well fit by a Gaussian distri-
bution. This is very clear in the C=0.01 cases of both mHWE and
cHWE systems, which are closer to the hydrodynamic regime.
Particularly interesting, however, is that when the distinct zonal flow
bands appear in the mHWE simulations with C > 0.1, we see a
marked difference in the transport. Superdiffusive behavior is observed
in the z-direction, and the x-direction begins to be marked by non-
Gaussian heavy-tailed behavior in the jump function, which typically
requires symmetric Levy-type distributions or similar in addition to a
Gaussian distribution to achieve a reasonable fit—analysis of which
recovers transport equations with significant fractional transport, often
in addition to a classic Fickian transport term.

VI. DISCUSSION

Transport in the edge and scrape-off layer (SOL) of magnetic
confinement fusion devices has been challenging to analyze with the

= (8+2.94)D|,)"f + (17£2.17)D};}”f, (52)

|l
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classic dynamic methods. Statistical concepts have been considered for
application in this region, including the use of methods based on the
continuous time random walk (CTRW), which has seen success in
other fields.

We have proposed an observational random walk (ORW) model
with an intrinsic observation time, 1, separating system observations,
which we have developed to apply to steady-state isotropic systems, as
the basis for a reduced model. This identified the jump function—a
probability density function of the lengths of paths taken by random
walkers during the observation interval—which dictates system diffu-
sivity. Imposing a Gaussian jump function results in Fickian diffusion.
A Gaussian jump function with non-zero mean is demonstrated to
result in imaginary terms, which in turn generate advection type terms
in the transport equation. It should be stressed that the current method
is limited to steady-state systems.

It is possible for the jump function to be extended to have both
time and spatial dependencies: we could justify the introduction of a
spatial variation of the jump function in the x direction, especially in
the modified HWE case, which we suggest would capture the proper-
ties of the zonal flows—addressing this in detail is beyond the scope of
this paper and will be addressed in future work. The jump function
can also be extended in terms of time dependency, but this is non-
trivial. A jump function with a time dependence demonstrates a sys-
tem which is non-stationary, and so beyond the treatment here.

If the jump function could be characterized in a system this can
be used to identify a system evolution equation. First, we seek to dem-
onstrate that the jump function is measurable in simulations, and so
we consider the movement of tracer particles undergoing ExB drift on
synthetic fields. We consider two synthetic fields, identical apart from
the evolution mechanism—one is evolved with white noise and so has
Eulerian autocorrelation of zero, and one evolved with Brownian noise,
which then demonstrates exponentially decaying autocorrelation. In
the case of passive particle tracers, the jump function is identified with
the probability density function of the particle displacements over an
observation interval, . This assumption allows us to find a diffusion
coefficient within 5% of that predicted by examining the mean squared
displacement (MSD), for both cases, provided that we achieve a good
fit of the jump function.

Satisfied for a simple system, we then apply the ORW to double-
periodic 2D simulations generated by the classic Hasegawa—Wakatani
equations ((HWE) and the modified HWE (mHWE), where the modi-
fied HWE is such that the zonal flow dominated state forms readily.
These systems are frequently used to model aspects of dynamics in the
edge, and so are an appropriate test for our method. We run our sys-
tems to steady-state, for a range of adiabaticity, C = 0.01, C = 0.1,
C =1, andC = 4. In the case that C — 0 both sets of equations tend
to the hydrodynamic regime, and in the case that C — oo tends
toward the Hasegawa-Mima system given certain assumptions. The
Eulerian and Lagrangian velocity distributions are a very close match,
where the Lagrangian distributions are found from the properties of
the tracer particles. This indicates that the tracer particles reliably rep-
resent the system statistics, and the particles are distributed
homogenously.

We observed that zonal flows do indeed form in the mHWE
cases for C > 0.1, and not in the cHWE cases for the current parame-
ters. For C> 0.1 in the cHWE simulations, it seemed that the field var-
iation is wave-like, and so difficult to describe as containing steady-
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state turbulence, except over a much longer timeframe due to the qua-
siperiodic nature of the variations. We considered the ensemble of
jump functions with observation interval T =100 time steps for all
cases except (HWE C=1 and C=4, and the variation in these seemed
to indicate that the simulations were statistically stationary.

In the C=0.01 cases, the cHWE and mHWE cases are similar,
both demonstrating near-Gaussian jump functions in x- and z- direc-
tions and are reasonably isotropic. The diffusion coefficients derived
from these jump Functions closely matched those found from the
MSDs.

The cases where the mHWE developed zonal flows were
marked by distinct anisotropy manifesting in superdiffusive trans-
port in the z-direction, and demonstrating substantially lower
transport in the x-direction, broadly declining in step with increas-
ing C. This is attributed to the presence of zonal flows, as such a
reduction does not occur in the cHWE case for corresponding val-
ues of adiabaticity. While the C=0.01 mHWE x-jump function
was well fitted with a Gaussian distribution, this was not the case
for the other values of C. These have distinctively non-Gaussian
distributions, which are typically well fit in Fourier space with the
linear combination of a Gaussian distribution and a symmetric
Levy type distribution. We are able to show that this resulted in
transport equations with both a fractional transport term and a
Fickian-type transport term, except in the C=4 case, which fea-
tured two fractional transport terms. The fractional transport term
is a non-local term, occasionally called a diffintegral.

Given the appearance of these terms alongside the appearance of
the zonal flows, we infer that the zonal flows are in large part causing
this fractional transport. If the zonal flows act as transport barriers,
which nonetheless permit a subset of the particles to pass—a semiper-
meable transport barrier—then we will have several populations of
particles at any given time. Consideration of the jump function allows
us to separate the populations. We will have a population of particles,
sufficiently far away to remain largely unaffected by the transport bar-
rier, experience close to normal diffusion in the x-direction—over the
observation time, only a statistically insignificant number of particles
will interact with the zonal flows. Particles close enough to the zonal
flows will have a reasonable chance of interacting, which grow higher
the closer they are. These particles will either pass or not pass the
transport barrier. Particles experiencing a strong effect of the zonal
flow in comparison to background variation may be far more likely to
move a longer distance than average away from it, or a much smaller
distance than average closer to the center of the zonal flow—applicable
to both sides of the zonal flow. Particles which pass would then experi-
ence much the same effect on the other side. It is reasonable to think
that this population may demonstrate a jump function with very heavy
tails and a sharp peak, characteristic of the symmetric Levy distribu-
tion. This would also provide an intuitive explanation for the non-
local behavior—particles throughout the system have a chance of being
effected by the (possibly) distant zonal flow.

If, indeed, it is the particle population being variably impacted by
the zonal flows causing this transport behavior, then it seems likely
that the density of zonal flows, their magnitude, and other characteris-
tics in relation to the system that they are present in primarily deter-
mine the transport type. Furthermore, if the likelihood of being
affected by a zonal flow depends primarily on distance, then there is
also a strong reason to consider spatial variation in the jump function
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(which will result in a spatially varying transport equation). This will
be considered in future work.

Understanding the relation between system parameters and the
form of the transport equation will be a focus of future work, and is
the next step in the development of a reduced models of these kinds of
system. The ultimate goal of developing a predictive model requires
first principles analysis of the impact of dynamics on jump functions,
such that system parameters can be directly related to the form of the
jump function. Zonal flows are only one type of transport barrier—we
can conceive of a variety of localized phenomena which would
enhance or impede transport, many of which can be defined in terms
of their impact on the jump function—and therefore, turned into a
transport equation.

In this work, we have established that there is a basis for develop-
ing reduced models of transport using the methods developed here.
Additionally, this work supports the use of fractional transport in
modeling behavior in the presence of coherent structures such as zonal
flows. If we can apply this approach to simulations of transport in the
scrape-off layer of magnetic confinement fusion devices directly, then
we should be able to characterize transport behavior and use the
method developed to try to predict cross field transport via the devel-
opment of a reduced model. This will be the focus of future work.

If we observe similar phenomena in the edge and SOL, then we
may expect similar non-local transport and so justify the use of frac-
tional transport.

VII. CONCLUSION

We have developed a modified observational random walk model
featuring an intrinsic observation time, which returns normal diffusion
given the classical assumptions about the random walk behavior of
particles in a fluid. This can predict the bulk transport characteristics
given that the jump function is known—it can be said that the jump
function characterizes the transport. We demonstrate that the jump
function is regular, directly measurable, and Gaussian in the case of
synthetic turbulence, predicting that diffusion is dominant and that
the diffusion coefficient is similar to that found from Eq. (34), so char-
acterizing transport correctly in this test case. The current limitations
of the ORW approach are that it has not yet been extended to allow
variation in both space and time and hence is limited in application to
examining steady-state systems with no spatial limitations. We, then,
apply the approach to the modified and classical Hasegawa—Wakatani
equations for a variety of adiabaticity values: The Hasegawa—Wakatani
equations include the interactions between drift waves and zonal flows
and so are an ideal test case for understanding the impact of E x B
generated structures. We find that for the cases where we do not
observe zonal flows, we observe normal diffusion and Gaussian jump
functions, but in the modified cases where zonal flows have formed,
the x-jump function is distinctly non-Gaussian. By obtaining an
appropriate fit to these x-jump functions and finding a transport equa-
tion, we are able to demonstrate that the zonal flow cases typically fea-
ture a fractional transport term in addition to the Fickian diffusion
term. Aside from the presence of the zonal flows, there is no obvious
relation between the system parameters and the fractional terms. Due
to the non-locality implied by the fractional term, we conjecture that
the geometric properties of the zonal flows are linked to the fractional
terms. It will be a focus of future work to identify links between the
fractional transport terms and the zonal flows. If we can demonstrate a
link between the geometric properties of the coherent structures, we
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may be able to characterize radial transport in the edge and scrape-off
layer of magnetically confined plasmas in a similar manner and conse-
quently develop a reduced model of the transport in this region using a
fractional transport approach.
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