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ABSTRACT

The tokamak is a world-leading concept for producing sustainable energy via magnetically confined nuclear fusion. Identifying where to posi-
tion the magnets within a tokamak, specifically the poloidal field (PF) coils, is a design problem which requires balancing a number of com-
peting economical, physical, and engineering objectives and constraints. In this paper, we show that multi-objective Bayesian optimization
(BO), an iterative optimization technique utilizing probabilistic machine learning models, can effectively explore this complex design space
and return several optimal PF coilsets. These solutions span the Pareto front, a subset of the objective space that optimally satisfies the speci-
fied objective functions. We outline an easy-to-use BO framework and demonstrate that it outperforms alternative optimization techniques
while using significantly fewer computational resources. Our results show that BO is a promising technique for fusion design problems that
rely on computationally demanding high-fidelity simulations.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://

creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0272085

. INTRODUCTION
A. Motivation and aims

A spherical tokamak is a torus-shaped device with a low aspect
ratio that uses strong magnetic fields to confine and control a thermo-
nuclear fusion plasma, with the goal of producing fusion energy." The
Spherical Tokamak for Energy Production (STEP), currently in the
design phase and targeting completion in 2040, is one of a few ongo-
ing fusion research and development projects based on the spherical
tokamak concept. To deliver fusion power to the grid on such a short
timescale, researchers are increasingly designing next-generation toka-
maks in silico with multi-physics simulations, many of which require
high-performance computing (HPC) resources.

STEP is no exception, with initial concept designs for the toka-
mak (and the associated plasma) being generated by low-fidelity inte-
grated modeling codes’ such as PROCESS"™” and Bluemira.” * These
codes use simplified physics and engineering models to produce
designs within seconds or minutes. In contrast, more complex
medium- to high-fidelity codes, such as JINTRAC,” incorporate more
detailed physics models but can require days or weeks to complete a
single simulation. These higher-fidelity simulations play a crucial role
in refining, integrating, and validating the initial concept design across
the entire fusion power plant.'’ Making the most efficient use of these

computationally expensive simulations is critical if we wish to acceler-
ate the design of future fusion power plants like STEP.

Our focus here will be on the design of the poloidal field (PF) coil
system, which plays a critical role in controlling the position and shape
of the plasma in both the core and divertor regions of the tokamak."’
In particular, some coils are crucial for managing the vertical stability
of elongated plasmas, such as those in spherical tokamaks, where the
higher elongation can lead to larger vertical instability, risking disrup-
tion without appropriate control.'” By generating poloidal magnetic
fields, the PF coil system ensures the plasma remains in equilibrium,
balancing the inward-facing magnetic forces produced by the coils
against the outward-facing pressure-driven forces generated by the
plasma.”” The design of the system—in terms of the coil positions,
sizes, and shapes—will have a significant impact on plasma perfor-
mance and stability and will therefore need to satisfy a number of com-
peting (and often conflicting) constraints. In the plasma, for example,
constraints are required to ensure X-points form in specific locations
(for stability), strikepoints hit the correct divertor plates (for heat man-
agement), and total current density limits on the PF coils are not
exceeded. In terms of the tokamak itself, the locations/sizes of the coils
will inevitably be constrained by the vacuum vessel, diagnostic systems,
and maintenance ports (to name but a few).
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In addition to constraints, there will be a number of objectives
related to the desired operational plasma conditions that we wish the
chosen coilset to minimize or maximize (depending on the objective).
This could include minimizing the coil size to reduce fabrication, con-
struction, and installation costs or could include minimizing current
flows to reduce power consumption and structural stresses from forces
produced by the coils."* Moreover, we may wish to optimize certain
properties of the plasma in the divertor chambers in order to minimize
heat loads on plasma facing components and improve exhaust perfor-
mance.'™'® Simultaneously satisfying both the objectives and con-
straints will require the solution of a complex optimization problem
that needs to be tackled in a systematic, computationally efficient
manner.

In this paper, we will perform multi-objective Bayesian optimiza-
tion (BO) on an earlier baseline design of the STEP PF coil system.'”
Our aims are to:

(i) design and outline an easy-to-use BO framework, which is
flexible, data efficient (reducing the computational cost of
design), and can yield more optimal designs than obtained
through other exhaustive optimization schemes.

(i) identify a Pareto front, i.e., a set of optimal PF coil locations,
that outperform the baseline for some given objectives and
constraints.

(iii)  motivate more widespread adoption of BO for the in silico
design of interlinked components on future tokamak devices
to save time, minimize financial costs, and improve plasma
performance.

We should stress that this work has not had a direct impact on
the current design of the STEP PF coil system'” and is instead a dem-
onstration of a generalizable BO framework for PF coil system design.
We do wish to highlight, however, that the framework is completely
machine agnostic and can be used with different objectives and con-
straints to the ones we use here. It is the hope that frameworks such as
this will be adopted more regularly within the integrated modeling
codes currently used for tokamak design.

B. Related work

PF coilsets are typically optimized using integrated modeling
codes for tokamak power plant design. A common approach is to force
the PF coils to lie on a contour “rail” that surrounds the core plasma,
reducing the number of degrees of freedom in the optimization prob-
lem."*" Exclusion zones along the rails enforce engineering con-
straints, before nonlinear (non-Bayesian) optimization is performed
with respect to some pre-specified objectives and constraints on the
plasma boundary shape.

While well-established, rail-based methods can restrict the PF
coil design space, often rely on estimated objective function gradients,
and can struggle with multiple competing objectives. They are primar-
ily suited to conventional aspect ratio tokamaks, where PF coil rails are
placed outside (and close to) the toroidal field (TF) coils, sometimes
leading to intersection issues. BO, on the other hand, performs
gradient-free global optimization, can handle diverse constraints, and
uses a surrogate model of the multi-output objective function to intelli-
gently guide function evaluations. This helps balance exploration of
new designs and exploitation of known optimal designs, leading to
high levels of data efficiency.
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Despite these advantages, the adoption and application of BO in
fusion engineering and design has, so far, remained relatively limited.
Brown et al””*' aimed to improve six key properties of the safety
factor profile by using BO on the current profiles in STEP. They also
demonstrate that BO performs better than a genetic algorithm with
the same number of black-box function evaluations (as we will do later
on). Mehta et al.”” use BO to find the parameters such as neutral beam
injection power, plasma current, and plasma elongation in the DIII-D
tokamak that safeguard against disruption during the ramp-down
phase. Similarly, Pusztai et al.”’ use BO to mitigate the impact of dis-
ruptions in ITER by exploring how injected deuterium and neon can
minimize runaway electron currents, transported heat, and quench
time post-disruption. Jarvinen et al.”* also investigate runaway electron
currents using BO as an advanced sampling method to help calibrate
uncertainty and minimize the discrepancy between simulations and
experimental data. For fusion component design, Humphrey et al.””
demonstrate the use of BO to minimize stresses in parametrized diver-
tor monoblocks under fusion conditions. The most relevant work to
ours is that of Nunn et al.,”® who use multi-objective BO to optimize
TF coil shapes to reduce both financial costs and magnetic ripples
(which affect plasma stability and performance). In contrast, our
approach deals with more computationally expensive, failure-prone
plasma equilibrium simulations without analytic objective/constraint
functions, necessitating the use of a classifier alongside the surrogate
model.

The work here is inspired by that of Hudoba et al.,'” in which the
authors seek to optimize the STEP PF coil system by minimizing devi-
ations of key plasma parameters from a baseline scenario (which we
adopt) and coil currents, while maximizing divertor performance met-
rics. Using a free-boundary equilibrium solver, thousands of potential
PF coilsets are sampled and evaluated (in a Monte Carlo-type
approach) before optimal solution sets are identified heuristically. We
aim to provide and fully outline an alternative, much more data effi-
cient, framework for carrying out similar multi-objective optimization
that can return a STEP equilibrium similar to the baseline.

There are also a number of areas in fusion design where BO has
yet to be applied but could potentially offer significant benefits. For
example, parameter scans for optimal magnetic sensor placement, as
explored for TCV”” and SPARC,” could benefit from BO’s sample
efficiency, saving computational resources and time. Similarly, these
benefits ) iotﬂd transfer to existing frameworks for stellarator coil
design.”” !

C. Outline

In Sec. II, we describe the multi-objective BO problem, the
Gaussian process (GP) surrogate model, the classifier scheme, and the
acquisition function required in the BO loop. We follow this in Sec. III
by defining the PF coil design problem in terms of the input space, the
objectives we seek to optimize, and the constraints on the plasma and
the machine. In addition, we describe the simulator used to generate
the plasma equilibria for each PF coilset and define cases in which the
simulator may fail to produce a valid equilibrium (requiring the classi-
fier). The numerical experiments are detailed and presented in Sec. I'V.
To highlight the data efficiency of the BO scheme, we carry out a
number of experiments with a fixed computational budget and
assess performance against alternative optimization methods. In
Sec. V, we discuss our findings, highlight any major advantages and
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disadvantages of the BO framework applied to this problem, and pro-
pose avenues for future work.

Il. MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

BO is a method for performing gradient-free global optimization
of black-box functions, typically utilized when the function is expen-
sive-to-evaluate.”” Practitioners will often want to identify (feasible)
optimal points of the function’s input/output spaces with as few func-
tion evaluations as possible—especially if there is a limited computa-
tional budget.

Here, we are interested in optimizing the nonlinear function
f:UC R?Y— R"™ that takes in a d-dimensional input and returns
I objectives and m constraints. More formally, the aim of multi-objec-
tive BO (I > 1) is to solve

argmin ff, (%), 1)
xel,
f[l+1..1+m]<0‘

where f, , denotes the first k components of f and < denotes a
component-wise less than or equal to comparison.

Given we need to optimize over multiple competing objectives,
problems such as (1) will often involve tradeoffs where improving one
objective may come at the expense of another. The aim is therefore to
seek the set of Pareto optimal solutions P that are not dominated by
any other solutions. A solution x dominates another x’, denoted
x </, if and only if f(x)<f(x') and Jj€ {1,...,1} such that
fi(x) <f;(«/). In short, a solution x dominates " if it is at least as
good in all objectives and strictly better in at least one. Given a dataset

N
D= {(th(xi))}i:l?
consisting of N evaluations of f, the Pareto set for (1) is defined as
P(D) := {x € D|Fx' € Ds.t. &' < x}. (2)

The Pareto front, denoted P, is defined as the image of the
Pareto set, i.e, Py := {f(x)[x € P(D)}. See Ref. 32, Chap. 11.7 for an
illustration of the Pareto front.

A. The Bayesian optimization loop

The key component in BO for identifying feasible and optimal
trade-offs between the objectives is a probabilistic surrogate model,
capable of performing uncertainty-based exploration. This model is
typically trained on some initial dataset by maximizing its marginal
likelihood—more details on this surrogate model are given in Sec. II B.

The first stage in BO (refer to Fig. 1) is to construct this initial
dataset (which we will call D) by taking N samples x € U and evaluat-
ing them all using f. One popular method used is Sobol sampling,”
whereby samples are chosen quasi-randomly with low discrepancy to
achieve approximately uniform coverage of the input space. The num-
ber of samples N chosen/required may depend on the size of d, the
computational budget available, and if parallel processing is available
(for the f evaluations). Note that at this point, while we could use D to
immediately generate a Pareto set P(D), this would almost certainly
be a poor estimate given a lack of data points and that most would
reside in nonoptimal regions of the objective space.

It is worth noting that for many black-box functions such as f,
there will be failure regions of the input space that cannot be evaluated.

ARTICLE pubs.aip.org/aip/pop
@
4
- Evaluate End
Initial n
: black-box at
sampling initial points
Yes
Y
L Terminating
surrogate  |<«——No condition
models met?
BO
loop v
Train failure Optimise Evaluate
region —» acquisition black-box at
classifier function new qutery
poin

FIG. 1. A flow chart illustrating the standard “BO loop” along with an additional failure
region classifier step—see text for more details.

The reasons for failure in our particular setting are discussed further in
Sec. 1T B 5. During construction of the initial dataset, samples that lie
in failure regions may be encountered and so we do not wish to
include these in the dataset. We do, however, wish to learn from these
samples so that we do not encounter similar samples again and there-
fore we train a classifier to predict when this may happen—a similar
approach was taken by Hornsby et al.”* when generating gyrokinetic
simulation datasets for spherical tokamaks. This classifier will be used
within the BO loop, which can be seen in Fig. 1 and is now outlined:

Stage 1: Generate the initial dataset D using the Sobol sampling
scheme.

Stage 2: Train the surrogate model using the dataset D (see Sec.
[ B) to obtain a probabilistic model: f(x)|D. Note that we exclude
failure samples during training as they do not provide any valid
information about the objective or constraint values.

Stage 3: Train the failure region classifier using the generated data
(see Sec. 11 C).

Stage 4: Maximize the acquisition function over the input space to
identify the most “informative” point x* to observe next, given the
current surrogate model (and classifier) f(x*)|D (see Sec. 1 D).
Stage 5: Evaluate f(x*) and add it to the dataset: D :=D
O{(x fx) ).

Stage 6: Check whether the terminating condition is met and if
not, return to Stage 2. In our case, we check whether or not the
maximum number of iterations has been exceeded (to remain
within our computational budget). Other terminating conditions
include stopping once improvements in the acquisition function
are below some threshold or when the objectives are deemed to be
sufficiently optimal.””

B. The Gaussian process surrogate

In BO, the most common type of surrogate used is a Gaussian pro-
cess (GP), which is a probabilistic machine learning model for
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performing inference on the value of a function f : U — R given some
training data—see Ref. 32, Chap. 2. It is characterized by a mean function
m:U— R and a positive semi-definite covariance function k : U
xU — R (with k(-, -) > 0) such that the prior can be defined as

[~ GP(m, k). 3)

The distribution of this prior is the joint distribution of (infi-
nitely) many Gaussian random variables and can be thought of as a
distribution over functions. Therefore, at a finite set of evaluation
points X = {x1, %3, ...} C U, we have that

f(X) ~ N(”» 2)7 (4)

where p = [m(xy),m(x;),...]"
= k(x;,x;) Vi, j € {1,2,...} is the covariance matrix.

Training a GP requires conditioning the prior (3) on the dataset
of known function evaluations D (with outputs standardized to mean
0, standard deviation 1 and the inputs transformed to the unit hyper-
cube) such that we obtain the following posterior distribution:

is the mean vector and [X];

f(X)|D ~ N, ). (5)

This conditioning can be done analytically (see Ref. 32, Chap. 2.2
for formulas for ji and £) and effectively tells the model to assign
higher probability to functions that fit the training data well.

The quality of this posterior distribution (in terms of the mean
accuracy and variance calibration), however, is highly dependent on
the choices made for the functions m and k. A typical choice for the
mean function is m = 0, which assumes no prior knowledge of the
function being modeled and ensures model predictions from (5) are
heavily influenced by the training data. The choice of covariance kernel
is formed via our prior belief in the expected behavior of the true func-
tion being modeled (e.g., nonperiodicity and smoothness). The covari-
ance function used here is the Matérn-(1/2) (or exponential) kernel

k(x;, x;) = o* exp (— M) 7

where || - ||, denotes the Euclidean distance.”® In addition, the parame-
ters £ and o define the input length scale (smaller values produce more
“wiggly” functions) and the function noise (smaller values lead to
lower predictive uncertainty in the function). The covariance kernel
encodes the relationship between input points and the resulting covari-
ance matrix quantifies how a change in one point influences changes
in another across the domain. The hyperparameters ¢ and ¢ are tuned
(for example, using traditional non-Bayesian optimization algorithms)
to produce the best fit to the training data such that the marginal log-
likelihood of the posterior (5) is maximized.

It should be noted that while we have described scalar output
GPs here, in practice we model each output dimension of f using its
own scalar GP. This assumes each output of f is uncorrelated (i.e.,
independent) of one another and means that we require [+ m
“stacked” GPs to model the joint distribution over f. More importantly
for BO, it is crucial that the surrogate model is relatively cheap to train
and evaluate compared to the cost of evaluating f.

C. The classifier

The aim of binary classification is to label each data point in the
input space as either a failure (0) or a nonfailure (1). The probability

pubs.aip.org/aip/pop

that a point x € U is a nonfailure is modeled using a GP over a latent
function, which is then transformed via the logistic function:””
p(non — failure | x) = ﬁ xel. (6)

Using the logistic function transforms the GP from a regression
model (as it is used in Sec. II B) to a classifier by mapping its prediction
into a probability that a point belongs to the nonfailure class.

The GP model with classification now has a Bernoulli likelihood
p(D]f), making the calculation of the posterior distribution p(f|D)
analytically intractable—unlike in (5) where the prior, likelihood, and,
therefore, posterior were all Gaussian [see Ref. 38, Chap. 3.4). To
address this, we approximate the posterior using a variational distribu-
tion g(f|D; ), chosen such that its likelihood g(D|f; 4) is Gaussian—
with 4 parameterizing the new distribution.”” The parameters 4 are
found by maximizing the evidence lower bound

L(4) == Eqeoy.p)[log p(DIF)] - KL{q(f; 4) || p(F)]-

The first term represents the expected log likelihood (observing
the training data given the probability distribution over functions),
while the second term denotes the (non-negative) Kullback-Leibler
divergence between the two distributions. Clearly if the KL divergence
was zero (the distributions were identical), we would be maximizing
over the original (log) Bernoulli likelihood. Once the 4 are found, the
GP can be conditioned on the data (as was shown in Sec. I B) using
the new Gaussian likelihood g(D|f; 1).

In classification, imbalance in the dataset—where one label is sig-
nificantly more prevalent—can create a poor quality classifier. This
results in the classifier being accurate by simply predicting the majority
class, rendering it useless for identifying failure regions. To combat
this, we employ oversampling, which randomly duplicates samples in
the minority class such that both labels are equally represented in the
training dataset.”” As a result, the classifier cannot achieve a high accu-
racy by simply predicting one class and a higher quality model is
produced.

D. The acquisition function

Based on knowledge from the trained GP and classifier, the
acquisition function provides us with a way to estimate how informa-
tive evaluating f at a previously unseen point x € U will be.
Depending on the task at hand, there are many possible choices of
acquisition functions, each tailored to specific objectives. As mentioned
before, the key factor in selecting an appropriate one is that it should
be computationally cheap (compared to f) to evaluate given the surro-
gate model.

Here, we use the expected hypervolume improvement (EHVI)
function, which seeks to quantify the expected increase in the hypervo-
lume of Py when adding a new point to the dataset D."' The hypervo-
lume HV of Py is defined as the [-dimensional integral of the subspace

{y e R'|3p e Prsitp <y},

dominated by Py."
EHVT is particularly suited to multi-objective optimization, as it
effectively balances exploration and exploitation by focusing on
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regions of the search space that are both uncertain and potentially
optimal. The EHVI function ogrrvy : U — R is given by

apnvi(x) = Ef [HV (P U {f(x)}) — HV(Py)],

where Ey is the expectation operator of (5) (with respect to the [ objec-
tives, not the constraints). Recalling that f(x) is a random variable, this
function describes how much additional volume in objective space we
expect to gain by sampling at a new point x, relative to the current
Pareto front. Please refer to Yang et al."” for a more rigorous treatment
of this material.

As mentioned before, we have both constraints on the function f
and failure regions in the input space. To this end, we define the proba-
bility of feasibility as

g(x) = p(non — failure|x) H P(firi(x) <0),

i=1,....m

where f, to fi;, are the GP models of the m constraint functions and
p(non — failure|x) is the classification model (6) This measures the
joint probability that a given point in the input space is feasible
(respects all of the constraints) and is not a failure.

Using this probability, we can then define a constrained acquisi-
tion function (ECHVI)

opcryi(x) = {aEHVI(x) -g(x) ifg(x) > A, o

0, otherwise,

which weights opgyv by g and enforces a cutoff threshold*”**

(here we use 2 = 0.5). This ensures that samples with a probabil-
ity of feasibility less than A are excluded from consideration,
while those with probabilities higher are more likely to be
selected during the optimization than those with lower probabil-
ity (but still above ). We also note that agyy; must be calculated
with respect to the hypervolume of the feasible Pareto frontier by
excluding infeasible points from the dataset.

To find the next most informative sample, we use single-objective
(non-Bayesian) optimization to find the point that maximizes ogcpvi

x" = argmax agcuvi(x).
xell
This is done using the L-BFGS-B"” algorithm, which makes use
of multiple restarts to avoid local maxima and avoid the discontinuity
in ogcuvi. Once found, x* is evaluated using f and added to the
dataset D.

11l. THE POLOIDAL FIELD COIL DESIGN PROBLEM

The PF coil design problem described here is concerned with
identifying the set of PF coil positions that will optimize some aspects
of both cost and performance of a STEP-like tokamak, subject to strict
design and engineering requirements. In this section, we will describe
the inputs, objectives, and constraints required to formulate the opti-
mization problem as well as the underlying STEP baseline design and
the simulator required to calculate plasma equilibria. Throughout, we
will be working within a cylindrical coordinate system (R, ¢, Z) which
denotes the major radius, the toroidal direction (into the page), and
the height, respectively.
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Height [m]

Radius [m]
— Separatrix # X-Point
== First Wall Inner Strike
Plate
Outer Strike ____ Permissible
Plate Zone
=== PF Coil * |soflux constraint

FIG. 2. The baseline setup from Hudoba et al.'” in the RZ plane (due to vertical
symmetry about Z = 0 only the top half of the tokamak is shown). The separatrix
(red) outlines the shape of the plasma core and the divertor legs which hit the inner
(green) and outer (blue) strike plates. The initial location of the seven PF cails (gray
rectangles) are displayed within their respective permissible zones (red rectangles).
Note the absence of the central solenoid, which is not used in the flat-top phase of
operation shown here. The isoflux constraints (black crosses) define locations at
which the separatrix should pass through.

A. The STEP baseline design

We will be working with the initial PF coil setup and limiter
geometry from the baseline STEP design presented by Hudoba et al."”
The design is shown in Fig. 2, and the information available to us from
the baseline dataset is as follows:

* Names, centroid positions (R, Z°), and half width/heights
(dR, dZ) of the PF coils.

* Permissible zones for each PF coil, i.e., the region of the RZ-plane
in which each coil can be placed without intersecting the TF coils,
diagnostic systems, or other parts of the tokamak.

* Limiter contour that confines the plasma equilibrium. This was

constructed using the strike plate locations and made to match

the geometry illustrated in Tholerus et al.*®

Strike plate locations, i.e., segments of the limiter in the inner and

outer divertor where the legs of the plasma separatrix will strike.

Separatrix of the plasma equilibrium, the X-points, and the

strikepoints.

Plasma pressure and toroidal magnetic field profiles required to

solve for the equilibrium.
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B. Optimization problem

The mathematical formulation of the PF coil optimization prob-
lem requires stacked scalar inputs, objectives, and constraints so that
we can map a vector of PF coil positions to a vector of objective/con-
straint values.

1. Input space

As can be seen in Fig. 2, there are seven up-down symmetric
(around Z = 0) PF coil circuits each with their own (R, Z¢) centroid
coordinate that is allowed to move freely such that no part of the coil
leaves the permissible zone. The exceptions are the two quasi-solenoid
(QS) coils, positioned above (and below) the central solenoid for mag-
netic shaping in the inner divertor, which are only able to move verti-
cally. This results in a twelve dimensional input space for the
optimization problem: five pairs of (R°, Z¢) coordinates for the PF coils
and one Z¢ coordinate for each of the two QS coils. We normalize each
of the coordinates with respect to their own permissible zones so that
we can work with the unit hypercube [0, 1]'* as our input space. A
more detailed explanation of the normalization process can be found
in Appendix.

2. Objectives

In this problem, we consider two scalar objective functions that
we wish to optimize with multi-objective BO—though we should note
that nothing prevents us from adding more objectives.

The first objective is to minimize the volumetric sum of the PF
coils. This is important as smaller coils require less physical material
and therefore weigh less, making the fabrication, transportation, and
installation process less arduous and costly. Recall, each PF coil is
modeled as a rectangle in the RZ-plane and as an annulus in the
R¢-plane. The total volume of the seven PF coils (upper and lower
components inclusive) can therefore be defined as

14
V=8n» RdRdZ, ®)

i=1

where the coil index i = 1, ...,7 for upper and i = 8, ..., 14 for lower
coils. It is important to note that the PF coils do not change shape in
the poloidal plane (i.e., cross-sectional areas are fixed, equal to 4dRdZ)
and so the volume of each coil will change only when its central radial
position R° changes.

The second objective is to maximize the average of the inner con-
nection length (ICL) and the outer connection length (OCL). The con-
nection length is the distance traced out by a helical (i.e., moving both
poloidally and toroidally) magnetic field line that starts at the inner
(outer) edge of the last closed flux surface (LCFS) at the midplane and
ends at the inner (outer) s'[rikepoint.'l’ﬁ"m We refer to these inner and
outer midplane points as the IMP and OMP, respectively. Larger con-
nection lengths ensure that hot plasma leaving the core edge region
will travel a farther distance and therefore cool to more acceptable
temperatures before hitting the strike plate. This is an important aspect
of managing heat loads in the divertor region.

The ICL and OCL are calculated by carrying out an integral over
the length of the magnetic field line of interest.”’ Tracing the magnetic
field line requires the solution of a system of ordinary differential

pubs.aip.org/aip/pop

equations (ODEs) for the position vector of a point along the field line
trajectory r(¢),

dr(f)
T b(r(¢)), ¢e€]o,L], 9)

where b is a unit vector along the direction of the magnetic field
B in cylindrical coordinates

10y(R, Z)
"R 0z

B(r(0)) = F('/’(II:’Z)),
10y(R,Z)
R OR

Here, (R, Z) denotes the scalar poloidal magnetic flux and F the
toroidal magnetic field profile. To solve this problem, we use a fourth-
order Runge-Kutta method (with appropriately chosen step size Af)
and integrate until a terminating condition is met (see next paragraph),
recording the value of L obtained (i.e., the total number of steps A/).

In practice, however, the calculation is split into two stages. The
first stage involves integrating from an initial position #(0), which is
selected to be 3mm radially outside the IMP/OMP and ending at
some very small distance away from the upper X-point. The second
stage integrates between the inner/outer strikepoint and the point close
to the upper X-point. The length of these individual sections is then
combined to return the final connection length. The two flux surfaces
traced out when calculating the ICL and OCL are visualized in Fig. 3.
These techniques reduce the likelihood of the integrator getting stuck
at the exact X-point, traveling around the LCFS (instead of going up
into a divertor), and from traveling into the wrong divertor.

3. Constraints

In addition to the objectives, we also have a number of design
and engineering constraints that need to be satisfied so that each PF
coilset considered in the BO loop produces an equilibrium with key
targets that are similar to the baseline equilibrium and does not violate
coil current limits. The bounds of the constraints are summarized in
Table L.

The first constraint is on the shape of the LCES, which is defined
as the contour of (R, Z) points that pass through the X-point closest to
the magnetic axis—recall Fig. 2. We denote this region of the RZ-plane
as Q, and quantify the difference between two different regions using

QU — QN
(@, Q) = € [0,1],
e Q| + 1]

where | - | denotes the cross-sectional area of a region in the poloidal
plane.” This parameter quantifies the ratio of the total nonoverlap-
ping areas and the sum of the two areas. Placing an upper limit on
this ratio enables us to constrain the LCFS shape of the new equilib-
rium (QIZ,) to be similar to that of the baseline (Q;,). This helps to
ensure the new equilibrium has similar core performance to the
baseline.

The second and third constraints place an upper limit on the dis-
tance between the strikepoints (i.e., where the separatrix first intersects
the limiter geometry at some location) and the center of the strike
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— Separatrix # X-Point
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to X-point
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to X-point to X-point
FL outer strike Inner Strike
to X-point Point
% Outer Strike
Point

FIG. 3. The baseline setup from Fig. 2, this time marked with objective and con-
straint quantities. Shown are the separatrix (light pink), the upper X-point (red
cross), and the inner (green star) and outer (red star) strikepoints. Also shown are
the flux surfaces traced out to calculate the ICL (blue plus red lines) and OCL (yel-
low plus green lines).

plates. In rare cases, an equilibrium may have a separatrix that inter-
sects the limiter multiple times on the same plate; hence, we need to
account for that. The bound is half of the length of the strike plate,
with one constraint on each of the inner and outer strike plates.

The fourth constraint will place an upper limit on the distance
between the two X-point locations when mirrored about Z = 0. This

TABLE |. Constraint bounds enforced on the equilibria generated by FreeGS for a
particular PF coilset.

Constraint Bound (unit)
LCES area ratio < 0.012
Outer strike distance < 0.14 (m)
Inner strike distance < 0.32 (m)
X-point distance < 0.01 (m)

Maximum current density < 100 (MA/m?)

ARTICLE
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distance should be minimal in a double-null plasma scenario as con-
sidered here. See Fig. 3 for the strikepoint and X-point locations.
The final constraint ensures the maximum current density

. 1 I
x — 7 MaX ————,
ma 4icf1..71dR;dZ;

in the PF coilset remains below the engineering limit defined in
Nasr et al.'® Here, I; denotes the coil current and the denominator is
the coil area. This limits stresses in the PF coil structures and helps
avoid quench events—a sudden loss of superconductivity, which can
damage the coils.”

4. Equilibrium simulator

In order to calculate the aforementioned objective functions and
evaluate whether or not the constraints have been met, we need a sim-
ulator that is able to generate a plasma equilibrium using the STEP
baseline design and a given PF coilset. For this we use FreeGS, a free-
boundary static inverse equilibrium solver.”” FreeGS will return a
plasma equilibrium (in terms of the poloidal flux) and the PF coil cur-
rents required to generate it. It uses an optimization routine to identify
the coil currents with respect to some constraints on the chosen
plasma shape and a Picard iteration scheme to solve the free-boundary
Grad-Shafranov problem.””" The required inputs to solve the equilib-
rium problem are as follows:

* The STEP baseline parameters and a PF coilset (permissible
zones not required).

* Two X-point locations, one at (RX, ZX) and the other mirrored at
(RX, —ZX) (as we required an up-down symmetric double-null
configuration like the baseline equilibrium).

* 23 isoflux constraints that link poloidal flux values on the core
plasma boundary to the X-points and the divertor regions (i.e.,
constraints that ensure the poloidal flux (R, Z) at two different
locations (R;, Z;) and (R;, Z,) are the same).

Given these inputs, FreeGS will return the coil currents in the PF
coils required to generate an equilibrium that (closely) matches the
one provided in the baseline. From this equilibrium, we can then cal-
culate the values of the objectives and the constraints. From time to
time, however, the simulator may fail to converge on a physically
“valid” equilibrium, returning spurious objective and constraint values.
This could be for a number of reasons such as solver instability or a
physically incompatible PF coilset. This requires care and will be dis-
cussed in Sec. ITI B 5.

5. Failure regions

The equilibrium simulator will either (in rare cases) fail to con-
verge or stop once the relative difference between the poloidal flux at
successive iterations is below some tolerance threshold (returning an
equilibrium solution). This stopping criteria does not, however, con-
sider the physical validity of the equilibrium identified. In some cases,
nonphysical equilibria that do not satisfy the X-point and isoflux con-
straints may be returned. In other cases, we may have an equilibrium
for which we either cannot calculate the objectives/constraints or
which return spurious objective/constraint values. The regions of the
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FIG. 4. Two examples of invalid equilibria returned by “converged” FreeGS simula-
tions with different PF coilsets.

input space for which nonphysical (invalid) equilibria are returned (or
if the simulator outright fails) will be referred to as failure regions.

In Fig. 4, we illustrate two cases of invalid equilibria returned by
FreeGS. The left panel shows a single-null equilibrium with the LCFS
intersecting the limiter in the core region. The right panel depicts an
equilibrium in which both X-points have formed inside the divertor
regions, far from the desired locations in the core, resulting in the
LCES again intersecting the limiter. This is problematic when calculat-
ing the ICL, as this calculation assumes the LCFS does not intersect the
limiter geometry until hitting the strikeplate, resulting in an unfeasibly
small ICL value. Calculations for both the ICL/OCL and the strike dis-
tances are spurious in this case.

To mitigate these issues, we can classify (recall Sec. IT C) whether
an equilibrium is valid by checking the following conditions:

1. the X-points (RX, Z¥) and (R*, —Z*) must be to within 10 cm of
the limiter boundary with R* € [2.2,3].
2. the LCFS does not intersect the limiter.”

By actively avoiding sampling the PF coilsets where the simulator
fails or produces such invalid equilibria (via the classifier), we can
avoid wasting computational resources on solutions that do not pro-
vide any useful information to the BO loop.

IV. NUMERICAL EXPERIMENTS

In this section, we will perform the design optimization of the PF
coil set problem. The first experiment will use multi-objective BO to
find several Pareto optimal PF coilsets that respect the engineering and
design constraints in Sec. III B. We analyze two of the Pareto optimal
solutions in more detail, highlighting how the BO explores the solution
space while respecting the trade-off between the objective functions.
To further illustrate the data efficiency of the BO, we compare its per-
formance against two other optimization methods (simple Sobol

ARTICLE pubs.aip.org/aip/pop

sampling and a genetic algorithm) when using both identical and
larger computational budgets.

To generate these results, we use the Trieste package, which
provides the software implementations for Sobol sampling, acquisition
functions, and Gaussian processes (via GPflow™) Pygmon provides
the genetic algorithm which we will use for benchmarking. When eval-
uating the Sobol samples with FreeGS,”” we make use of the CSD3
HPC cluster (see Acknowledgements) and the Simvue platform(’” to
monitor simulation progress and store the objective/constraint data.

56,57

A. Stand-alone BO

In this experiment, we will limit ourselves to 128 evaluations
of f: 64 Sobol samples to build the initial dataset and 64 sequential
BO samples to intelligently explore the objective space and identify
feasible optimal points.

In Table II, we display the proportions of each sampling set that
result in feasible, infeasible (violating one or more constraints), and
failed (invalid) PF coilsets. We can see that only 10% of the Sobol sam-
ples provide feasible designs and that once the BO loop begins run-
ning, we accumulate a much larger proportion of feasible designs with
fewer failures. This shows that the GPs can accurately model the con-
straint responses and the acquisition function uses this to propose fea-
sible samples.

The drop in failure region samples likely results from a combina-
tion of explicit classifier intervention and the scarcity of optimal samples
near these regions, making them less likely to be chosen by the acquisi-
tion function. The classifier has a precision of 0.82, meaning 82% of the
area included in the acquisition maximization (by zeroing the ECHVI
in these regions) is indeed nonfailing, reducing waste of computational
resources by potentially sampling failing points. A recall of 0.86 shows
that only 14% of the nonfailure region is incorrectly avoided by the clas-
sifier; it is more important that this percentage is low because Pareto
optimal solutions could exist here but would be missed.

The BO loop successfully identifies the Pareto front (see Fig. 5),
capturing the trade-off between the volumetric sum (8) and the aver-
age connection length [recall (9)]. Generally, the latter BO iterations
produce samples that dominate earlier samples, highlighting how BO
learns from new data and exploits its new understanding of the func-
tions to produce higher-quality samples.

During the initial BO iterations, the data are sparse, resulting in
highly uncertain and inaccurate GPs. As a result, the exact location of
the feasible regions is unclear and, as it explores for the first 20 itera-
tions, the BO produces few feasible samples—see Fig. 6. Following this
initial exploration, 30 iterations of exploitation takes place, where BO
reliably produces feasible samples (those seen in Fig. 5). The final 20
iterations yield no feasible samples, indicating a return to exploration
and suggesting there is little scope to find feasible optimal solutions
around the current Pareto optimal points.

TABLE II. The number (and percentage) of samples from each sampling method
that lie in failure, infeasible, or feasible regions.
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Sobol 23 (36%) 31 (48%) 10 (16%) 64

BO 4(6%) 37 (58%) 23 (36%) 64
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FIG. 6. The total number of feasible BO samples at the end of each BO iteration.

TABLE lll. The objectives and constraint values (to three significant figures) for the
baseline and two of the Pareto optimal solutions shown in Fig. 7. Also shown are the
inner and outer line-averaged poloidal magnetic field readings.

Objective/constraint Baseline ~ Sample 110 Sample 71
V (m?) 86.5 77.6 85.1
ICL (m) 96.5 96.9 108
OCL (m) 67.1 70.3 71.8
LCEFS area ratio 0.0108 0.0117 0.0103
Outer strike distance (m) 0.0934 0.0957 0.0962
Inner strike distance (m) 0.0297 0.0233 0.0305
X-point distance (m) 0.000374 0.00394 0.000919
Jmax (MA/m?) 71.4 82.4 98.8
Inner (B,) (T) 0.414 0.413 0.373
Outer (B,) (T) 0.552 0.537 0.530
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FIG. 7. The PF coilsets and corresponding separatrices for the baseline (pink) and
two of the Pareto optimal equilibria: sample 71 (blue) and 110 (green) of the simula-
tor (corresponding to samples from the 7th and 46th BO iteration, respectively).

In Table III, we display the objective/constraint values obtained
from the baseline and two of the Pareto optimal PF coil sets shown in
Fig. 7, with both samples obtained during the BO iterations. The 71st
sample yields the highest average connection length while the 110th
sample has the joint lowest volumetric sum (of these tied samples, it
has the higher connection length). The first three rows of the table
show the objective quantities for both samples while the intermediate
five rows show the constraint values.

The objective values of the baseline (and its location in Fig. 5) rela-
tive to the Pareto optimal samples demonstrate that BO is able to
improve the PF coilset design significantly. At a minimum, BO has
yielded a reduction of V by 1.4m> and an increase in average connec-
tion length of 1.8m over the baseline; this is not insignificant consider-
ing the low computational budget to achieve these gains. The
constraints show that samples 110 and 71 are close to the constraint
bounds for the LCFS shape and maximum coil current density, respec-
tively. This could indicate that further optimization of these samples
(and other Pareto optimal samples) is not possible without violating the
constraints, hence the lack of feasible samples in the final BO iterations.

It is clear from Fig. 7 that the 110th sample has a smaller volumetric
sum because PF coils 2, 3, 4, and 5 are closer to the device centerline
(R = 0). However, the difference in average connection length is less
obvious because the separatrices look (qualitatively, at least) very similar.
The lower connection length in sample 110 results from a higher poloi-
dal field, causing particles traveling from the midplane into the divertors
to move faster, decreasing the number of times (and thus the distance)
they orbit the tokamak toroidally. This can be seen in the final two rows
of Fig. 7, which shows the line-averaged poloidal magnetic field (B,)
along the inner and outer connection length field lines, respectively.

B. Comparison between BO, Sobol sampling,
and a genetic algorithm

Next, we compare the BO scheme against two other multi-
objective optimization methods. The first method we compare against
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uses quasi-Monte Carlo sampling via the Sobol method, essentially
relying on random chance to sample feasible and optimal coilsets. The
second method will use a genetic algorithm, specifically the “Non-
Dominated Sorting Genetic Algorithm 2” (NSGA-II).°" NSGA-II, like
all genetic algorithms, operates on the principle that combining the
inputs of well-performing individuals within a population can produce
offspring (new samples) that inherit characteristics from its parents
and therefore may perform similarly or better. Starting with an initial
population (in our case, Sobol samples), the algorithm generates addi-
tional samples through iterative recombination and mutation (apply-
ing slight random changes to the inputs), therefore introducing
variation to explore the solution space.”” Constraints are handled by
penalizing the objectives according to the number of violated con-
straints.”” Similarly, the failure region is handled by returning large
constants for the objectives, artificially making the sample appear very
nonoptimal.

We run six additional experiments with each of these methods,
the results of which are presented in Table V. The first three (II, III,
and IV) use the same computational budget as the BO experiment (I)
from Sec. IV A, while the final three (V, VI, and VII) have a budget
that is 8 x larger.

Four of the experiments contain results for the NSGA-II genetic
algorithm. For each budget, we include an NSGA-II experiment with
the same initial population (64 samples) as experiment I (experiments
I and VI) and another with a lower initial population (experiments
IV and VII) but with the ability to run over more generations. In both
cases, the experiments using a lower initial population size (IV and
VII) outperform their counterparts with larger initial population sizes.
This is because they are able to explore the solution space more widely
(using more iterations), thus generating more feasible solutions and
making incremental progress each generation toward the Pareto fron-
tier. This can be seen by the higher percentage of feasible solutions
sampled by these experiments compared to the others. For the remain-
ing analysis, we will compare only these best performing NSGA-II
experiments (IV and VII) against the Sobol sampling and BO.

From the results, we can see that experiment I produces better
samples than both II and IV with a hypervolume at least 20% larger.
Recall that a larger hypervolume indicates a feasible objective space
with better trade-offs that are further from the (anti-optimal) reference
point—the feasible solutions are shown in the objective space in Fig. 8.

TABLE IV. The hypervolume of the feasible solution set and the percentage of total
samples taken that were feasible for each of the experiments run. Here, we compare
the 64 Sobol + 64 BO experiment from Sec. |\ A with pure Sobol sampling and the
NSGA-II algorithm, each with the same number of samples (128). We also display
Sobol and NSGA-Il experiments that use 8x the number of samples (1024). All
hypervolumes are calculated with respect to the same reference point.

Experiment HV Feasible
I 64 Sobol + 64 BO 1990.9 26%
11 128 Sobol 1626.6 18%
III 64 Sobol + 64 NSGA-II 1544.2 16%
v 8 Sobol + 120 NSGA-II 1659.2 49%
\% 1024 Sobol 1711.5 13%
VI 64 Sobol + 960 NSGA-II 1713.6 23%
VII 32 Sobol + 992 NSGA-II 1820.3 64%
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and IV (green) in Table |V. Pareto optimal solutions are denoted with a star and
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The genetic algorithm finds the most feasible samples, outperforming
BO by nearly 2 x. However, the hypervolume of experiment IV indi-
cates few of these feasible samples offer any improvement over even
quasi-random samples. This illustrates how the BO performs signifi-
cantly better than the Sobol sampling and the genetic algorithm at
finding Pareto optimal PF coilsets. Genetic algorithms find the most
feasible PF coilsets; however, all of the samples are of significantly
lower quality than those from BO.

BO continues to outperform Sobol sampling and the genetic algo-
rithm even when we increase their computational budgets to 1024
samples. While the hypervolume returned in experiments V and VII
are larger compared to those in II and IV (as expected), they still can-
not reach the level achieved by the BO (with 1/8 th of the data). In
Fig. 9, we again see the majority of Pareto optimal samples coming
from the BO with a few being found by the genetic algorithm, with BO
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FIG. 9. Feasible solutions in the objective space for experiments | (red), V (blue),
and VII (green) in Table |V. Pareto optimal solutions are denoted with a star and
dominated solutions with a circle.
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finding the best samples in each objective (the samples that optimize
the marginals of the objective space). The vast majority of samples
taken by the alternative methods are, however, dominated by others
from the BO. Again, genetic algorithms find the most feasible samples;
however, they form a front that underperforms that of BO, particularly
in the volumetric sum.

V. DISCUSSION AND OUTLOOK

In this paper, we have demonstrated that BO can successfully
identify a set of Pareto optimal PF coilsets in a spherical tokamak.
Using underlying probabilistic models, it learns the trade-off between
the volume of the PF coilset (i.e., the financial cost) and the average
connection length produced by the corresponding equilibrium state,
simultaneously respecting several physical plasma and engineering
constraints. Compared to some existing optimization methods, quasi-
Monte Carlo (Sobol) sampling, and a genetic algorithm (NSGA-II),
BO identifies better solutions while using a significantly smaller com-
putational budget, highlighting its effectiveness and data efficiency.
Overall, the successful application of BO to a complex tokamak design
problem should reinforce its suitability for future fusion power plant
design challenges, particularly given the increasing reliance on high-
fidelity, high-runtime HPC codes where data efficiency is critical.

The relatively poor performance of the Sobol sampling is expected
and can likely be attributed to its sparse quasi-uniform coverage of the
sample space. While uniform coverage is good for exploring high-
dimensional spaces and training emulators (such as the one in our BO
loop), the Sobol scheme lacks the ability to hone in on more desirable
regions given it is forced to sample inputs within uniformly spaced par-
titions of the space. NSGA-II outperforms Sobol sampling, especially
when both are afforded moderately high computational budgets, how-
ever, has an underwhelming performance against BO. While it excels at
finding feasible samples, NSGA-II fails to find samples dominant over
BO, even with a significantly higher computational budget. This is likely
because the genetic algorithm favors sampling feasible points instead of
exploring toward the feasible boundary and potentially finding a more
optimal sample—the cost of infeasibility does not outweigh the reward
of slight improvements in the objectives. It is possible more advanced
treatments of the constraints”* would improve the genetic algorithm’s
performance and allow it to explore closer to the feasible boundary,
however, that is beyond the scope of this work.

To increase the applicability and extend this BO framework to
ongoing and future PF coil design projects, a number of avenues of
future work can be considered. For example, incorporating additional
objectives and constraints should be a trivial task and could be used to
help find coilsets that further improve performance. For example, one
could try to maximize flux expansion to improve divertor performance
or include PF coil shaping (in the input space) to try to extract further
financial cost savings. While this would increase the dimensionality of
the BO problem, the current framework can be readily adapted to sup-
port this via dimensionality reduction techniques.”” *’
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APPENDIX: COIL LOCATION NORMALIZATION

Here, we outline how to normalize the centroid coordinates of
each PF coil with respect to its permissible zone. First, define
the lower left and upper right corners of each permissible zone as
Vi = (Rmin, Zmin) and V3 = (Rumax, Zmax)> respectively. Given each
coil must entirely reside within its permissible zone, we know that
the centroid must remain within a half-thickness of the permissible
zone

(R, Z°) € [Rin + dR, Rppay — dR]
X [Zmin + dZ, Zmax - dZ]

We can then obtain the normalized centroid coordinates (with
respect to the permissible zone) by defining

. R — (Ruin + dR)

R = 0,1
(Rome —dR) — (R + dR) & (01

. 7 — (Zum 4 42)

7 = 0, 1].
o —42) — (Zom +a2) < 01

An illustration of a PF coil and its permissible zone are shown
in Fig. 10.

Phys. Plasmas 32, 072507 (2025); doi: 10.1063/5.0272085
© Author(s) 2025

32, 072507-11

00:S¥'€} 20T 1890100 /L2


mailto:PublicationsManager@ukaea.uk
http://www.csd3.cam.ac.uk
http://www.dirac.ac.uk
pubs.aip.org/aip/php

Physics of Plasmas

Permissible
10 Zone
=== PF Coil
8
E
= 6
=L
.50
[
T 4
2
V4 V,
0
0 2 4 6 8 10 12
Radius [m]

FIG. 10. lllustration of a rectangular PF (dark gray), with its centroid and half-width/
height marked, and its permissible zone (red), with corner vertices marked.
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