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ABSTRACT

Disruption prediction and avoidance is a critical need for next-step tokamaks, such as ITER. Disruption Event Characterization and
Forecasting (DECAF) research fully automates analysis of tokamak data to determine chains of events that lead to disruptions and to forecast
their evolution allowing sufficient time for mitigation or complete avoidance of the disruption. Disruption event chains related to local rotat-
ing or global magnetohydrodynamic (MHD) modes and vertical instability are examined with warnings issued for many off-normal physics
events, including density limits, plasma dynamics, confinement transitions, and profile variations. Along with Greenwald density limit evalu-
ation, a local radiative island power balance theory is evaluated and compared to the observation of island growth. Automated decomposition
and analysis of rotating tearing modes produce physical event chains leading to disruptions. A total MHD state warning model comprised of
15 separate criteria produces a disruption forecast about 180ms before a standard locked mode detector warning. Single DECAF event analy-
ses have begun on KSTAR, MAST, and NSTX/-U databases with thousands of shot seconds of device operation using from 0.5 to 1 � 106

tested sample times per device. An initial multi-device database comparison illustrates a highly important result that plasma disruptivity
does not need to increase as bN increases. Global MHD instabilities, such as resistive wall modes (RWMs), can give the briefest time period
of warning before disruption compared to other physics events. In an NSTX database with unstable RWMs, the mode onset, loss of boundary
and current control, and disruption event warnings are found in all cases and vertical displacement events are found in 91% of cases. An ini-
tial time-dependent reduced physics model of kinetic RWM stabilization created to forecast the disruption chain predicts instability 84% of
the time for experimentally unstable cases with a relatively low false positive rate. Instances of the disruption event chain analysis illustrate
dynamics including H–L back transitions for rotating MHD and global RWM triggering events. Disruption warnings are issued with suffi-
cient time before the disruption (on transport timescales) to potentially allow active profile control for disruption avoidance, active mode
control, or mitigation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133825

I. INTRODUCTION

Disruption (DIS) prediction and avoidance is a critical need for
next-step tokamaks, such as ITER, since plasma disruptions1,2 can
place significant thermal heat loads and electromagnetic forces on the
device reducing the lifetime of components and can potentially lead to
damage from runaway electrons.3 Meeting these challenging goals
with the high reliability required for ITER and future tokamaks goes
beyond active plasma instability control alone and will require multi-
ple approaches, including an understanding of the connection between

events leading to disruptions, and the ability to forecast such events
well before they occur. Studies often aim to predict the onset of a dis-
ruption with sufficient time to successfully trigger disruption mitiga-
tion systems. This criterion will mitigate potential damage to the
device in question; however, it will also terminate the plasma and is
expected to require significant time to reset the tokamak to a proper
operational state to continue the operation. With sufficiently early
forecasting of a potential disruption, appropriate control systems and
actuators could be used to alter the plasma state in a way that would
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entirely avoid disruption. The Disruption Event Characterization and
Forecasting Code (DECAF),4,5 under development for this purpose, is
used to automate the analysis of tokamak data to determine chains of
events that lead to disruptions and to forecast their evolution to inform
plasma profile and mode control systems aimed to most preferably
avoid plasma disruption entirely, or if needed to mitigate the deleteri-
ous effects of a disruption. The DECAF approach also provides the
physics understanding required to control the plasma to best avoid
unfavorable plasma operational states.

The disruption chain “events” as defined in DECAF largely fol-
low the paradigm established by the analysis performed by de Vries
et al.6 for JET. These studies, in which the results were entirely pro-
duced by individual and manual examination of each discharge stud-
ied, established a framework for quantifying disruption events. The
relative temporal combination of these events was considered in that
work, which have the analog of disruption event “chains” in DECAF.
The DECAF approach aims to automatically determine the relation of
the events and quantify their appearance to characterize the most
probable and deleterious event chains. It additionally aims to forecast
the onset of the events and chains, especially for events that experi-
mentally manifest in close time proximity to the disruption and would
elude disruption avoidance control systems or even disruption mitiga-
tion systems. Earlier work by de Vries et al.7 using the JET database
was also an important element of the evolution of disruption research,
especially as it showed fairly low disruptivity in the carbon wall opera-
tion (dropping to near 5%), but did not address disruption chain
events and their interconnection. This and the studies in Ref. 6 con-
trast the higher disruptivity in JET experienced with the ITER-like
wall operation, illustrating the need for a more physics-based assess-
ment to understand the causes of the disruptions more universally.8

Other studies have attempted an automatic disruption classification in
a statistical manner utilizing generative topographic mapping applied
to the JET operation with the ITER-like wall.9 Initial studies of real-
time assessment allowing early reaction to potential disruption causes,
including attempts at disruption avoidance, have been conducted on
machines, such as ASDEX-U and TCV.10

The DECAF approach differs from these studies. It is primarily
physics based and aims to provide a quantitative and, importantly,
deterministic (rather than a statistical) predictor for disruptions. It also
aims to provide an understanding of the dynamics of the events lead-
ing to disruptions to best ensure disruption prediction extrapolability
to future devices. This is highly important in high fusion power devi-
ces, such as ITER in which the production of disruptions to teach
purely automated model building approaches is highly restricted. Still,
the DECAF approach and code are highly flexible and allow a large
range of models from simple empirical comparisons to reduced
explicit analytic models based on computationally intensive first-
principles physics analysis, machine learning (ML) reductions of first-
principles physics models, or hybrid machine learning models that use
both physics-based and pure machine-based techniques. DECAF
events are not simply labels. Instead, they contain both attributes and
methods in an object-oriented programming sense. In this way, the
collected understanding of these events can be programmed and con-
tinually validated against tokamak data to improve their general valid-
ity. To best validate the expanding models being added to DECAF,
significant effort is being placed on testing the algorithms against full
tokamak databases on multiple tokamak devices throughout the

world. As shown later, this approach is required to avoid errant deter-
mination of plasma parameters from databases limited to time periods
that are only in close time proximity to the disruption. A larger variety
of devices also provides essential depth in testing physics models and
determining uniqueness and commonality in the events and their
chains leading to disruptions. In the present work, the KSTAR, MAST,
and NSTX databases are examined, with the analysis expanding to the
NSTX-U, MAST-U, ASDEX-Upgrade, DIII-D, and TCV databases
that are also available. Importantly, DECAF meets the disruption pre-
dictor requirements outlined by Humphreys et al.11 that a predictor
must (i) predict specific phenomena, (ii) provide a continuous variable
quantifying proximity to disruptive states that can trigger actions, (iii)
provide sufficient lead time for mitigation or avoidance, (iv) be extrap-
olable to new devices, and (v) be real-time calculable. To clarify, the
goal of the research presented here is the automated characterization
of disruptions by event chains and their forecasting using input data
and analysis that are not computed in real time. Research conducted
to support DECAF aims to use full physics models to first determine
understanding of the behavior of the relevant disruption event.
However, the implementation and development of the present
DECAF code has been performed to efficiently allow analogous analy-
sis to be performed in real-time.5 Model reduction and other techni-
ques for this purpose (e.g., neural net representations) are discussed
below for certain models shown. When used, reduced models are vali-
dated against full models. Future work continues to do this and also to
compare the performance of the offline and real-time DECAF
analysis.

The following sections examine an important subset of the event
analysis in DECAF research and insights gained on the connection of
plasma dynamics to the events. Section II describes the DECAF
approach further, including the concept of disruption warning levels
(with connection to past work). Section III describes the continuing
development of the physical models in DECAF, with examples, includ-
ing density limits and magnetohydrodynamic (MHD) instabilities that
include both their automated characterization and present forecasting
capabilities. Section IV describes the initial investigation of large, gen-
eral databases (from KSTAR, NSTX, and MAST), including full dis-
ruption event chains, the importance of analyzing long periods of the
plasma evolution in the devices, the increasing capability of the code
to produce early disruption forecasting, and a brief summary of the
disruption prediction model performance evolution. A summary and
discussion are included in Sec. V.

II. DISRUPTION CHAINEVENTS AND WARNING LEVELS

Figure 1 simply illustrates the paradigm that DECAF follows in
providing automated understanding of the dynamics leading to a toka-
mak disruption along with an example from experiment. Continuous
tokamak plasma operation at high fusion performance is desired [Fig.
1(a)]. However, at some point, this “normal” operational plasma state
can be altered by various events ranging from purely technical consid-
erations (e.g., magnetic field power supply interruption) to more com-
plex reasons, such as the onset of plasma instabilities, loss of heating
power balance, or loss of torque balance. This alteration is considered
as a chain of individual events, starting with a trigger event and evolv-
ing toward the plasma disruption [here labeled by the acronym disrup-
tion (DIS) representing the plasma current quench]. The DECAF
analysis of device databases aims to automatically determine not only
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the frequency of occurrence of events but also the understanding of
this chain of events. Future real-time implementations of DECAF
diagnostic interpretation and forecasting models of such events can
then be used to trigger disruption avoidance systems. This expanded
strategy can be contrasted to present disruption avoidance systems,
e.g., MHD instability control systems12 that essentially wait until the
“disruption precipice” to address avoidance of the oncoming disrup-
tion. Figure 1(b) shows a DECAF analysis of a plasma with “mid-
range” normalized beta bN � 108hbtiaB0/Ip (where bt � 2l0hpi/
B0

2 ¼ 4.5 toroidal beta, p is the plasma pressure, B0 is the vacuum
toroidal magnetic field at the plasma geometric center, and a is the
plasma minor radius at the midplane) in the NSTX13 device. In this
case, a global magnetohydrodynamic instability (resistive wall mode,
RWM) is identified by DECAF as the event chain trigger, which in the
past was thought to be the direct precursor to the disruption (DIS).
However, DECAF identifies several interceding events. Next in the
chain, 7ms after the RWM event is a vertical displacement event
(VDE). The algorithm for determining whether a VDE event has
reached a critical warning level is described in Sec. II. Five milliseconds
later, a wall proximity warning (WPC) is issued, indicating that the
plasma boundary is about to touch the device first wall (and does soon
after the warning). A low plasma density warning (LON) is issued
2ms later, followed 5ms later by the plasma current request (IPR)
event warning that the feedback control target plasma current request
is no longer being met. By now, the original separatrix-limited plasma
is in contact with the wall and is decreasing in size, with the edge
plasma safety factor, q, decreasing as plasma poloidal flux is lost. At
9ms later, a low q warning (LOQ) is issued. Finally the time of the dis-
ruption (DIS) is found, based on the plasma current quench.14 The
DIS event occurs over 30ms after the trigger RWM is issued, which is
expected to be just enough time in ITER to trigger the disruption miti-
gation system effectively. However, this relatively short-duration dis-
ruption chain would be better handled if the RWM event itself was

forecast at an earlier time. DECAF presently has a model to do this, as
discussed in Sec. IIIC 2. At present, DECAF event warning levels are
determined by a flexible diagnostic and physics model “point” system
similar to that successfully used for NSTX15 but significantly expanded
including results from general analysis of the evolving diagnostic input
and plasma equilibria with a continuous warning level determination.
A key expansion of the present DECAF approach is that several event
criteria can be used in conglomerate to determine combined “levels”
that allow DECAF to issue event warnings. For example, at present, 15
separate criteria are used to determine the total MHD warning level
for rotating MHDmodes (see Sec. III B 1).

III. PHYSICAL MODEL DEVELOPMENT

A profound power of the DECAF approach is the ability to test
any physical model developed by the fusion research community for
practical use as part of a disruption prediction model ensemble.
Models that can quantitatively forecast disruptions more accurately
across all devices can then objectively be chosen as being more desir-
able using quantitative figures of merit. Over 50 disruption chain
events are presently identified, with over 20 events that have diagnostic
evaluation and physical models providing warning levels. Simpler eval-
uations examine key diagnostics in combination to compute warning
levels, with comparison to critical levels to determine when DECAF
issues event warnings. For example, the VDE event combines a com-
parison of axis position (jZj), axis velocity (jdZ/dtj), and Z dZ/dt
against threshold levels set in the model. Critical levels of such models
will differ for each machine. The validation of the technical and
physics-based models for each of the five devices in the present
DECAF database now comprises the primary near-term research
effort. More desirable are models that more transparently reproduce
the behavior of all tokamak devices. The simplest models in this class
are empirical models, such as the Greenwald density limit (GDL). A

FIG. 1. (a) Schematic diagram illustrating a paradigm of plasma state evolution away from normal operation toward a plasma disruption as a series of events that form a dis-
ruption event chain, (b) automated evaluation of the disruption event chain for a plasma discharge with bN ¼ 4.5, and (c) and (d) higher time resolution illustration of n¼ 1
RWM amplitude and plasma toroidal rotation as the disruption is approached.
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next level includes models that are more closely based on first-
principles physics, examples of which are discussed below.

An important advantage of the physics-based approach of
DECAF is that parameters that would logically need to change in
models for each device are guided or specifically identified by theory.
A simple example is the kink stability beta limit, which can simply be
expressed in the form C1

� < Ip/aB0. Theory has shown that C1, often
taken as a constant, can be computed using ideal MHD theory.16 Such
an approach is taken when possible. Additionally, extended modeling
has shown that this limit can be expanded to include plasma shape,
pressure peaking, and plasma internal inductance (also be determined
by ideal MHD theory).17 Where appropriate, those additional parame-
terizations are used in DECAF (for example, in the resistive wall mode
growth rate determination). In this way, theory can be used to alter
model parameters for different devices.

A. Density limits

The Greenwald density limit18 (event GWL) is included in
DECAF as a universal empirical model for disruption forecasting.
Recently several theories have been developed to explain the observed
global Greenwald limit in tokamaks, including a ballooning stability
limit at the separatrix19 and a local island power balance (IPB) the-
ory.20,21 In the latter theory, power balance in an island between input
Ohmic heating and radiated power loss results in a maximum local
density that scales with local current density. If the density at the island
exceeds the limit, or alternatively if the radiated power at the island
exceeds the input power (Ploss> Pinput), then the island grows and can
lead to plasma disruption. The limit can be written either in a form
which mimics the global Greenwald density limit in a local form or
one that mimics a radiated power fraction localized to the magnetic
island surface. This model has been added to the DECAF code, includ-
ing the radiated power, resistivity, and current density profiles as
inputs.

The radiated power profile (Ploss) can either be directly measured
or can be estimated from density profiles and calculated cooling rates
of deuterium and impurities, such as carbon, which depend on
electron temperature.22 Figure 2 shows both the measured and calcu-
lated profiles for an NSTX discharge. The Ploss is calculated as Ploss
¼ ne

P
nZLZ, where the species Z considered in this case are limited to

deuterium and carbon and the cooling rates L in W m3 are given for

deuterium by LD ¼ 5.35 � 10�37Te
1/2 with electron temperature in

keV (Ref. 17), and for carbon by tabulated formulas in Ref. 20. The
input power profile that Ploss is compared to in Fig. 2 is calculated
from Pinput ¼ gj2. The resistivity profile, g, is calculated based on elec-
tron temperature and the effective charge Zeff (formula from Ref. 17),
which are measured by Thomson scattering and charge exchange
recombination spectroscopy. The current density profile used here is
the total surface-averaged current density profiles from various sources
(Ohmic, bootstrap, beam-driven), which are computed by the
TRANSP code.

The power balance model is a local condition for island growth;
therefore, mode marginal stability would occur when Ploss/Pinput> 1 at
the location of the island. This defines the DECAF event “island power
balance” (IPB) shown in Fig. 2. The rotating MHD mode growth that
arises when Ploss/Pinput ¼ 1 (Fig. 3) is measured as having toroidal
mode number n¼ 1. The lowest order rational surface in the plasma is
q¼ 2, som/n¼ 2/1 activity is the most likely candidate. Therefore, the
local power balance criterion is evaluated at the q¼ 2 surface. The
n¼ 1 mode onset in Fig. 3 is highly correlated with the IPB event
warning in the plasma shown. Also shown is the computed Greenwald
fraction evolution and the DECAF event GWL defined as the line-
averaged plasma density equal to the Greenwald density. At the IPB
event, the Greenwald fraction is �0.9. While this correlation is posi-
tive, the present state of analysis shows the quantitative evaluation of
the IPB event to be sensitive to the accuracy of the local input criterion
(e.g., position of the q¼ 2 surface). The present DECAF analysis shows

FIG. 2. Profiles of calculated (deuterium and carbon) and measured total radiated
power density and calculated input power density for NSTX discharge 134 020 at
0.60 s.

FIG. 3. (a) Spectrogram of rotating MHD activity from a toroidal array of magnetic
probes for NSTX discharge 134 020, illustrating n¼ 1 mode growth near the time
of the loss of power island power balance (DECAF event IPB). (b) Greenwald frac-
tion and local power balance criterion.
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that the local island power balance evolution follows the evolution of
the global Greenwald fraction. For 13 discharges tested, the Greenwald
fraction ranges from 0.75 to 1.05 at the time of MHD onset and the
local island power balance fraction has a range of about 0.60 to 1.50.
Continued analysis is focused on reducing this variation and eliminat-
ing the need for the full TRANSP analysis for each plasma, for exam-
ple through neural net evaluation of a representative set of TRANSP
runs to determine the required input for the IPB event. In addition,
the Greenwald density limit itself has been shown not to be a very
stringent limit in auxiliary heated plasmas, and the radiative power
model in the DECAF IPB event has also not been proven to be strin-
gent if the variation on the input parameters was reduced. Both of
these criteria will be further investigated for larger data sets in future
work to examine how they may be made more stringent.

B. Rotating MHD instabilities

An automated analysis of rotating MHD modes with tearing
characteristics has started by using a DECAF module to produce phys-
ical event chains leading to disruptions through slowing of the modes
by resonant field drag mechanisms and subsequent locking.23 An algo-
rithm portable across tokamaks devices has been developed that pro-
cesses the spectral decomposition and signal phase matching of
magnetic probe signals for mode discrimination. Multiple modes
occurring simultaneously are tracked, and bifurcation of the toroidal
rotation frequency and locking for each mode due to the loss of torque
balance under resonant braking are detected.

1. Disruption event characterization

The information analyzed for these modes along with plasma
rotation profile and other plasma measurements produces predictive
warnings for the individual modes, along with a total MHD event

warning signal showing initial success as a disruption forecaster. These
capabilities are illustrated in Fig. 4 for the same plasma shown in Fig. 3.
In the plasma illustrated, rotating MHD instabilities thought to be non-
linearly saturated and slowly evolving resistive modes are found using a
generalized phase matching algorithm in DECAF using an array of
toroidal magnetic probes typically available in tokamaks. The code dis-
criminates the toroidal mode number of the instabilities and tracks all
modes that have greater than a specified amplitude. Modes that
approach the disruption are indicated by the chevrons in the diagram
(which show the mode n number). DECAF events based on the mode
evolution are also shown, including the bifurcation of the modes (BIF-
n1,2) (loss of torque balance leading to rapid loss of mode rotation),
and events marking the locking of the modes in the laboratory frame of
reference (LTM-n1,2). A single “total” MHD warning signal that varies
with time is also shown. This warning is created by a set of criteria and
can be used as a disruption predictor, as described in Sec. III B 2.

2. Forecasting

A significant part of DECAF research is determining the best cri-
teria to create predictive warnings. The warning model shown in Fig. 4
is comprised of 15 separate criteria, also shown in the figure displayed
as a heat map. The conditions fall into seven groups: (i) detected mode
frequency very low to high (conditions 2 and 3), (ii) mode frequency
torque balance condition (condition 4), (iii) mode strength (condition
5), (iv) decreasing bN and less safe bN/li level (conditions 6 and 7), (v)
decreasing plasma rotation at three radial positions (conditions 8–10),
plasma rotation too low at three radial positions (conditions 11–13),
(vi) sufficiently strong locked mode signal (condition 14), and (vii) li
below the (zero-beta) current drive kink limit (condition 15). This
summary illustration of the criteria used to produce the warning level
provides a useful display of how the total warning level reaches high

FIG. 4. Rotating MHD mode discrimination capabilities in DECAF. The upper left frame shows the mode discrimination and decomposition into DECAF events. The lower left
panel shows a total MHD warning level that increases as the disruption is approached. The right panel shows a heat map illustration of 15 event criteria that comprise the total
MHD warning level (colors label different conditions).
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values, indicating a disruption onset. A total warning level of 4 indi-
cates close proximity to the disruption for this model. At present, the
criteria and threshold levels used in the model are based on experi-
mental experience in determining the evolution of parameters, such as
mode frequency and plasma rotation profile evolution, to produce the
warning level evolution, which is then compared to the success of
binary classification of the plasma as having or not having a disrup-
tion. Future work will aim to numerically automate this process while
constraints are set for the plasma parameters considered in the model.
The heat map also gives us an understanding of what is happening in
the plasma to create the undesirable plasma states approaching the dis-
ruption. Early in the discharge (before t¼ 0.25 s), MHD modes are
also found, and core plasma rotation is low as the plasma starts up and
typically transitions from counter-neutral beam injection (NBI) rota-
tion to co-NBI rotation. However, the mode frequencies are relatively
high at this time, which is generally a safe condition. Later, near
t¼ 0.25 s, the MHD warning level increases as modes are again found
but now with decreased and decreasing rotation frequency. However,
these frequencies are not critically low (no mode bifurcations are
found) and plasma rotation is not low, so the warning level remains
low. However, after t� 0.6 s, the heat map clearly shows more negative
(destabilizing) criteria occurring simultaneously including an
increased mode amplitude, decreasing mode frequencies, and decreas-
ing plasma rotation across the profile. Near t� 0.7 s, more negative
criteria occur: mode frequencies are now below a recent evaluation of
mode bifurcation frequency levels, the modes drop to very low fre-
quency, and core plasma rotation (three channels of the plasma rota-
tion profile are considered—core, middle, and outer) is critically low.
Late in the evolution in close time proximity to the disruption (t� 0.8
s), a critical level of locked mode amplitude occurs. Such a locked
mode detector signal is typically used as the primary, and occasionally
the only indicator to predict a possible disruption, but this indication
occurs very late in the evolution. We see here that the DECAF analysis
starts to show a significant change in the total MHD warning level
about 180ms earlier, providing far better advanced notice of the
potential disruption allowing the potential for control systems to alter
plasma stability to avoid disruption. Additionally, and of critical
importance, the DECAF analysis provides physical understanding of
the negative evolution of the plasma state as it moves toward the dis-
ruption. Further forecasting of resistive MHD stability using the resis-
tive DCON code is being investigated through supporting KSTAR
research.24,25

C. Global MHD instabilities

Global MHD instabilities, such as external kink/ballooning modes
or resistive wall modes (RWMs),26 can cause the most rapid disruptions
(e.g., Fig. 1) and give the least amount of pre-disruption warning time.
Therefore, attention needs to be put toward forecasting such events to
cue profile control systems well before instability develops.

1. Disruption event characterization

To examine disruption event chains with global MHD triggers,
the DECAF analysis was performed on a database of 45 NSTX dis-
charges that were pre-determined to have unstable RWMs that lead to
disruptions. Tearing modes were stable during these discharges to
focus on global MHD in this analysis. A typical disruption event chain

with an RWM trigger is shown in Fig. 1. In this database, the RWM,
loss of boundary control (WPC), LOQ, IPR, and DIS events are found
in 100% of the plasmas, and VDE events are found in 91% of the plas-
mas. A pressure peaking warning (PRP) occurred on a majority of the
discharges analyzed (35 of 45), but typically occurred with or after the
RWM, not before in this database. The GWL event warning is found
in a few cases when the warning level is set at a Greenwald fraction of
0.9. Interestingly, GWL can start the RWM disruption chain and is
explained physically by the correlation of reduced plasma rotation
caused by increasing plasma density, leading to RWM instability by a
destabilizing change in the plasma rotation profile, discovered in
NSTX.27 Analysis shows that 61% of RWM events in a shot occur
within 20 conducting wall current diffusion times, sw, of the disrup-
tion. The other RWM events found occur earlier but are not false posi-
tives as they cause significant thermal collapses or “minor disruptions”
of the plasma with subsequent recovery (plasma stored energy can
drop by 30% or more over tens of ms, much larger than the largest
edge-localized modes (ELMs) in tokamaks that cause far smaller
stored energy decreases up to �6%). It is useful to examine which
events are commonly associated with this dynamic. For example, the
low safety factor condition (LOQ) was clearly seen to happen often in
close conjunction (either just before or just after) the designated time
of disruption (DIS). One way of seeing this is to examine a histogram
of some of the timing of the events before the time of disruption
(DIS), shown in Fig. 5. Here, only the events within 14 sw of the dis-
ruption are shown, where sw is taken to be 5ms; there are some RWM
events at earlier times which are not shown here. It is clear that LOQ
and IPR events occur close to the time of disruption, and these are
often preceded by VDE and RWM events, which peak around 30ms
prior to the disruption. Associations between DECAF events are pow-
erful conclusions of the analysis shown here, and it is expected that a
greater number of DECAF events associations will be discovered in
the future analysis of much larger databases.

Examining the common chains of events more closely can pro-
vide insight into how to cue avoidance systems to return to normal
plasma operations (see Fig. 1). For example, if the RWM can be
detected in real-time by a growing mode amplitude signal from an
array of external magnetic sensors, it is useful to know what the typical

FIG. 5. Histogram of the timing of RWM event triggered disruption chain events
before the time of disruption.
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routes of plasma behavior directly follow the RWM so that plasma
control systemsmay be employed to avoid them. Even with the limited
dataset examined here, we can find interesting trends. Of the 26 RWM
events occurring within 100ms of the disruption, they were followed
immediately by VDE (related to bulk plasma motion) 15 times.
Furthermore, looking at the two-event chains that happened directly
after this set of RWMs, we find that even though there are theoretically
56 two-event combinations that could occur from the eight currently
tested, just two two-event chains accounted for 50% of the cases (VDE
! PRP and VDE!WPC) and five accounted for 77%.

2. Forecasting

Kinetic RWM analysis has shown high success over years of
quantitative comparison to experiment to determine the mode mar-
ginal stability allowed through plasma precession drift and bounce
orbit resonances, collisionality, �, and energetic particle effects.25,28 To
allow rapid processing, full kinetic RWM computations (using the
MISK code25,26) that have been used successfully to predict mode sta-
bility on NSTX and DIII-D have been used to create a reduced model
of the kinetic RWM stability growth rate in DECAF [Fig. 6(a)]. This
allows the plasma stability to be forecasted well before the mode ever
appears. Gaussian functions with parameters fit from full MISK calcu-
lations of NSTX marginally stable equilibria are used to define the
kinetic energy functional dWK as functions of E�B frequency and
collisionality. The model also incorporates expressions dependent on
plasma pressure peaking, internal inductance, and aspect ratio for the
ideal MHD no-wall and with-wall beta limits computed from thou-
sands of DCON calculations using experimental equilibria.29 The
modeled growth rate can be used to forecast RWM instability based
on plasma equilibrium reconstructions and rotation measurements
and is time-dependent based on the equilibrium evolution. Figure 6(a)
illustrates the evolution of a high normalized beta NSTX experimental
plasma as it becomes RWM unstable near a predicted marginal stabil-
ity contour [while not shown, the growth rate contours on Fig. 6(a)
change as the plasma evolves]. This reduced kinetic RWM stability
model in DECAF, detailed in Ref. 27 performed well in its first incar-
nation against a larger database of plasmas to determine the proximity
of discharges to marginal stability [Fig. 6(b)]. The model correctly

predicted that 16% of the plasmas were stable. The model predicted
instability 84% of the time (stringent marginal stability evaluation) for
experimentally unstable cases with a relatively low false positive rate
(7% of plasmas predicted to have disrupted were actually stable plas-
mas). DECAF also showed 44% of plasmas were predicted unstable
within 320ms (�60 sw) of the disruption time, and 33% were pre-
dicted unstable within 100ms of a minor disruption. Stability was pre-
dicted in 77% of experimentally stable cases. The evolution of
discharges that were RWM stable was notably separate on the (ExB
frequency, collisionality) stability map, not crossing the computed
marginal stability contour. An additional positive aspect of the reduced
kinetic MHD RWM growth rate model is that it is real-time calculable.
This contrasts the full model, which takes several minutes to compute
each point in rotation and collisionality space.

IV. INITIAL INVESTIGATION OF GENERAL DATABASES
A. Individual disruption chain events

The DECAF code has produced an initial analysis of large data-
bases for multiple tokamak devices for a small set of disruption charac-
terization events. The analysis is conducted over the full duration of
the planned plasma current flat-top, rather than a limited period near
the disruption time as might be available from a disruption database.
Thousands of shot seconds are available in the databases, with upward
of 0.5–1 � 106 tested sample times per database. For example, if the
DIS event is used, the analysis produces the equivalent of “disruptivity
diagrams” showing the probability of a disruption occurring within a
given parameter space of tokamak operation. These diagrams are
shown for NSTX, MAST, and KSTAR in Fig. 7 expressed as standard
stability operational space (li,bN) figures (li is the plasma internal
inductance). This multi-device comparison illustrates a highly impor-
tant and still largely unappreciated result separately published for
DIII-D and NSTX30 for smaller datasets that plasma disruptivity does
not increase (and can actually decrease) as bN increases. This is not
due to lower operation probability in this space and can be explained
in NSTX by increased kinetic MHD RWM stabilization in this
regime.27,28 However, as will be shown in Sec. IVB, the high beta
regions of low disruptivity are in fact key areas for DECAF algorithms
to analyze events that can lead to disruptions.

FIG. 6. (a) Stability map vs ExB frequency
and collisionality from DECAF reduced
kinetic RWM stability model; (b) statistics
illustrating results of the model in forecast-
ing instability for RWM unstable NSTX
plasmas.
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Unlike standard disruptivity plots, DECAF can provide critical
insight by illustrating where in parameter space events other than DIS
happen. For example, the VDE event detects the loss of vertical stabil-
ity. When plotted in the parameter space of elongation, j, vs li, it
becomes clear that vertical stability shows a strong dependence on
these parameters [Fig. 8(a)] and that, additionally, the location in
parameter space of an event preceding the disruption (like VDE) can
be far from where the actual disruption event occurs [DIS, shown in
Fig. 8(b)]. Therefore, the often-used analysis of a disruptivity plot,
such as Fig. 8(b) is shown to be misleading. The correct figure to use
to understand disruptions due to VDE is Fig. 8(a).

B. Disruption event chain analysis for arbitrary
discharges

DECAF event characterization and event chain analysis show
that the disruption forecasting analysis often starts during plasma
states that can appear safe. This is illustrated using the disruptivity

database plot shown in Fig. 7(a) and the figures in this section. The
regions of high disruptivity in Fig. 7(a) may be thought to be the
most important based on human inspection. However, an apparent
problem is that the region of high disruptivity at low bN and mid-
range li is not physically understood to be a dangerous operational
region. The enigma is resolved by understanding that the plasma
state can significantly evolve from more usual high performance
parameters to the point at which the disruption actually occurs. This
fact is completely missed, for example, by disruption database stud-
ies that only process data near the disruption time. Even worse, such
studies may parameterize disruptive limits based on these terminal
states. In contrast, DECAF disruption event chain analysis of two
discharges in Fig. 7(a) that disrupts (DIS event in DECAF, marked
by red and green X’s in the figure) shows that the start of the event
chains appears in the region indicated by the red and green circles—
which are far from what might be expected. This also illustrates why
the use of a numerical tool that would focus only on the regions of
high disruptivity (such as a “black box” machine learning approach)

FIG. 7. Event probability diagram of DECAF event DIS during Ip flat-top in large databases from the (a) NSTX, (b) MAST, and (c) KSTAR tokamaks showing that disruption
probability does not have to increase as plasma normalized beta is increased.

FIG. 8. Event probability diagrams of DECAF events VDE (a) and DIS (b) for a large database from the NSTX tokamak.
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would produce an inaccurate assessment of the plasma states that
produce early disruption forecasts. The disruption event chains for
these plasmas in Fig. 7(a) are shown in Figs. 9 and 10 along with the
DECAF MHD mode decomposition and total MHD warning level.

As before, we see this warning level rising toward and past the criti-
cal value of 4.0 as the disruption is approached. The DECAF mode
decomposition adds information, showing that the mode evolution
toward lower rotation frequencies is relatively slow in Fig. 9. This is

FIG. 9. (a) Evolution of plasma state from a low disruptivity region toward disruption due to a rotating MHD mode locking dynamic in NSTX (circle: time of DECAF forecasted
trigger event; X: state at time of disruption), (b) DECAF decomposition of rotating MHD in relatively slow evolutions toward disruption, (c) computed DECAF rotating MHD warn-
ing signal. The DECAF event chain leading to disruption is shown on the top of the figure.

FIG. 10. (a) Evolution of plasma state from a low disruptivity region toward disruption due to an unstable RWM in NSTX (circle: time of DECAF forecasted trigger event; X:
state at time of disruption), (b) DECAF decomposition of rotating MHD modes, (c) computed DECAF rotating MHD warning signal. The DECAF event chain leading to disrup-
tion is shown on the top of the figure.
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one reason why the plasma disrupts far from the plasma state at the
trigger event.

The DECAF event chain in Fig. 9 provides a wealth of informa-
tion. In Fig. 9, we see a critical warning for the individual n¼ 1 rotat-
ing MHD mode (MHD-n1) as a starting point for the chain. Note
from the top frame that a low frequency n¼ 1 mode was detected far
earlier—near t� 0.22 s. However, the warning level for the activity
was not determined to be sufficiently high then to warn of a disrup-
tion. The mode bifurcation (event BIF-n1) occurs 5ms later. The
mode locks (event LTM-n1) 45ms after the bifurcation. Then, a differ-
ent dynamic occurs, as DECAF finds a pressure peaking event warning
(PRP) happening 23ms after the mode lock. While the warning liter-
ally flags that the pressure peaking factor is exceedingly high, it also
importantly indicates that an H–L energy confinement back-transition
has occurred, the H-mode pedestal is lost, and the neutral beams have
better penetration increasing the plasma pressure peakedness. The IPR
warning occurs 5ms after PRP, and simultaneously, the plasma makes
a close approach to the vessel wall (WPC). Finally, the plasma disrupts
4ms after the WPC event. It is also interesting that the VDE event
warning occurs 3ms after DIS. Usually the events are reversed in time.
This indicates that the plasma mainly remains on the midplane during
the evolution, uncharacteristic of NSTX disruptions. Figure 9 shows a
relatively slow RWM-triggered disruption [i.e., compared to Fig. 1(b)].
In this disruption event chain, the PRP warning again indicates an
H–L back transition and a VDE is produced approximately 10 sW
after the RWM trigger occurs. As shown, the disruptions in these two
plasmas occur 77 and 101ms after the initial DECAF warnings. These
intervals represent transport timescales (a few energy confinement
times) and so would allow sufficient time for active profile control for
disruption avoidance, or easily allow time for active mode control or
disruption mitigation.

The DECAF event chain in Fig. 10 is quite a bit different than
shown in Fig. 9, which is understood by the physical evolution of the
MHD mode activity. The DECAF decomposed MHD mode evolu-
tion shows clear rotating mode activity through t¼ 0.45 s, and the
corresponding DECAF warning level increases toward the critical
value. However, before reaching that level, the rotating MHD signa-
tures vanish, and the DECAF warning level drops. This happens
since in the experiment, the plasma evolution was changed to avoid
rotating MHD later in the plasma discharge in order to study
RWMs, which do not become unstable if rotating MHD modes of
sufficient amplitude are present. As shown in Fig. 10, RWM is the
eventual trigger event of the DECAF disruption event chain, and not
the rotating MHD warning level. Another interesting observation of
that the DECAF RWM event reaching the critical level shown will
usually cause a plasma disruption within several RWM growth times
<5sw� 45ms. The longer time period between the RWM trigger
event and the DIS event is understood when examining the DECAF
event chain. The IPR event occurs 10ms after RWM, indicating that
plasma is under significant distress. Then, a PRP event occurs 12ms
after the RWM event, indicating that the plasma made a backtransi-
tion from H-mode to L-mode confinement that will cause a drop in
bN. That effect, counterbalanced with the rise in the plasma pressure
peaking can lead to a longer growth time of the RWM amplitude,
which in this case leads to a somewhat longer than usual disruption
onset with VDE occurring 58ms after RWM, and DIS happening
101ms later.

C. Disruption prediction performance

Disruption prediction research using the DECAF approach also
importantly allows quantifiable figures of merit (most importantly
the plasma disruptivity) to assess any prediction models produced.
This figure of merit allows an objective assessment of the relative
performance of different models and allows an assessment of how
close the predictor would come compared to ITER needs. Figure 11
shows a progression of DECAF disruption forecasting models. The
earliest models included about ten events and were run on databases
for which the events that led to the disruption were known. For such
databases, DECAF produced very high performance (e.g., 100% true
positives). A next evaluation of models focused on earlier forecasting
once the first forecasting model was implemented in the DECAF
code. True positives were found to be �84%, which was a measure
mainly of the single forecasting model. The addition of more fore-
casting models (such as the MHD analysis shown) could improve
that performance with further development. The more recent testing
of the code has been on large databases �10 000 shot � seconds of
plasma run time tested. This was done with a smaller number of
events due to computer RAM limitations. With five events, applied
to all plasma shots from an NSTX database, DECAF has produced
performance levels of over 91% true positive disruption predictions.
False positives in this analysis reached 8.7%, which is fairly high.
However, further code development that allows the events to poll
each other will reduce this level considerably. For example on the
NSTX device, a large portion of the false positive rate are due to the
RWM event. Experimental experience shows that if a sufficiently
large rotating MHD mode is present in the plasma, then an RWM
will not become unstable. Thus, present code development includes
the ability of the RWM to poll the MHD event for the existence of
such mode activity. The addition of that criterion will significantly
reduce the false positive percentage. Furthermore, restrictions on the
analysis scope due to computer hardware are presently being largely
eliminated through software improvements and access to more pow-
erful computer clusters.

FIG. 11. DECAF model performance evolution (true positive disruption forecast).
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V. SUMMARY AND DISCUSSION

The Disruption Event Characterization and Forecasting Code is a
physics-based, fully automated analysis paradigm that continues to
compile the knowledge of many years of tokamak research by imple-
menting a collection of models to solve the critical issue of plasma dis-
ruptions in tokamaks. The approach considers the evolution from
normal tokamak operation toward a plasma disruption as occurring
through a linked series, or chain of physical or technical events, most
or all being “off-normal.” The approach has several advantages,
including an analysis that produces greater understanding of the
events as a collective and allowing control systems to be guided by the
events and event chains in taking early actions (e.g., on transport time-
scales) to avoid disruptions before they happen via the forecasting ele-
ment of the analysis. The DECAF approach is inherently deterministic
rather than statistical. This is important, as the performance of
approaches that use a set of statistical elements, rather than determin-
istic events, will produce a warning level equal to the product of each
of the individual warning elements. For example, ten elements that
each have a 99% probability of success would have a total performance
level of (0.99)10 ¼ 90.4%, while ITER is seeking a 98% true positive
rate. In contrast, the deterministic nature of DECAF events and the
critical event chains will predict a plasma to have a disruption even if
all but one event in the chain fails to be correctly assessed at the critical
level. In this way, DECAF events and the critical event chains are far
better at reaching high true positive disruption prediction values.
Attention does need to be placed on keeping false positive levels low.
The DECAF approach meets the disruption predictor requirements
outlined by Humphreys et al.11 Four of the five requirements have
been demonstrated in this paper. The DECAF events comprise both
attributes and methods, which include the ability to predict the specific
plasma physics phenomena covered by the scope of each event. The
events in combination provide a continuous variable quantifying the
proximity to disruptive states. The events themselves and more power-
fully the event chains can be used to more intelligently trigger actions
by control systems (e.g., by using gradients of the underlying physical
processes to determine how to change the plasma state) than a system
that only provides a binary classification of the plasma state. The
DECAF event chains produce event relationships that can inform
what control algorithms to use, as well as what actuators should be
used. Also, relationships established by the event chains can be further
analyzed by modern graph theory software constructs to produce
understanding of the resulting DECAF analysis appropriate for auto-
mated, rapid computer responses when the chains appear in real time.
The present model and forecasting development has produced analysis
that forecasts the onset of a disruption on plasma transport timescales,
thereby allowing sufficient lead time to avoid plasma disruption
through plasma control techniques (e.g., profile control, shape control,
plasma stored energy control, and plasma mode control). The DECAF
paradigm puts high priority on the ability to characterize and forecast
plasma disruptions from the full databases of multiple tokamaks to
allow more stringent validation of the underlying physics models
across several devices, thereby producing superior extrapolability to
future devices.

While DECAF connects to the databases of several tokamaks,
once read into the code, the data used are abstracted from the specific
local data names to general names [e.g., charge exchange spectroscopy
(CES) toroidal plasma rotation profile on KSTAR31 and charge

exchange recombination spectroscopy (CHERS) plasma rotation pro-
file on NSTX32 becomes “plasma rotation” in DECAF], with a general-
ized input describing the measurement geometries. This allows
straightforward mapping between quantities and consistency with
data management systems, such as the integrated modeling & analysis
suite (IMAS) for ITER.33 Note that it is a common practice to create a
full DECAF model (e.g., all events) for a new device, for example,
MAST-U, by starting from a well-established model aimed at a similar
device, for example, NSTX. Note that in such a porting of the DECAF
model, the underlying physics models made need to have parameters
change based on theory (e.g., ideal MHD stability limits). The changes
are guided by theoretical understanding of the models. Future studies
will include a systematic evaluation of superior DECAF models that
have high accuracy in disruption prediction and forecasting across all
plasma data from all available databases. Reaching high prediction
accuracy levels required for ITER (�98%) and future devices is an ulti-
mate goal of DECAF research.

Modern machine learning (ML) techniques were envisioned to
be used in specific ways in the DECAF analysis since its origin once
they were found to be needed. The first instance of this was thought to
be the reproduction of the mode growth rate results for the kinetic
MHD global mode model detailed in Ref. 27 by a deep learning neural
net approach.34 However, as shown in the reference, basis functions
that produced good fits to the analysis results were found based on the
underlying physics solutions and so that approach was utilized.
Having analytic forms for the models are superior to purely numerical
approaches in that gradients of the key quantities used for forecasting
and control algorithms can be computed analytically, producing
smooth results to reduce analysis output noise. However, finding such
basis functions is not straightforward and so is not possible in general.
Therefore, we have now started to implement machine learning for
DECAF,35,36 but in significantly different ways than have been used
for disruption prediction research to date, which typically approach
the problem treating a disruption database as a binary classification
problem, and applying deep learning or other techniques to the data-
base as a black box. Machine learning in DECAF follows a philosophy
that is more amenable to produce human understanding of the results
and allow greater flexibility for use in control systems. Specifically, we
are presently adopting three approaches of using machine learning to
support DECAF. First is the reduction of results from certain complex
physical models by deep learning neural nets to allow rapid (including
real time) determination of quantities used in DECAF models. Two
such machine learning techniques following this approach above have
already been applied as analysis supporting the DECAF code, specifi-
cally, deep learning neural nets, and non-linear random forest regres-
sion analysis. These were used to train on DCON ideal MHD stability
code calculations.33 Second, a “hybrid model” approach is envisioned
to comprise the bulk of ML use in DECAF. In this approach, both a
physics model and a database that the physics model is meant to
reproduce are given. The difference between the computed physical
quantities produced by the model and the data, de, is typically inter-
preted as the error between these two, which represents the part of the
physical model that is not known. The hybrid model approach
focusses on reproducing de, rather than the entire physical model. This
approach has two advantages: (i) the number of independent variables
needed to produce the ML model of de will be a smaller set than
required to reproduce the entire database using ML alone, and (ii) the
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ML techniques applied to de have a greater probability of exposing key
physics variables needed to reproduce de because of this reduction of
independent variables. This aids artificial intelligence (AI) to more eas-
ily produce human understanding of the remaining part of the physi-
cal model. A simple example: a database of the position of spheres
dropping in a gravitational field with an atmosphere, and as a model a
set of kinematic equations in a gravitational field, but in a vacuum. In
this case, the de would represent the key missing physics component:
air resistance. It would not be difficult for the hybrid AI approach to
determine that de is a function of the square of the sphere’s velocity.
The new physics discovered that reproduces de can be added to the
original physical model, with the opportunity to iterate this process to
discover more of the underlying physical model. The approach of
addressing de is analogous to the use of an optimum observer in con-
trol system design.37 Finally, ML techniques will be used to evaluate
more general linkages between DECAF events.

There is one final disruption predictor requirement remaining to
be demonstrated by DECAF—that it be real-time calculable. This
characteristic can also be met by all models discussed in this paper and
that are presently available in DECAF. For models that are not easily
reproduced using analytic basis functions, results from a full physics
model can be functionally represented to allow real-time computation
through ML techniques, for example, Deep Learning. This neural net-
work technique is equivalent to fitting analysis results as a function of
the key independent variables without assuming analytic basis func-
tion models. The present offline modeling and analysis is starting to be
implemented for real-time use in the KSTAR device. In such an imple-
mentation, only causal analysis techniques based on real-time mea-
surements and real-time equilibrium reconstruction quantities can be
used. In fact, a recent set of experiments on the KSTAR device have
been run with an initial implementation of DECAF installed in the
plasma control system. Comparison of disruption prediction perfor-
mance results between the two approaches will be made once the anal-
ysis of the initial real-time results is completed.
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