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On Monitoring Tearing Modes Stability in
Toroidally Rotating Tokamak Equilibria

Enzo Lazzaro , Luca Bonalumi, Silvana Nowak, and Daniele Brunetti

Abstract— In tokamak operation, the control of dangerous
MHD instabilities, possibly in real-time scenarios, must rely on
prompt robust diagnostics of the state and stability of the system.
The set of magnetic signals measured on the outside of the plasma
boundary, based on the Zakharov–Shafranov, Shkarowsky,
Wootton (ZSSW) current moments, has been always used for
reliable monitoring of key characteristics of the instantaneous
equilibrium condition, such as the quantities �Sh, the Shafranov
centroid shift, β p related to the thermal energy content, and li

related to the current profile peakedness. In addition, the fast
pickup coils monitor the external magnetic field fluctuations due
to internal MHD activity, however, without the possibility of
radial localization of the source. Here, we explore the potential
usefulness of more complete use of ZSSW moments in association
with the information from fast B perturbation signals to detect
tearing stability conditions. For clarity, we set up an analysis
of the measurable response to tearing perturbations based on
an exact equilibrium model, which is an extension of the
Solov’ev case with the addition of an equilibrium, nonuniform
plasma rotation �(ψ). The relation of the selected (externally
measurable) ZSSW moments to the calculated stability index
is mapped for different rotation values. The footprint of the
stability condition �′ < 0 on some current moments on the
outer surface can then identify stability boundaries for different
rotation conditions. This first discussion on an idealized exact
model is proposed for testing the concept for application to
realistic equilibria since it relies on a few externally monitorable
quantities and very basic assumptions on the tearing modes
physics.

Index Terms— Bayes observer, current moments, tearing
modes, tokamak.

I. INTRODUCTION

THIS work offers a contribution to the question of robust
identification of some tokamak magnetic instabilities,

which is crucial for the successful operation of the fusion
oriented devices. Although the argument is based on
well-known and well-developed physics, it is helpful for the
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reader to start with a nonpedantic concise summary of the
relevant equilibrium conditions and a basic description of the
tearing instability considered. In Section II, the notation is
established, and a general tokamak equilibrium equation is
derived a-new, including a steady rotation. Section III contains
the explicit solution of Solov’ev type and its transformation
to a parametric representation that allows easy construction
of the metrics and identification of physical and geometric
properties. In Section IV, the specific reconnection process
at rational surfaces is succinctly described, focusing on the
specific toroidal metrics effects on the current perturbation
giving rise to the instability. The crucial argument on the
scaling of the source of the instability is introduced and
discussed. On this basis, in Section V, the concept of external
magnetic measurements is revisited and extended; the solution
of the homogeneous Grad–Shafranov equation in spherical
coordinates is recalled to generate Zakharov–Shafranov,
Shkarowsky, Wootton (ZSSW) [5] current moments; and
the relation of generalized (externally measurable) ZSSW
moments to the calculated stability index �� is mapped
for different rotation values. The footprint of the stability
condition �� < 0 on some current moments on the outer
surface [5], [14] can then identify stability boundaries, for
different rotation conditions. The simplicity of the physical
assumptions is believed to constitute a ground model that
can be improved but not contradicted by more complete
descriptions of the inner profiles. In Section VI, a Bayesian
inference approach is used to test the theoretical detectability
of the relevant information amidst the other measurements.
In the conclusions, this first example based on an idealized
analytical model is proposed for testing the method in view
of application to realistic equilibria since it relies on few
externally monitorable quantities and very basic assumptions
on the T. M. physics.

II. BASIC EQUILIBRIUM FRAMEWORK

The purpose of this work is to explore and eventually
propose an extended use of the magnetic measurements taken
outside the last closed magnetic surface (LCMS) of a tokamak
to contribute to the means of continuous monitoring of the
stability conditions of the configuration relative, in a first
instance, to tearing perturbations. In order to set up the
problem as clearly as possible, we find it convenient to choose
as a demonstrative playground the geometry of the simplest,
albeit not fully realistic, tokamak equilibrium, namely,
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a variant of the Solov’ev type [1], [2]. In particular, we first
rederive a solution of the Grad–Shafranov equation, including
in the equilibrium a nonuniform toroidal rotation, and cast the
solution in the inverse coordinate parametric representation
that highlights simply the geometric characteristics of the
configuration. The first step is to consider the steady-state,
incompressible single-fluid MHD equations

ρ(v · ∇v) = J × B − ∇p (1)

−∇�+ v × B = 0 (2)

∇ · (ρv) = 0 (3)

where the second equation represents Ohm’s law, with �
being the electrostatic potential. Due to axisymmetry and the
incompressibility condition, the B field and the mass density
flow can be written in the Clebsch notation as

B = T ∇φ + ∇φ × ∇ψ (4)

ρv = �∇φ + ∇φ × ∇F (5)

where T, F,�,� are all functions of the poloidal flux
ψ(R, Z) and, therefore, are constant on magnetic surfaces.
Using expressions (4) and (5) in (2), with straightforward
algebra, one obtains

�� = 1

ρR2
[T F � −�]. (6)

The projection of the momentum balance equation (2) along
the ∇φ-direction yields another surface quantity, from which
a final expression for the flow velocity follows:

X (ψ) = T

(
1 − (F �)2

ρ

)
+ R2 F ��� (7)

v = F �

ρ
B − R2��∇φ. (8)

The projection of the momentum balance equation (1) along
B vanishes, and (6) and (8) yield the following relations:

B ·
[

1

2
(∇v2)+ ��

ρ
(F �T −��ρR2)+ ∇ p

ρ

]
= 0. (9)

Finally, (9) can be rewritten, using (6), as a generalized
Bernoulli equation

B · ∇
[

p + ρ

(
v2

2
+���

ρ

)]
= 0. (10)

The quantity Ps(ψ) = p + ρ((v2/2)+��(�/ρ)) is a surface
function; it is convenient to introduce the poloidal Mach
number M2 ≡ (v2

p/v
2
A) = ((F �)2/ρ) and write the projection

of the momentum balance equation in the ∇ψ direction,
obtaining the Grad–Shafranov equation generalized with the
presence of a stationary toroidal plasma velocity vφ = �/Rρ

(1 − M2)�∗ ψ − (M2)�

2
|∇ψ|2 + 1

2

(
X2

1 − M2

)�

+ R2

(
Ps − X F ���

1 − M2

)�
+ R4

2

(
ρ(��)2

1 − M2

)�
= 0. (11)

The Beltrami operator is explicitly �∗ψ = (∂2ψ/∂R2) −
(2/R)(dψ/d R) + (∂2ψ/∂Z 2). In the absence of equilibrium

flow, the Grad–Shafranov equation and the toroidal current
density are

�∗ψ = −μ0 R Jφ Jφ = R
dp

dψ
+ T

2πμ0 R

dT

dψ
. (12)

In the following, we shall consider just the subsonic cases
M2 � 1 for which (11) remains elliptic. Comparison of (11)
and (12) in the subsonic range leads to identify the current
density in the presence of rotation

Jφ = − 1

2μ0 R
(X2)� + R(Ps − X F ���)� + R3

2
(ρ(��)2)�. (13)

A. Paradigmatic Case With Exact Solution

In this section, (13) and (11) will be simplified choosing
particular profiles. Although they might not picture a realistic
situation, they provide a clear insight into the role and effects
of the configuration geometry. In the following, we shall
be concerned with external measurements that are generally
considered rather “blind” to the internal features, but we can
show that even the coarse description used can provide general
conclusions. Noting that X → T and choosing

F � = 0 (14)

T = const (15)

ω(ψ) = �(ψ)

ρR2
= −��(ψ) (16)

p = p0

(
1 − ψ

ψb

)
(17)

ρω2 = �0

(
1 − ψ

ψb

)
(18)

� = μ0�0/2ψb (19)

P0 = μ0 p0/ψb (20)

where [P0] = [μ0 Jl−1] and [� = μ0�0/2ψb] =
[μ0l−5qt−1 ≈ μ0 Jl−3] labels the rotation effect on the current
density; (12) becomes

�∗ψ = −R2 P0 − R4�. (21)

Following the classical procedure by Solov’ev [1], an exact
solution is obtained in the form:

ψ(R, Z) = c0 R2 Z 2 + k
(
R2 − R2

0

)2 + αRβ . (22)

After further dedimensionalization of (21), the coefficients and
the final form of the solution are obtained, assigning boundary
conditions ψ = ψb = 4k R2

0r2
b , going through the points r =

rb, Z = Zs = Z(rb, π/2) and vanishing on the magnetic axis.
With k = ((Zs(μ0 p0)

1/2)/(4R0 rb(2(Z 2
s + r2

b ))
1/2)) and c0 =

(8r2
b/Z 2

s )k, one gets

ψ(R, Z) = c0 R2 Z 2 + k
(
R2 − R2

0

)2 + �

24
R6 − ψax . (23)

The last constant makes the flux vanish at the magnetic
axis and is ψax = (�/24)R6

0 − (�2/256k)R8
0 . The poloidal

Bθ field in rectified flux coordinates (r, θ, φ) is Bθ (r) =
(ψ �(r)/√g), where

√
g is the Jacobian of the transformation

from the (R ·φ, Z) coordinates. Simple but crucial observation
should be made on the structure of the current density on
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the right-hand side of (21). It is basically an expression
of the fundamental force balance in toroidal geometry and
is strictly related to the geometric and global properties of
the equilibrium configuration, which are efficiently identified
by “moments” measured outside the plasma; toroidicity and
shaping help removing certain degeneracies, allowing, for
instance, separation of βp and �i [4], [15]. The first conjecture
is that this “irreducible” toroidal effect may carry also other
global information, so far disregarded, related to certain
stability conditions.

B. Parametric Representation of Exact Solution
and Metric Coefficients

The exact solution (23) can be usefully represented in the
general parametric form [3]

R(r, θ) = Rax + (R1(r)+ R11(r,�)) cos θ

+ R2(r) cos 2θ − δ (24)

Z(r, θ) = (Z1(r)+ Z11(r,�) sin θ (25)

where r is a flux surface function, and θ is a rectified
poloidal angle variable. From (24) and (25), the metric tensor
gik is easily calculated analytically, to be used in writing
the equation for the helical magnetic perturbations, in full
toroidal geometry. For simplicity, we show, in the Appendix,
the explicit expressions of the coefficients of (24) and (25)
and display the relevant metrics later on when needed. A fair
amount of tedious algebra is unavoidable to be able to evaluate
consistently some moments of the interior current profile and
some contour integrals on the plasma outer boundary, thereby
proving our statements, anticipated in the introduction.

III. EXTERNAL MAGNETIC MEASUREMENTS

The tokamak toroidal current density distribution, Jφ(r),
is a continuous function of points r of coordinates (R, Z),
compact within the domain (set of points) S bounded by the
LCMS. For convenience, in the following, we shall use the
normalized profile Ĵφ(r) � Jφ(r)Sφ/I, where I is the total
current and Sφ a toroidal cross section. Consider a complete
numerable set � of real-valued orthonormal basis functions
un(r); the normalized function Ĵφ(r) could be represented by
an expansion in un(r), in the form of a smooth (integral)
superposition of filaments

Ĵφ(r) =
∫

dr�
∞∑
n

Cnun(r
�))δ(r − r�) (26)

and the reconstruction of the current profile, albeit approxi-
mate, in principle, could be expected to consist in determining
the weighting coefficients Cn by finding a large enough
number N of external measurements to be matched to N
boundary values of un(rb), obviously under the constraint that∑N

n Cnun(rb) = 0, with the integral value constrained by the
measured total current I . However, this procedure cannot be
even formally pursued, outside the general formulation of a
suitably regularized inverse MHD equilibrium problem [13].
The use of external magnetic diagnostics has nonetheless
proved to be a powerful and robust tool to determine several

important characteristics of the tokamak configuration, such as
the plasma position and shape, associated with the Jφ profile
and the boundary conditions. Shafranov [4] and Zakharov
and Shafranov [5] first showed that multipole moments of
current density are given by closed-contour integrals of the
external magnetic field and how these moments are related to
plasma position and shape. Their analysis limited to the case
of symmetry with respect to the midplane and first order in
� = r/R was later expanded by other authors [6]–[9], always
with the objective of a robust identification of the geometrical
characteristics of the plasma meridian cross section. In the
work in [5] and [7]–[9], the solution of the homogeneous
Grad–Shafranov equation, valid in vacuum, is expressed
in terms functions of the type f (m)(ρ, μ) = ρm+1(1 −
μ2)1/2 P1

m(μ) (where ρ2 = R2 + Z 2, μ = cos θ), related
to associated Legendre polynomials, and it is shown that
the mth moments of the internal current profile Jφ , defined
in [5], [8], and [9], are equal to weighted contour integrals of
the peripheral magnetic field tangent and normal components
on closed paths, surrounding the plasma

Ym = 1

μ0 I

∫
Jφ fmd Sφ = 1

μ0 I

∮
fm Bθ (rb)d�

= 1

μ0 I

∫ 2π

0
fm Bθ (rb)

√
gθθ(rb) dθ. (27)

For convenience, the set of functions f (m)(R, Z) is changed
into an equivalent set fm(x, Z) vanishing on the magnetic axis,
and for the sake of argument, the integration contour is the
plasma boundary, at r = rb. In the following, the moments 27
of interest shall be those generated by the functions of [9]:

f1 = x

(
1 + x

2R0

)
(28)

f2 = Z

(
1 + x

R0

)2

(29)

f3 = x2

(
1 + x

2R0

)2

− Z 2

(
1 + x

R0

)2

(30)

f4 =
[

2Z x

(
1 + x

2R0

)
− 4

3

Z 3

R0

](
1 + x

R0

)2

(31)

f5 = x3

(
1 + x

2R0

)3

− 3x Z 2

(
1 + x

2R0

)(
1 + x

R0

)2

+ Z 4

R0

(
1 + x

R0

)2

(32)

f6 =
[

3Z x2

(
1 + x

2R0

)2

− Z 3

(
1 + 6x

R0
+ 3x2

R2
0

)
+ 6

5

Z 5

R2
0

]

×
(

1 + x

R0

)2

. (33)

IV. LINEAR TEARING MODES PERTURBATIONS

The first-order helical perturbations of the type f̃ (r, θ, φ) =
f̃ (r)m,nei(mθ−nφ) in current density may lead to magnetic
instabilities growing around the closed field lines, rational q
surfaces and generating the externally measured, time periodic
“Mirnov” signals. Eventually, the instability transforms
nonlinearly in finite size magnetic islands, whose evolution,
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up to the saturation stage, largely depends on the linear growth
rate. The latter is governed by a dispersion relation of the type

�� = ��
layer (34)

where ��
layer depends on the physics of magnetic reconnection

within the inner layer around r = r(q = m/n), and
the “external” �� = ((dln(ψ̃m,n))/dr)|r(q=m/n) results from
the solution of the tearing equation. Considering linear
perturbations of current and magnetic field

J = J0 + J̃1 (35)

B = B0 + B̃1. (36)

The condition of vanishing torque density ∇ × (J × B) = 0 is
expressed in the equation for the first-order perturbed helical
poloidal flux ψ̃m,n , which, in curvilinear (toroidal) geometry,
takes the form〈

gθθ√
g

〉
∂2ψ̃m,n

∂r2
+

〈
gθθ√

g

〉� ∂ψ̃m,n

∂r

−
[

m2

〈
grr√

g

〉
+ m

m − nq
�J ∗��

]
ψ̃m,n = 0. (37)

In the explicit form, in this basic configuration, we have the
following dependence on the geometry, pressure, and rotation:〈

gθθ√
g

〉
= 4

√
2r(c0 + 8k)

33R0
√

c0k
+ �R0r(c0 + 8k)

44
√

2c0k3
(38)〈

gθθ√
g

〉�/〈
gθθ√

g

〉
= 1

r
(39)〈

grr√
g

〉/〈
gθθ√

g

〉
= 1

r2
. (40)

Ultimately, the source of tearing mode depends on the
perturbation of the physical current density near the rational
surface, which is related to the contravariant toroidal current
by J0φ = (gφφ)1/2 J φ0 , where (gφφ)1/2 = R

Jφ,1 ≡ J � ∝ J0φ

T
R. (41)

Near the rational surface r = rs , the strength of driving term
of the tearing perturbation in (37) in the present test case can
be explicated as

J � = −AR2 − B R4 (42)

where the equilibrium current used here is given by the
expression consistent with (21) and A = (P0/T ), B = (�/T ).
In Section IV-A, for the sake of argument, we focus on the
scaling of the current perturbation with the characteristics of
this equilibrium, which, albeit particular [see (21) and (23)],
keeps track of the fundamental toroidal metrics underlying
also any more detailed equilibrium current profile. As argued
earlier, it is worth searching how the associated information
may be linked to the stability condition.

Fig. 1. Contour plot in the (x, Z ) plane, of f4 multipolar function, associated
with the elongation κ .

A. Multipolar Moments of Tearing Current
Density Perturbation

In this section, we shall investigate whether a generic tearing
current perturbation “J�” leaves a specific, and detectable,
multipolar “footprint” on an outer contour (e.g., LCMS) and
construct applicable, albeit approximate expressions. We can
conjecture a scaling of the perturbation J�(r, θ,�) ∝ ARλ +
B Rν , where the exponents λ and ν are determined by the
expected equilibrium current profile. A moment associated
with the “tearing source” J� can be defined as

Y� = 1

μ0 I

∮
f �Bθ (rb)d� = ψ �(rb)

μ0 I

∮
f �

√
gθθ(rb)√
g(rb)

dθ.

(43)

From the general structure [9] of the f (m), solutions of
�� f (m) = 0, it results that some linear combination of the
functions f (1), f (3) f (5) scaling as −(1/2R0)R2, (1/4R2

0)R
4,

and −(15/8)R6 can be useful to define a moment related to ��

f � ≈ α f (1) + β f (3) ≈ −ARλ − B Rν . (44)

In the specific case of (41), we have λ = 2 and ν = 4.
By matching the terms with corresponding powers of R
(44) R4, the constants are determined as α = −2R0(P0/T )
and β = −4R2

0(�/T ), leading eventually to the practical
definitions

f� := −2R0
P0

T
f1 − 4R2

0
�

T
f3 (45)

and from 43

Y� = −2R0ψ
�(rb)

μ0 I

∮ [
P0

T
f1 + 2R0

�

T
f3

]√
gθθ(rb)√
g(rb)

dθ. (46)

Figs. 1 and 2 show the contour plots of the weight
functions f4, associated with elongation, and f�. It is
expected that information of the internal “tearing source” is
conserved in the mapping provided by the surface moments.
Correspondence between the relevant measured moment and
�� can be established by numerical calculations, up to an
irrelevant multiplication factor. Stability domains can be
constructed in operating spaces (c0, T ) and (k, T ) for different
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Fig. 2. Contour plot in the (x, Z ) plane, of f� multipolar function.

Fig. 3. Plot of �� versus �Y� for a range of modes (m, n) at a fixed value
of the toroidal rotation label � = 0.007 [see definition 19]; �Y� ≥ 0 is
associated with �� ≤ 0.

Fig. 4. Plot of �� versus �Y� for a range of modes (m, n) at a fixed value
of the toroidal rotation label � = 0.014 [see definition 19].

(m, n) modes and toroidal rotation �. In order to test
sensitivity, the strict choice of the source J ∗ model of (42)
could be relaxed, with different values of λ and ν, leading to
different linear combinations of fm , which can show higher
sensitivity to ��. An example is discussed in Section V for
λ = 4, ν = 6, and f̂� := 4 R2

0 A f3+8 R3
0 B f5.

V. SENSITIVITY AND STABILITY DOMAINS

The stability parameter �� is calculated solving numerically
the tearing equation (37). The results of the physical model
are shown in Figs. 3–8.

The correlation of the tearing linear instability parameter��,
with the externally measurable moment Y�, here is more

Fig. 5. Plot of �� versus �Y� f for mode m = 2, n = 1 at different values
of the toroidal rotation label � in the range 0 ≤ � ≤ 0.017; �Y� ≥ 0 is
associated with �� ≤ 0.

Fig. 6. Plot of �� versus �Y� for mode m = 3, n = 2 in the toroidal
rotation range 0 ≤ � ≤ 0.017.

Fig. 7. Domain of stability identified by�Y� versus T, k. The region �Y� ≥
0 is stable.

conveniently displayed by plotting it versus�Y� = Y�−Y�=0,
for a range of mode numbers (m, n), as shown in Figs. 3 and 4,
for two fixed values of rotation �. The relation of �� with
�Y� = Y�−Y�=0, for modes m = 2, n = 1 and m = 3, n = 2,
is shown in Figs. 5 and 6 for different values of the toroidal
rotation �. It is apparent that the change of sign of �Y� is the
same as that of ��, irrespective of the rotation: this makes this
signal very suitable to monitor the (linear) stability condition.

The analysis in Figs. 3–6 is done for k = 0.007, c0 = 0.05,
R0 = 1.9, rb = 1, � = 0.007, and p0 = 0.1. It is possible to
build the stability domains in the parameters space (c0, k, T ),
and the data are summarized in two contour plots.
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Fig. 8. Domain of stability identified by �Y� versus T, c0. The region
�Y� ≥ 0 is stable.

In Fig. 7, the parameter range is 0.007 < k < 0.01;
in Fig. 8, 0.05 < c0 < 0.19; and in both cases, 0.1 < T < 0.6.
Figs. 7 and 8 show that, in the upper limit of the range of k
and c0, the moment �Y� becomes larger, corresponding to a
more stable equilibrium. This is consistent with the behavior
of �� calculated using the exact equilibrium.

As a test of sensitivity to uncertainty in the basic structure
of the J∗ source, here, we summarize the case with λ = 4
and ν = 6 related to a different profile, not consistent with
the equilibrium (23). Expression (46) is evaluated choosing,
arbitrarily, the parameters m = 3, n = 2, k = 0.007, c0 =
0.05, R0 = 1.9, rb = 1,� = 0.007, and p0 = 0.1. The
parameter T modifies only the profile of the safety factor q;
in this way, the geometry of the system is kept fixed. For each
couple of values (c0, k), the value of the Y� = 0 is calculated
and subtracted from Y�. Note that, in this case, the sign of
�Y� is the same as that of ��. In the table, the sensitivity
result is reported.

It can, therefore, be confirmed that external magnetic
measurements with rather flexible combinations of fm

multipolar weight functions can monitor the �� stability
condition.

VI. SOURCE AND SIGNALS

In the previous sections, the basic scaling of the metrics’
effect on the “tearing mode” current perturbation was inferred,
and it has been shown how a certain linear combination

(possibly not unique) of the externally measurable Ym is
sensitive to the TM stability index ��. An important question
remains open, namely that concerning the detectability of
this information amidst that provided by the other moments
and the background noise. To address this question, at least
in a preliminary way, we have to introduce elements of
information theory and statistical decision techniques. For the
specific purpose of modeling the “origin” of TM perturbations,
to be “coded” onto externally measurable magnetic signals,
because of the unknown nonmetrical effects, it is proposed to
consider the current distribution as “source” of the multipolar
moments Ym defined in (27), along the lines of [9] as a set
of independent random variables. One can consider a discrete
subset of n generalized multipoles Zi = ∫

ĴφL( fi )d Sφ , where
L( fi ) is a linear combination more directly associated with
physical quantities [8], [9]. The symbol Z1 is associated with
the Shafranov shift �Shaf , while combinations Zκ ≈ L(Y3,
Y4) are associated with the elongation κ , and Zδ ≈ L(Y5, Y6)
are related with the triangularity δ of the plasma configuration
[9]; in the present case, we are interested in Z� = αY1 +βY3.
On the basis of a statistical framework, we can address the
problem of assessing the detectability of the signal of interest.

A. Statistical and Probabilistic Model

More specifically, we can picture the current as a “source”
of n moments [see (27)] with amplitudes that are random
variables described by “prior” probability distributions, taken,
without loss of generality, to be normal density distributions
�N (Zm|μm, σm), with mean μm = Zm and unspecified
standard deviation σm . Then, by reordering and subdividing the
sequence Zmin, . . . , Zm . . . , Zmax, we evaluate the probabilities
of the “symbols” Zm as

P1(−∞ ≤ Z ≤ Z1) =
∫ Z1

−∞
�N (y)dy (47)

Pk(Zk ≤ Z ≤ Zk+1) =
∫ Zk+1

Zk

�N (y)dy (48)

Pm(Zm ≤ Z ≤ ∞) =
∫ ∞

Zm

�N (y)dy. (49)

In order to assess the relevance of the information of the
symbol Z� in comparison with the other moments, here,
we follow a rather elementary line of reasoning. We estimate
the conditional probability that the message generated by the
source is “Z� when Zκ” is also observed. The Bayes theorem
gives the conditional probability

P(Z� | Zκ) = P(Zκ | Z�)× P(Z�)/P(Zκ ) (50)

where P(Zκ | Z�) is the likelihood function of detection of
Z� when symbol Zκ has been detected, and P(Zκ | Z�) ×
P(Z�) is the “posterior” probability of symbol Z�, while
P(Zκ ) is the “evidence,” which amounts to a normalization
constant. Eventually, by ordering the posterior probabilities,
the relevance of the information of the Z� symbol can be
assessed. In the language of information theory, the ensemble
of Zi is the set of N “symbols,” (“letters”) of the “alphabet”
A, of the “source” [17], which generates random variables
each with a probability Pi . A string of “letters,” “symbols” is
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an elementary event, “message” in probability space, and is a
random process.

B. Likelihood Ratio and Ideal Observer Analysis

We want to formulate the problem of detectability of a
specific moment (symbol), say Z� in the presence of at
least another signal (message), say (Z1, Zκ, Zδ); in general,
one should consider detectability against background noise,
but, here, for the sake of argument, it is sufficient just
the comparing between the noiseless signals. The task is
to discriminate between two classes of moments that can
be measured; we label as “class 0” the set of symbols Z j ,
( j = 0, 1) that do not include the information about ��, and
“class 1” that does include it. The optimal discriminator of two
classes of symbols, with probability densities p j(Z j ), is given
by the Bayesian ideal observer [22], [23], expressed in terms
of the likelihood ratio (or the log-likelihood ratio) [see (50)].
In the present case, Z j,i (i = 1, n) are samples of size n = 4
from normal density distributions p j(Z j ) = �N (Z j |μ, σ),
with mean and variance, μ and σ , determined by seeking
maximum likelihood, for given “data” Z j , for each class j .
The mean value and the value σ̂ 2 that maximize the likelihood
function

Ln(Z j | μ, σ) =
(

1√
2πσ

)n

exp

[
−1

2

∑n
i=1(Zi − μ)2

σ

]
(51)

turn out to be

μ̂ = Z = 1

n

n∑
i

Z , σ̂ 2 = 1

n

n∑
i

(Zi − μ̂)2 (52)

Ln(μ̂, σ̂ ) =
(

1√
2πσ̂

)n

e− n
2 . (53)

For class 0, μ̂ = μ0, and for class 1, μ̂ = μ1. The likelihood
ratio statistic is defined as

�(μ, σ) = Ln,0(Z0|μ0, σ0)

Ln,1(Z1|μ1, σ1)
=

(
σ 2

1

σ 2
0

) n
2

=
( ∑n

i (Zi −Z)2∑n
i (Zi −μ0)2

) n
2

.

(54)

As a particular test case, we consider the discrimination of a
“message” string of length n = 6, including the Y4 moment,
associated with elongation, and no Z�, and one with Z� in
place of Y4. The sample means are μ0 = (1/n)(Y1 + Y2 +
Y3 + Y4 + Y5 + Y6) and μ1 = (1/n)(Y1 + Y2 + Y3 + Z� +
Y5 + Y6). We can apply the analysis formulating the null
hypothesis H0 in relation to the detection of the value of one
parameter, typically the mean, μ0, of the p0 distribution and
the alternative H1 associated with μ̂ = μ1 �= μ0. Intuitively,
if the evidence (data) supports H1, then the likelihood function
Ln,1(Z1|μ1) should be large; therefore, the likelihood ratio
� is small. Thus, the null hypothesis H0 is rejected, and
the symbol Z� is detectable. The rejection region for H0

(acceptance for H1) is � ≤ k̂, which is some threshold and,
after some manipulation of (54), translated into a t-Student test
criterion for the statistics t = √

n(Z − μ0/S > k̂ �, with the
standard deviation estimator S2 = (1/(n − 1))

∑n
i (Zi −μ0)

2.
The level of significance of the null hypothesis at 5% occurs
if t > 1.96.

Fig. 9. Prior probability distributions of Y4 and Z� for H0 and H1.

Fig. 10. Plot of posterior probability distributions of Y4 and Z� for H0 and
H1.

Furthermore, another discriminating parameter is the
distance of the peaks of the posterior density functions, divided
by the standard error estimate d � ≡ ((μ1 − μ0)/S) ≈ 0.422.
Hence, the moment Z� should be reasonably observable
in an experimental situation, even in the presence of the
measurements of the other moments, typically the moments
associated with the elongation. A plot of prior and posterior
probability distributions [see 50] for Y4 and Y� is shown
in Figs. 9 and 10. By construction, it is clear that rotation
enhances a discriminating effect even though the change of
sign of Y� with �� appears largely independent of rotation,
for all modes, as shown in Figs. 5 and 6.

Other combinations of moments, such as f̂�, presented
previously, monitor as well the sign of �� and are more
detectable. This indicates sufficient freedom for applications.

VII. CONCLUSION

A new approach has been presented to the problem
of detection of meaningful characteristics of a tokamak
configuration, based on the simplest, but fully toroidal
model of equilibrium, Solov’ev-like, but with rotation. The
detectability of the sign of �� is clearly enhanced by the
effect of rotation. Exploiting the vacuum solution of the
field equation in terms of the Legendre functions, some new,
relevant information on the tearing stability conditions has
been shown to be associated with combinations of externally
measurable multipole moments. The choice of combinations is
not unique, but several can be sensitive to the sign of ��. By a

Authorized licensed use limited to: UK ATOMIC ENERGY AUTHORITY. Downloaded on January 20,2021 at 14:30:32 UTC from IEEE Xplore.  Restrictions apply. 



356 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 49, NO. 1, JANUARY 2021

statistical approach, a procedure of the Bayesian inference
has been used to ascertain the “theoretical” detectability of
the relevant multipole moment. Given the simplicity of the
assumptions, the procedure can be applied to more refined
theoretical models and, especially, can be tried on real
experimental measurements, where no detailed knowledge of
the internal current profile is available.

APPENDIX

Evaluation of Coefficients of the Parametric Representation
The solution (23) can be usefully represented in the

general parametric form [3], in a mildly nonuniform current
approximation

R(r, θ) = Rax + (�R1 + �2 R11) cos θ + �2 R2 cos 2θ − δ�2

(55)

Z(r, θ) = (�Z1 + �2 Z11) sin θ (56)

with � ∼ (r/R0) being an ordering tag, eventually set to 1. A
system of equations can be built evaluating the moments of
the solution ψ(R(r, θ), Z(r, θ))∫ 2π

0
�2ψ̄ cos nθdθ

=
∫ 2π

0

[
c0 R2 Z 2 + k

(
R2 − R2

0

)2 + �ψ

24
R6 − ψax

]
cos nθdθ

(57)

where the term ψ̄ is now seen as a labeling variable that scales
as r2 ∼ �2 and denotes a specific magnetic surface. The same
order terms are equated to obtain the coefficients of (55) and
(56)

R1 = r, R11 = −�R2
0r

32k
, R2 = r2

4R0
(58)

Z1 = 2
√

2kr√
c0

, Z11 = �R2
0r

8
√

2c0k
, δ = 3r2

4R0
. (59)

Further steps are needed to ensure that the LCMS remains
fixed. The boundary conditions have to be imposed to enforce
independence from the parameter �

R(rb, 0)|�=0 = R(rb, 0), R(rb, π)|�=0 = R(rb, π) (60)

Z
(

rb,
π

2

)
|�=0 = Z

(
rb,

π

2

)
, βp|�=0 = βp. (61)

The coefficients k, c0, R0, and rb are functions of toroidal
flow �. The system is solved after a linearization of these
coefficients

k = k0 + �k1, R0 = R00 + �R01 + �2 R02 (62)

c0 = c00 + �c01, rb = rb0 + �rb1. (63)

Thus, the system yields

R00 = R0, R01 = �R3
0

32k
, R02 = (7c0 + 24k)�2 R5

0

2048k2(c0 + 8k)
(64)

c00 = c0, c01 = c0�R2
0

2c0 + 16k
(65)

k0 = k, k1 = − (c0 + 4k)�R2
0

8(c0 + 8k)
(66)

rb0 = rb, rb1 = �rb R2
0

32k
. (67)

Using (58), (59), and (64)–(67), the final form of the
parametric representation (55) and (56) can be written as

R(r, θ) = R0 + �r cos θ − �2 r2(8 sin2 θ − cos 2θ + 3)

4R0

− �2�r R2
0 cos θ

32k
(68)

Z(r, θ) = �
2
√

2
√

kr sin θ√
c0

+ �2 sin θ
(
64kr2 cos θ −�r R3

0

)
8
√

2c0k
.

(69)

From (68) and (69), one can calculate the metric tensor used
in (37) and (46).
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