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ABSTRACT
A new tomographic inversion technique is presented for the identification of plasma filaments in wide-angle visible camera data. The
technique works on the assumption that background subtracted images of filaments can be represented as a superposition of uniformly
emitting magnetic equilibrium field lines. A large collection of equilibrium magnetic field lines is traced and projected onto the camera
field of view and combined to form a geometry matrix describing the coordinate transformation from magnetic field aligned coordi-
nates to image pixel coordinates. Inverting this matrix enables the reprojection of the emission in the camera images onto a field aligned
basis, from which filaments are readily identifiable. The inversion is a poorly conditioned problem which is overcome using a least-
squares approach with Laplacian regularization. Blobs are identified using the “watershed” algorithm and 2D Gaussians are fitted to get
the positions, widths, and amplitudes of the filaments. A synthetic camera diagnostic generating images containing experimentally rep-
resentative filaments is utilized to rigorously benchmark the accuracy and reliability of the technique. 74% of synthetic filaments above
the detection amplitude threshold are successfully detected, with 98.8% of detected filaments being true positives. The accuracy with
which filament properties and their probability density functions are recovered is discussed, along with sources of error and methods to
minimize them.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5109470., s

I. INTRODUCTION

The competition between transport processes parallel and per-
pendicular to the magnetic field in the scrape-off layer (SOL)
of a tokamak determines the radial profiles of variables such as
density and temperature that impinge on divertor and first-wall
surfaces.1 These profiles impact many aspects of the machine
operation including damage to plasma-facing components,2 fuel-
ing,3 penetration of resonant heating waves,4 impurity accumu-
lation,5 detachment onset,6 and tritium retention.7,8 With this in
mind, it is important that a sound understanding of perpen-
dicular transport in the SOL be established. In the last decade
or so, it has become increasingly clear that a large portion
of the radial flux of particles and heat in the SOL is carried
intermittently by mesoscale coherent structures known as fila-
ments [alternatively blobs, avaloids, and intermittent plasma objects

(IPOs)].9,10 Recent forward modeling11 on MAST has shown that
particle12 and heat-flux13 profiles at divertor targets can be recon-
ciled with a transport based on filament motion. The presence of fil-
aments leads to a nonlocal relationship between fluxes and gradients
in the SOL14 and a fuller understanding of the physics underlying fil-
aments is required before predictions can be made for future devices.
This requires extensive experimental measurements of filaments for
comparison with modeling and the informing of analytic filament
frameworks.

The bulk of past filament measurements have used Lang-
muir probe based techniques, analyzing the characteristic non-
Gaussian statistics of ion saturation current fluctuations that arise
from filaments passing the probe tip, with the strongest non-
Gaussian behavior observed in the far SOL, where the relative
amplitude of the filament fluctuations is the largest.15 Positively
skewed fluctuation statistics are observed universally in toroidal
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plasma devices,10 with in depth studies on tokamaks including
Alcator C-Mod,16 TCV,15 MAST,17 and JET,18 among others,19 pro-
viding information about filament amplitudes, dimensions, veloc-
ities, and waiting times between filaments. With the exception of
a few multiprobe studies,20 Langmuir probes, whether fixed or
reciprocating, are limited to studies of filament population statis-
tics and cannot provide information about filaments throughout
their lifetimes (i.e., once they have passed the probe tip), informa-
tion important for a full understanding filament dynamics. Beam
Emission Spectroscopy (BES) diagnostics on NSTX,21,22 DIII-D,9,23

and TEXTOR,24 as well as Gas Puff Imaging (GPI) diagnostics on
NSTX,22,25–28 Alcator C-Mod,25,29,30 and ASDEX Upgrade31 provide
2D density profiles in the plane perpendicular to the magnetic field,
from which filaments can be identified and their motion studied.
While these techniques provide excellent high spatial and tempo-
ral resolution measurements in the poloidal plane, they are limited
to measuring a small area of the SOL and are unable to provide
information about the parallel structure of filaments.

In this paper, we look at the application of direct wide-angle
fast visible imaging, which has the potential to provide information
about the perpendicular and parallel structure of filaments across
their lifetimes.

Fast framing camera technology has improved drastically since
the earliest visual observations of filaments in the 1980s.32,33 Mod-
ern fast framing cameras are now capable of recording the whole
plasma at resolutions, frame rates, and exposure times sufficient
for resolving filament motion. Visible imaging can now provide
similar resolution data for filament positions, sizes, and veloci-
ties, as other techniques, while having a number of benefits which
enable the collection of larger quantities of filament data and sim-
plify implementation. First, visible imaging is a passive technique
and hence can operate over a wide range of conditions, for the
whole duration of a pulse, without temporal constraints or the
need for perturbative probes, gas, or neutral beam injection. This
also means that the measurement is not spatially constrained to a
small region local to a gas nozzle or beam path and can instead
explore large regions of the SOL, both around the midplane and
the divertor. The passive nature of the measurement also reduces its
complexity, avoiding the complications of understanding complex
nonequilibrium phenomena such as gas plume propagation or neu-
tral beam-plasma interaction, instead relying on relatively uniform
and slowly varying excitation and ionization rates. Second, visible
imaging can provide information about the full parallel structure
of filaments, informing us about their 3D nature to a degree that
other diagnostics cannot. With these strengths, fast visible imag-
ing is well positioned to significantly improve our understanding of
filaments.

Past fast camera analyzes of filaments have either been per-
formed manually, making them time consuming and subjective, or
have achieved automation of the measurement of a limited subset
of filament parameters. Past simultaneous measurements of both
toroidal and radial filament properties (positions, widths, and veloci-
ties)34–36 have involved the manual alignment of projected field lines
with filamentary structures in camera images by eye; a challenging
exercise owing to their translucent, diffuse nature and their inter-
actions with one another, greatly reducing the quantity of data that
has been analyzed. Automated or semiautomated measurements of
radial (toroidal) positions, widths, and velocities have previously

been made by considering the time varying intensity of specific
radial12,34,36 (toroidal34,37) arcs of image pixels to infer the passage
of filaments along the length of the arc. These techniques rely on
finding areas of an image where the camera line of sight is such that
pixel coordinates along a line can approximately be mapped directly
to radial (toroidal) coordinates and typically assume that only one
filament is passing the arc at any one time. More sophisticated tech-
niques set a fixed radial position a priori, typically close to or at the
separatrix, and located maxima in the average intensity of super-
imposed field lines as a function of their toroidal position.12,35,36,38

This incurs uncertainties in the measured quantities (e.g., typically
error in toroidal widths35) due to the uncertainty in the precise radial
position of the filaments and fails to capture information about
the radial properties (positions, widths, and velocities) of the fila-
ments. Furthermore, with the exception of Ref. 12, all applications
of these autonomous or semiautonomous techniques have focused
on narrow, windowed camera views of specific areas of the plasma
(e.g., the outboard midplane,36,38 center column36 or top outside
corner of the plasma34), in order to maximize the camera’s frame
rate, thus limiting the number of observable filaments and restrict-
ing the length of filaments along which parallel structure can be
explored.

This paper describes a new technique that has been devel-
oped to automate the identification and analysis of filaments in
fast camera data, with the goal of retrieving as much individual
filament data as possible. The technique is designed to simultane-
ously measure the positions, widths, amplitudes and velocities of
individual filaments, across a large extent of the plasma. Further
quantities can be derived from these measurements such as the
quasitoroidal mode number and the distributions of filament sep-
arations and waiting times. As all quantities can be measured for
individual filaments, inter-relationships between different filament
properties can be investigated. In this way, a large database of fila-
ment properties can be generated, enabling big data approaches to
the understanding of the statistical properties of filament param-
eters and their dependence on engineering and physics parame-
ters. A good understanding of these statistics will enable the vali-
dation of analytic frameworks such as that developed by Militello
and Omotani11 and provide the inputs for these frameworks, greatly
improving our understanding of the filamentary generation of
SOL density profiles.

Section II discusses the specification and setup of the camera
system for which the technique has been developed, before Sec. III
details the technique itself. Section IV describes the synthetic cam-
era diagnostic which has been developed to test the technique, while
Sec. V discusses its implementation in benchmarking the technique
and quantifying the technique’s systematic and random errors. Sec-
tion VI demonstrates the application of the technique to experi-
mental data and interprets the results applying insight from the
benchmarking analysis. Section VII discusses a number of further
factors affecting the technique, before Sec. VIII concludes the paper
by summarizing the key findings and giving the outlook for future
refinement and applications of the technique.

II. DIAGNOSTIC SPECIFICATION
The open design of the MAST vessel facilitates deep-field, wide

angle views of the MAST plasma. Two tangential viewing geometries
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FIG. 1. (a) Schematic of the field of view of the Photron SA-1 fast camera when
installed at the midplane or divertor. (b) False color image of a MAST plasma, as
viewed by the SA1 camera, with a CAD rendering of the MAST vessel components
overlaid.

are available corresponding to the “main chamber” and “divertor”
views as shown in Fig. 1(a). This paper concerns the “main cham-
ber” viewing geometry. Also shown in Fig. 1(b) is a false color image
of a MAST plasma with a CAD rendering of the MAST vessel com-
ponents overlaid. The center-column and P4 poloidal magnetic field
coil are highlighted to guide the eye.

The camera used was a Photron SA1.1 fast framing camera.65

The frame rate of the camera was 100 kHz with an integration time
of 3 μs and a pixel resolution of 256 × 160, corresponding to a spatial
resolution at the tangency plane of 5 mm. The camera was unfiltered
such that the light emission recorded was dominated by Dα emis-
sion. The poloidal plane perpendicular to the camera line of sight
falls at the toroidal angle ϕ = 215○, where the toroidal machine coor-
dinate ϕ is 0○ at the start of the first octant and continues round
clockwise.

The camera position in real space is calibrated using the Cal-
cam39 code which maps points selected in a 3D rendering of the
MAST vacuum vessel onto 2D pixel coordinates of the camera
image. This camera registration then allows for paths in real space to
be cast onto the image plane of the camera. In this way, 3D magnetic
information can be mapped onto the camera field of view.

III. FILAMENT MEASUREMENT TECHNIQUE
A. Overview and assumptions

The goal of the technique we have developed is to take as inputs
(1) camera images, (2) a camera spatial calibration, and (3) a mag-
netic equilibrium description and return the values at the midplane
of the positions, widths, and amplitudes of filaments within the
frames.

Due to the fact that filaments are 3D objects with no sim-
ple exploitable toroidal or poloidal symmetry, conventional tomo-
graphic inversion techniques, such as the generalized Abel inver-
sion,40 cannot be used to study them. Instead, we exploit the helical
symmetry of the magnetic field that the filaments conform to, in a
similar way to that proposed in Ref. 41. The technique presented
here operates by using information about the magnetic geometry
to reconstruct the 3D intensity information present in the 2D cam-
era images onto the horizontal R-Rϕ plane at the midplane (Z = 0),
where R is major radius, ϕ is the angular toroidal position, and Z is
the vertical machine coordinate. Rϕ is the toroidal arc length at the
outer midplane and is used in place of ϕ as the toroidal coordinate so
that both dimensions have units of length, from which meaningful
filament dimensions can be found.

Two central assumptions about the nature of filaments are
made in order to proceed:

(A) Filaments are assumed to be aligned well to the background
magnetic field which can be calculated via magnetic recon-
struction.

(B) The light emission from a filament is treated as being con-
stant in the direction parallel to the magnetic field.

The first of these assumptions is to be expected given the
magnitude of parallel transport relative to perpendicular transport,
which quickly spreads blobs of plasma along field lines. Further-
more, it is justified by a large base of experimental data from MAST36

alongside other tokamaks.19,42

The second assumption contains two factors. First, filaments
are assumed to be homogeneous along magnetic field lines in the
camera field of view. This is justified a posteriori by observation of
the fact that filaments are always observed to span the entire length
of field lines within the camera’s view. While some apparent parallel
variation in light emission is observed, it is many times weaker than
the cross-field variation. This is expected as parallel transport is very
efficient on the relevant time scales and so will tend to smooth out
differences along field lines. In the absence of a precise description of
the parallel variation of the filaments, treating them as homogeneous
is sufficient for us to proceed. The second factor is the assumption
that the neutral density in MAST remains homogeneous along the
length of the filament. This is motivated by the open vessel design
of MAST which leads to homogeneous neutral distributions away
from the divertor.43 While this assumption breaks down close to the
divertor surface, we are concerned with the main chamber where
this is not an issue.

In principle, both of these assumptions could be relaxed
through suitable modifications to the technique. However, the com-
plexity this introduces was not deemed to be worthwhile at this
stage.

Combining assumptions (A) and (B), the filament structures
observed in fast camera images can be formed by a linear superposi-
tion of images of uniformly emitting field-lines from the equilibrium
magnetic field, cast onto the camera field of view. The matrix of cam-
era pixel intensities forming the camera image, I, can therefore be
expressed as a weighted sum of basis images of uniformly emitting
field lines, Ibasis,

I =
N

∑
j=0

ϵjIbasis,j, (1)
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where ϵj describes the relative contribution of the jth field line basis
image to the camera image. The summation is valid due to the edge
plasma being optically thin to visible radiation.40 Equation (1) repre-
sents the mapping of the information in the camera images between
a pixel basis set and a field line basis set.

All the information required to construct the field line basis set
is contained in the magnetic equilibrium data and the camera spatial
calibration that describes how emission from 3D point sources are
mapped to pixels on the camera sensor.

We wish to convert the many nonlocal line integrated measure-
ments from each pixel in the camera image into an estimate of the
local plasma emissivity. The expression of the camera information
in the field aligned basis set facilitates the identification of filaments,
since field aligned plasma structures appear as bloblike clusters of
high intensity field lines in 2D plots of ϵj. By analyzing the regions of
enhanced emissivity present in ϵj, the filaments’ sizes and locations
can be deduced in a similar way as for poloidal intensity distribu-
tions produced by GPI or BES diagnostics. Therefore, the vector of
field line basis weightings, ϵj, containing the filament information is
the quantity that we seek to calculate.

The rest of this section describes the implementation of the
technique, from preprocessing of the camera images and inver-
sion of the data onto the field aligned basis, to the identification of
filaments within the inverted data.

B. Image preprocessing
A series of preprocessing steps are applied to the camera images

before the data are inverted. The output of each step is shown in
Fig. 2. The preprocessing technique is motivated by the fact that
filaments in the SOL represent positive density perturbations on
top of a background so that perturbations in the light emission
are also positive. Therefore, we define the background as the min-
imum in the signal over a time window about the frame of interest.
Thus, a background subtraction technique is applied to the movie
to remove the low-frequency background component of the light
emission and extract just the fluctuating part containing the fila-
ments. This step is necessary to avoid the filaments being washed
out by background light emission in the SOL and prevent first wall
structures confounding the analysis. The background calculation,
which follows in a similar manner to that described by Dudson,35

is achieved by taking the pixelwise minimum in the light intensity

over a set of 10 frames (0.1 ms) that preceded the frame of interest in
time. This technique has previously been applied in Refs. 12, 35, 36,
and 38 and discussion of the validity of the technique can be found
therein. Other background calculations were considered by instead
taking the background as represented by either the mean, median,
or the low frequency (extracted from a pixelwise FFT) component
of the total emission. In the first two cases, this led to nonphysi-
cal negative perturbations in the SOL which could not be recon-
ciled with Langmuir probe measurements.17 The latter performed
similarly to the minimum technique; however, the calculation was
considerably slower, so the minimum based background subtraction
was adopted.

Following background subtraction, a bilateral median filter44 is
applied, which is a gradient preserving noise removal method. The
reduced dynamic range resulting from the background subtraction
amplifies the relative contribution of the shot noise to the image,
making noise removal particularly useful. The noise removal is fol-
lowed by a Gaussian de-blur (weighted subtraction of the image
convolved with a Gaussian kernel)45 which helps to resharpen the
image after the smoothing of the noise removal.

The application of regularization (discussed shortly) has a sim-
ilar smoothing effect so that the inversion can proceed without the
additional smoothing and sharpening steps. However, the effects
of the additional smoothing on the results of the full inversion are
found to be negligible, while the image smoothing produces signif-
icant improvements for nonregularization based techniques such as
that discussed in Appendix A.

C. Tomographic inversion
The next stage of analysis is an inversion of the signal (as results

from the previous preprocessing step) onto real space coordinates.
A set of basis field line images are produced by projecting mag-
netic field line trajectories onto the camera image plane. The field
lines are traced using a 4th order Runge-Kutta integrator with the
magnetic field structure provided by an EFIT++46,47 kinetic equi-
librium reconstruction. The field lines are parameterized by their
launch positions at the midplane (R, Rϕ), about a central toroidal
angle ϕ0. The field lines are followed for one toroidal rotation, so
that they only enter the camera field of view once. The spatial cali-
bration of the camera from Calcam is used to project the 3D coor-
dinates describing the points along the field lines onto 2D pixel

FIG. 2. (a) Raw image from MAST shot
29841 at 0.224 24 s. (b) Background
subtracted image using 10 frames prior
to the desired frame to construct a back-
ground. (c) Application of the bilateral
median filter. (d) Application of a Gaus-
sian de-blur.
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coordinates in the camera image plane, according to the camera
field of view and distortion model (see Ref. 48). With the pixels
imaging each relevant field line identified, an image is produced
of each field line, accounting for the inverse square reduction in
intensity with distance from the camera pupil and volumetric line
of sight integration effects. An example of a basis field line image
is given in Fig. 3(a). Summing a collection of similar localized field
line basis images according to Eq. (1) results in the image of the
uniformly emitting filamentary flux tube in Fig. 3(b). Note that
the flux tube is fainter at the top of the image due to fanning of
the field lines and consequent stretching of the flux tube’s cross
section as the field lines get closer to the X-point. This results in
the observed drop in emission which is also seen in experimental
images.

Field lines are traced for a regular grid of launch positions in
the R-Rϕ plane so that the set of points along all the field lines
describe a volume of the SOL that is visible in the camera field of
view. It is important to note that many of the field lines overlap
in the field of view of the camera so that the field line basis set
is not orthogonal. This 2D grid determines the resolution of the
image of the inverted field aligned emission, ϵ. Figure 4 illustrates
the relation between image plane and the inverted emission plane
onto which the camera data are mapped. Note that due to the nar-
row radial width of the SOL, the toroidal extent of the inversion
domain of 120 cm is much greater than the radial extent of 18.4 cm.
In real space, the inversion domain takes the form of a curved trape-
zoidal plane, although for simplicity it is represented as rectangular
in Fig. 4(a).

The inversion problem can be rigorously described if it is cast
into linear algebra, with the camera image thought of as a matrix
of pixel intensities with dimensions m × n. The image matrix can
be collapsed into a single contiguous image vector, I, with elements
Ii, and dimensions mn × 1 (i = 1, 2, . . ., mn). The resolution of the

FIG. 3. (a) Example of a basis field line image used to construct the background
subtracted camera images. The varying intensity of the field line accounts for the
inverse square reduction in intensity with distance from the camera pupil and vol-
umetric line of sight integration effects. Flattened basis images such as this form
columns of the geometry matrix Gij. (b) Emission from a bundle of field lines with
emission amplitudes, ϵj , given by a 2D Gaussian in the toroidal plane.

FIG. 4. (a) An experimental camera frame from MAST shot 29852, with the prepro-
cessing step applied. (b) Inversion calculated using the frame in (a). The inversion
in (b) is also superimposed on the frame in (a) to illustrate the (R, ϕ) midplane
coordinate system.

camera used in this work is m × n = 256 × 160, so that I is a vector
of mn = 40 960 pixel intensities. Likewise, the result of the inver-
sion describing the field aligned emission in the toroidal plane with
dimensions p × q can be flattened into a vector, ϵ, with elements ϵj
and dimensions pq × 1, equal to the number of field lines in our
emission basis (j = 1, 2, . . ., pq). Then, we can compose a geome-
try matrix, Gij = [I(0)basis, I

(1)
basis, . . . , I(pq−1)

basis , I(pq)
basis], where the column

vectors, I( j)
basis, correspond to the flattened basis field line images [see

the example image in Fig. 3(a)]. Here, Gij represents the element
from the ith row and jth column of matrixG. The resulting geometry
matrix, Gij, has dimensions mn × pq and contains all the necessary
information about the magnetic equilibrium structure and camera
viewing geometry.

It has been found empirically that to be able to represent a
midplane camera image with a basis of field-lines in this manner
requires a well resolved grid, typically with a radial spacing ≲4 mm
and a toroidal spacing ≲0.2○. For the work presented here, the res-
olution of the inversion is typically of the order p × q = 47 × 123,
corresponding to a total of pq = 5781 distinct field lines in the basis.
Further details on the choice of inversion resolution will be discussed
later.

Equation (1) can now be expressed in matrix format

Ii®
mn×1

= Gij

m̄n×pq

ϵj
®

pq×1

, (2)

where the Einstein summation convention is used to represent sums
over common indices. Once the matrix G has been computed it can
be applied to describe any number of frames from a movie for which
the magnetic equilibrium is reasonably constant.

Equation (2) represents an overdetermined system of equa-
tions, such that G does not have a true inverse. Therefore, we instead
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take an ordinary least squares approach to finding the “best” value of
the inverted emission vector ϵ̂ that satisfies

ϵ̂ = argmin
ϵ
∥Gϵ − I∥2, (3)

where “argmin
ϵ

” is the operator returning the value of ϵ that mini-

mizes its argument. The ordinary least squares solution is then given
by49

ϵ̂ = (GTG)−1GTI

= H−1GTI

= H−1E,

(4)

where GT represents the transpose of G, H = GTG is termed the
Gramian matrix of G, and E = GTI is the moment matrix. Given
that the H is square, it has a true inverse, H−1, satisfying HH−1 = I,
where I is the identity matrix (not to be confused with the image
vector I). Thus, the problem of finding ϵ̂ has been reformulated to
involve the inversion of a square matrix, H.

To calculate the inverse of H, a non-negative SART50 (simul-
taneous algebraic reconstruction) algorithm with Laplacian regular-
ization is used, as it has been found to be many times faster than
similar methods, such as standard non-negative least squares,51 sin-
gular value decomposition (SVD),52 and More-Penrose pseudoin-
verse matrix inversion algorithms,53 while being more robust to
noise than the QR factorization algorithm54 and producing equally
good results. The non-negativity constraint was added to avoid
unphysical negative emission in the inversion solution. As the den-
sity field in the SOL is a smoothly varying quantity, we apply
Laplacian regularization. This ensures that the resulting emission
is smoothly varying and provides the constraint needed to iden-
tify a unique solution, producing good results. The strength of the
regularization parameter,55 λ, was tuned empirically so as to avoid
spurious sharp banding patterns in ϵ̂ resulting from noise, while

avoiding over smoothing of the large scale physical structures in the
inversion.

We now present an example of how the technique is
applied to the inversion of experimental camera data from MAST.
Figure 5 illustrates the two main calculation steps in the inver-
sion process, along with a reprojection of the inversion output back
onto the camera field of view. Figure 5(a) shows an experimental
background subtracted camera image from MAST discharge 29852
which is to be inverted. Figure 5(b) shows the intensities in the
moment matrix, E, resulting from the product of the transpose of
the geometry matrix with the image vector produced by flattening
the image in Fig. 5(a). The range of toroidal angles spanned by the
inversion domain are also shown in white. Figure 5(c) shows the
inversion resulting from the application of the SART algorithm.
A number of bright blobs of field aligned emission are visible
corresponding to filaments in the camera image. These structures
are identified and measured using the filament identification algo-
rithm described shortly, with the resulting detections indicated by
colored ellipses. Finally, Fig. 5(d) shows the reprojection of the
information captured in ϵ̂ back onto the camera field of view.
The red line bounds the inversion plane in which the emission is
mapped.

The reprojection is produced by taking the product of the
geometry matrix with the inverted emission vector (discussed fur-
ther in Sec. IV). Field lines at the centers of the detected filament
ellipses in Fig. 5(c) are overplotted in Figs. 5(a) and 5(d) in the same
colors. The identified structures align well with the filaments visible
in the camera image, giving a visual indication of the quality of the
detections.

The design choice to analyze a subset of the toroidal domain
is motivated by the large computational gains that can be made by
making the geometry matrix smaller. This reduces the size of the
geometry matrix by around an order of magnitude, leading to a sig-
nificant gain in computation time. Given many of the field lines
excluded from the analysis domain are either outside the field of view

FIG. 5. (a) Preprocessed camera frame field lines superimposed marking the centers of the detected filaments. (b) Emissivity data from the moment matrix E. The range of
toroidal angles covered by the inversion domain is indicated. (c) Inverted field aligned emissivity represented by ϵ̂. Colored ellipses indicate the filaments projected on the
frame images. The white dashed rectangle indicates the analysis region which avoids boundary effects and the white vertical dashed line shows the location of the separatrix.
(d) Reprojection of the emissivity data in (c). The red line indicates the inversion plane from which the emission is projected along field lines.
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of the camera are only partially visible or are in regions of the image
where the filaments are poorly resolved, minimal useful information
is lost, while information about the most readily observable filaments
is retained.

The chosen analysis domain focuses on the foreground fila-
ments. This is because these filaments are closest to the camera so
their widths and positions can be best resolved. The field lines at
the top and bottom of the images are excluded from the analysis
domain since only short portions of them are in the field of view
of the camera, so that the properties of the filaments there cannot be
well constrained either.

While the background filaments do not fall within the analysis
domain, they do overlap with the foreground filaments we wish to
measure. However, they are near-perpendicular to the foreground
filaments so that their contribution to the intensity is similar for all
foreground field lines. Therefore, to first order, the additional inten-
sity from background filaments appears as a background offset in
the foreground filament intensities and does not significantly impact
the analysis of the foreground filaments. This is discussed further in
Sec. V H.

A consequence of the reduced inversion domain is that, at its
boundaries where there is a sharp cut off in the basis, the SART
algorithm struggles to distribute emission correctly. For this reason,
filament detection is only applied to structures with centers within
the region defined by the dotted white border box in Fig. 5(c).

D. Filament identification
To extract filament properties from the inverted emissivity vec-

tor, a blob detection algorithm based on the watershed algorithm
is used. 2D Gaussians are fitted to the identified blobs in order to
extract the position (R, ϕR), widths (δR, δϕR), amplitudes (A), and
orientation (θ) of the filaments.

The watershed algorithm requires the identification of marker
points which are inside definite filament regions (foreground) and
inside regions that are definitely not filaments (background). To
produce the markers, an empirical field line emissivity amplitude
threshold is set, ϵthresh, below which a significant proportion of local
peaks in field line emissivity is found to originate from noise or
artifacts in the inversion [see white contour in Fig. 6(a)]. Alter-
natively, the threshold can be set to a number of standard devi-
ations above the average inversion intensity across all the frames,
akin to many past measurements in the literature.9,56 However,
the first method has the benefit that all filaments above the noise
floor of the technique can potentially be analyzed, as opposed to
imposing a somewhat less physically justifiable; e.g., 2.5σI cutoff in
the amplitude of the coherent filamentary structures that are ana-
lyzed. Further details of the selection of this parameter are given
in Sec. V D.

Clusters of high intensity field lines with a peak amplitude
above this intensity threshold are considered to be filament candi-
dates. Dilated regions around all 2D local minima and local max-
ima with intensities below ϵthresh are labeled background (not fil-
aments). Dilated regions around 2D local maxima with intensities
above ϵthresh are labeled foreground (potential filament centers).
With these regions as inputs [Fig. 6(b)], the watershed algorithm
sorts the remaining unassigned regions into background [purple
regions in Fig. 6(c)] or distinct foreground regions [colored regions

FIG. 6. (a) Emissivity data, with the minimum peak blob intensity threshold indi-
cated as a white contour. Local maxima above and below the threshold are indi-
cated as blue and red dots, respectively, while local minima and boundaries of zero
emission are indicated in green. (b) Regions given as input to the watershed algo-
rithm. Definite background is in light blue (not a blob), dark blue areas are yet to
be classified by the watershed algorithm, and all other colors indicate foreground
regions (sources for potential blobs). Note that each pixel in the image represents
a single basis field line. (c) Colored regions show contours returned by the water-
shed algorithm. Colored points are as in (a). (d) Contours of 2D Gaussians fitted
to the data in the colored regions shown in (c). Some regions have been filtered
out using a range of criteria and thus do not have fits.

in Fig. 6(c)]. Note that each pixel in Fig. 6(b) represents a single basis
field line, showing the resolution of the analysis grid. The water-
shed algorithm can be pictured in terms of different colored pools
of water originating at the distinct foreground markers. The water
in each pool is allowed to rise and spread according the terrain of
the data until it comes into contact with a background marker or
water of a different color. On contact with another region, the area
assigned to that color (filament) is frozen. This process is illustrated
in Fig. 7.

The identified regions are filtered according to a number of
conditions. First, the contours are assessed on their solidity (ratio
of area of the contour to the area of its convex hull), which is a
measure of how uniformly convex the contour is and thus how ellip-
tical it is in shape. Contours with a low solidity (typically <60%), are
rejected as their irregular shape indicates they cannot be described
well by a fitted 2D Gaussian and they may be the results of inter-
acting filaments which the watershed algorithm was unable to sep-
arate. Next contours are rejected if they extend to the edge of the
analysis grid and have significant intensities there (typically >50%
of the peak contour amplitude) as these contours extend outside
of the analysis grid and thus are missing information required for
an accurate Gaussian fit. Finally, any excessively large regions that
are too large to be a filament (δR > 15 cm, δRϕ > 20 cm) are
rejected.

The remaining contours are fitted with tilted 2D Gaussians with
a background level set to the average intensity of the local minima
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FIG. 7. Illustration of the watershed algorithm, with different
colored water sources rising until they touch and define a
bounding contour.

in the inversion. The Gaussian fits yield the filaments central posi-
tions, 1σ major and minor axes widths, amplitudes, and inclinations
[see contours in Fig. 6(d)]. A Gaussian description of the filaments
is chosen because it is the simplest fitting function that produces a
representative width and amplitude for the observed bloblike data.
The combination of line of sight integration effects and limited spa-
tial resolution mean it is not possible to reliably discern any more
complex internal filament structure.

The watershed algorithm has a number of important advan-
tages over previously tested algorithms that relied upon contours
generated from thresholding the intensity data at a suitable level
identified for each peak. First, it handles interacting filaments very
effectively, preventing them from being merged into a single larger
blob and avoiding problems from multimodal emissivity structures
producing multiple contours for a given filament. Second, it effi-
ciently maximizes the amount of relevant intensity data assigned
to each filament, with each filament assigned to the largest possible
surrounding region out to the closest local minima in intensity or
the closest neighboring filament (whichever is closest). When com-
bined with the fitting of 2D Gaussians to the contours, this means
that large secluded filaments can utilize intensity information span-
ning the whole structure leading to particularity high accuracy fits.
In the case of small, interacting filaments this makes the detection
of the filaments possible by relying on the upper sections of the
amplitude distributions, which would not have been correctly iden-
tifiable by the previously tested algorithms, due to the absence of
the required contour level (e.g., 50%) within the filament’s enclosing
contour.

In Fig. 5(c), the detected filaments are indicated by colored
ellipses showing the 1σ contours of the fitted Gaussians. The cen-
tral field lines for each fitted filament are indicated by colored lines
of the same color in Figs. 5(a) and 5(d).

Geometric line of sight effects from wide angle imaging lead
to some complications correctly identifying filaments and extract-
ing their properties from the inverted emission data. Insight into
artifacts in the reconstructed emission can be gained by consider-
ing the structures present in the moment matrix, shown in Fig. 5(b).
The moment matrix gives the sum total emission in the cam-
era image along each field line in the basis rather than a self-
consistent distribution of the emission among the field lines. There-
fore, any remaining artifacts from line of sight effects in the inverted
emission, originate in stronger forms in the moment matrix. The
moment matrix captures the main structural features of the inver-
sion solution, but these structures are distorted over smaller length
scales by the interfield line dependencies, resulting in banding and
blurring in E.

Due to the narrow width of the SOL, the variation in magnetic
field and thus pitch angle across the radial extent of the inversion
domain is rather small. Therefore, the geometry of the basis field
lines varies slowly in the radial direction. The field lines in close
radial proximity to a filament can therefore have raised emission
along a portion of their length even if the field line as a whole does
not properly align with the filament. This explains why many of
the banding structures are predominantly radial in nature. We term
these bands extending outward from the filaments the “shadows” of
the filaments, in the sense that the filaments “cast” emission onto
their neighboring field lines.

While these shadows are heavily attenuated in the inverted
emission, some remnant of them remains. The most direct con-
sequence of the shadows is that they broaden the emission from
the filaments so that their widths will generally be overestimated.
However, they also have a second important consequence, arising
from the fact that some basis field lines can be weakly approxi-
mated by the linear combination of more spatially separated field
lines. This is illustrated in Fig. 8 where the flux tubes repre-
sented by the red and orange dashed lines overlap with significant

FIG. 8. Illustration of the origin of “ghost” filaments. The blue and green lines repre-
sent true filaments that overlap in the line of sight of the camera. Red and orange
dashed lines represent possible field lines that overlap with significant portions of
the blue and green filaments and thus generate an artificial ghost filament.
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portions of the blue and green flux tubes. Therefore, when fila-
ments lie along the blue and green flux tubes, the average emis-
sion along the length of the red and orange flux tubes will also
be high despite there being little genuine localized emission along
those field lines. This leads to secondary regions of enhanced emis-
sion in the inversion, that have the same appearance as filaments.
These spurious filament structures we term “ghost” filaments. In
the emission plots, these ghost filaments occur where the shadows
of multiple parent filaments overlap to form new local maxima in
intensity.

Bright spots in the camera images, typically occurring above
the midplane, where sections of field lines are nearly tangential to
the camera field of view, can lead to further enlarging of a filament’s
shadow in both the radial and toroidal directions by raising the aver-
age intensities of all field lines that pass through the bright spot. Such
filaments are particularly susceptible to producing ghost filaments.

The green filament in Fig. 5 is an example of a ghost filament
arising from the overlapping of sections of the red and blue filaments
in the camera line of sight.

Given these complicating factors, it is important to benchmark
the technique thoroughly and assess its accuracy, limitations, and
errors. The remainder of the paper discusses the methodology and
results of how this has been achieved.

IV. SYNTHETIC DIAGNOSTIC
A synthetic camera diagnostic has been created to aid in the

development and benchmarking of the identification technique, as
well as facilitating the forward modeling of simulation outputs for
comparison with experimental measurements (as applied in Ref. 57).
The principle used is the converse of the inversion process: Eq. (2) is
applied to produce a synthetic camera image Isynth for a predefined
emission profile ϵsynth and geometry matrix G. The resulting image
contains emission that is equivalent to that in background subtracted
experimental camera frames.

In principle, the input emission vector can be any 2D pat-
tern. If an experimentally derived emission vector is used as
input, we produce a synthetic reprojection of the inversion data,
demonstrating the visual form of the structures that are captured
in the emission vector, as was shown in Fig. 5(d). The input
emission vector can also be provided by numerical simulations57

and in this application, the technique provides forward modeling.
A third option is when entirely artificial filament images are pro-
duced for the purposes of benchmarking and technique optimiza-
tion and each filament’s emission profile at the midplane is set to a
2D Gaussian.

In the latter case, images of synthetic filaments can be combined
additively to produce full synthetic frames. In order to closely match
experimental data, positive definite Gaussian noise can be added to
the frames to simulate noise from the camera sensor.

As the synthetic diagnostic composes images through a linear
combination of field line basis images, it can only produce images
of field-aligned structures and no variations in emission along field
lines is possible in its current form. This limitation could be relaxed
by including further basis functions of increasing complexity in G,
although for the reasons outlined in Sec. III A, the emission of inter-
est is strongly field aligned and such an increase in complexity is not
warranted at this point.

FIG. 9. (a) Experimental camera frame from MAST shot 29852, with the prepro-
cessing described in Sec. III B applied. (b) Frame from the reference synthetic data
set produced using the synthetic diagnostic, containing 40 synthetic filaments, with
positive definite Gaussian noise applied.

Figure 9 compares output from the synthetic diagnostic to
experimental data, showing a good visual qualitative similarity, fur-
ther justifying this choice. Some differences are seen in the upper and
lower divertor regions due to poorer constraint of the camera cali-
bration in those regions. However, they are outside of the analysis
region that is inverted and so do not impact the results below.

V. BENCHMARKING
As discussed in Sec. III C, geometrical distortions that occur in

the inversion process can lead to errors and false detection of ghost
filaments, complicating the interpretation of the outputs of the tech-
nique. Benchmarking is required to quantify and understand these
effects in order to draw strong conclusions from future applications
of the technique. By analyzing large quantities of synthetic data and
matching detected filaments returned from the technique to input
synthetic filaments and comparing their properties, the accuracy and
reliability of the technique can be assessed.

A. Synthetic data set
A reference data set, A, of 5000 synthetic fast camera frames

was generated for this study, with 40 synthetic filaments per frame,
corresponding to a total of 200 000 filaments with random posi-
tions and characteristics. These synthetic filaments were distributed
uniformly around the full toroidal extent of the machine. A range
of numbers of filaments per frame was explored and 40 filaments
per frame were chosen as it corresponds to a commonly observed
toroidal quasimode number seen in MAST12 and produced syn-
thetic frames which most closely visually resembled experimental
camera data. The toroidal quasimode number describes the aver-
age number of filaments observed in a full toroidal circuit of the
machine. The chosen value lies at the upper end of literature val-
ues for quasitoroidal mode number.12,35 This is appropriate, given
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that literature values are likely to have missed the very faintest fila-
ments which are challenging to measure, but which are important to
include in the synthetic data. Furthermore, the potential overlap of
filaments means the apparent quasimode number is likely to appear
lower than the input mode number.

Positive Gaussian noise with standard deviation equal 5% of the
image dynamic range was applied to all synthetic frames. This ampli-
tude of noise is representative of that found in experimental camera
data.

For this application, the geometry matrix is calculated with a
higher grid resolution of ΔR = Δ(ϕR) = 2.5 mm in order to avoid
aliasing effects in the resulting images.

The synthetic filaments are produced with Gaussian cross
sections and their properties (positions, widths, and amplitudes)
are drawn from realistic probability distributions based on exper-
imental findings. The details of the chosen distributions are sum-
marized in Appendix B. The radial distribution of the filaments
follows a log-normal distribution27,28 starting at the separatrix
(R = 1.36 m) and peaking 3 cm into the SOL. Analysis of experimen-
tal camera data with the inversion technique has shown an exponen-
tial distribution of toroidal filament separations,58 indicating that
filaments are randomly distributed toroidally around the machine
with no mode number (hence the use of the term quasimode num-
ber to refer to the average number of filaments). Therefore, we
have adopted a uniform distribution for the toroidal locations. The
radial and toroidal widths are drawn from log-normal distributions
informed by the width distributions observed in Refs. 12 and 36.
Filament amplitudes are distributed exponentially as observed in
Refs. 18, 30, and 59.

The camera calibration and magnetic equilibrium used to pro-
duce the synthetic data are for MAST discharge 29 852. The radial
extent of the analysis region was R = 1.290–1.474 m, spanning
the outer midplane SOL and including several centimeters inside
the separatrix, given the MAST midplane separatrix was located at
R ≈ 1.36 m for this discharge. The analysis region extended toroidally
from ϕR = −0.55 m to ϕR = +0.548 m, corresponding to an angu-
lar range in machine coordinates of ϕ = 153○–215○ centered about
ϕ0 = 177○ (c.f. camera tangency plane at ϕ = 215○).

The analysis region focuses on foreground filaments (i.e., those
that intersect the midplane in the foreground). Of the 200 000
filaments in the data set, 20 243 (10.1%) fall within the analysis
domain indicated by the white dashed box in Fig. 5(c), correspond-
ing to an average of 4.05 filaments in the analysis domain per
frame.

Toroidal positions and widths are generated as angles (ϕ and
δϕ) and converted to lengths (Rϕ and δRϕ). The analysis grid had a
resolution of 4 mm in R and 9 mm in Rϕ, corresponding to 47 radial
points and 123 toroidal points, giving a total of 5781 distinct field
lines. This is the same resolution used to invert experimental camera
data. This resolution was chosen so as to best constrain the radial and
toroidal widths of the filaments, while keeping the computational
burden manageable.

Given the decaying exponential amplitude distribution peaks
at zero, many of the synthetic filaments will be very faint, as
may also be true in the experimental case, and therefore cannot
reasonably be expected to be detected against background noise.
However, inclusion of these very faint background filaments,
while not currently a focus of measurement, is important for

reproducing the full complexity of the likely distributions of the
experimental data.

In order for the amplitudes of the synthetic filaments to be
consistent with those in experimental data, the synthetic images
are scaled so that histograms of the pixel intensities in the syn-
thetic images are consistent with those from experimental frames.
This calibration is important for results from synthetic data at a
given filament amplitude threshold to translate well to experimental
measurements.

B. Matching synthetic and detected filaments
In order to quantitatively assess the quality of our inversion

technique, we need to classify the detected filaments as either “true
positives” that can be assigned to corresponding input synthetic fil-
ament or spurious “false positives” that cannot be matched to a syn-
thetic filament. Before we proceed, we define the detected filaments
as the output from the filament identification technique and the syn-
thetic filaments as the input filaments used to generate the synthetic
camera images.

The method by which the set of detected filaments {Dall} and
the set of synthetic filaments {Sall} are compared and matched is as
follows:

1. As discussed earlier, since the synthetic filaments are pro-
duced homogeneously around the whole machine, only some
of them will fall in the toroidally localized analysis domain.
These will form the subset {Sdomain} of filaments inside the anal-
ysis region [white dashed box in Fig. 5(c)]. Of the filaments in
{Sdomain}, those that (1) lie within the analysis domain and (2)
have amplitudes above the detection threshold, ϵthresh, [defined
in Sec. III D] will from an even smaller subset that we call
{Sanalyze}.

2. Each detected filament is compared to each unmatched syn-
thetic filament in {Sdomain}. The detected filaments are exam-
ined in order of decreasing amplitude.

(a) If a single synthetic filament center lies within 1σ of the
Gaussian fitted to the detected filament, the input and
detected filaments are added to the sets of matched fila-
ments {Smatched} and {Dmatched}, respectively.

(b) If multiple synthetic filaments are within 1σ, the highest
amplitude is taken as the “match” and the rest are consid-
ered to “overlap” with the “matched” filament as they are
too close to it to be distinguished. Overlapping filaments
can be generated due to the statistical nature of the synthetic
frame generation. However, we do not expect them to occur
very frequently in actual experiments.

3. Synthetic filaments in {Sanalyze} that are neither matched
nor overlapping are labeled “missed” and added to {Smissed}.
Detected filaments that are inside the analysis region and are
not matched are labeled “false” detections and added to set
{Dfalse}.
To summarize, we hence have that

{Sall} > {Sdomain} > {Sanalyze}
≈ {Smatched} + {Smissed} + {Soverlap}

(5)

and

{Dall} = {Dmatched} + {Dfalse}. (6)
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During this matching procedure a number of additional cases
are also handled which result in the approximate equality in Eq. (5)
and influence the figures of merit which are discussed shortly. If a
detected filament within the analysis region is matched to a synthetic
filament outside the analysis set (i.e., a synthetic filament with an
amplitude slightly below ϵthresh, or located just outside the edge of
the analysis region), then the synthetic filament is added to Sanalyze
and the filaments are considered matched as above. If a synthetic
filament in Sanalyze is matched to a detected filament outside the
analysis region (i.e., in the border region subject to basis bound-
ary effects) the synthetic filament is removed from Sanalyze as it does
not manifest in the analysis domain and thus would not be observed
experimentally.

Finally, with all detected filaments assessed for synthetic
matches, we define the set

{Sisolated} = {Sanalyze} − {Soverlap}
= {Smatched} + {Smissed},

(7)

which is the set of filaments that (1) are in the analysis domain,
(2) have amplitudes above ϵthresh, and (3) can be resolved individ-
ually. This is the set of filaments we wish the technique to identify
as accurately and reliably as possible (i.e., we want to minimize
{Smissed}).

In Fig. 10, we show a particular frame that displays each of
the categories of synthetic and detected filament (typical synthetic
frames do not generally display this complexity). Synthetic fila-
ments are indicated by dashed ellipses and detected filaments by
solid ellipses. Matched filaments are shown in green (belonging to
{Smatched} or {Dmatched}) and false ({Dfalse}) or missed ({Smissed}) detec-
tions are shown in red. Overlapping synthetic filaments ({Soverlap})
are shown in blue, while synthetic filaments outside the analysis
domain or with amplitudes below the threshold (filaments not in
{Sanalysis}) are shown in pink.

C. Benchmarking figures of merit
In order to quantify the performance of the inversion tech-

nique, a number of numerical figures of merit (FoM) have been
developed. These are instrumental to an objective assessment of the
technique, informing further development, as well as giving metrics
for benchmarking overall success. Each type of FoM is described
below. Here, the notation |Smatched|, represents the number of ele-
ments in the set {Smatched} and the same convention will be used for
all the other sets.

1. Sensitivity
We define sensitivity (also known as recall) as

fsens,domain = ∣Smatched∣
∣Sdomain∣ × 100. (8)

This gives the proportion of all filaments in the analysis domain that
are detected and is expressed as a percentage. We also define

fsens,isolated = ∣Smatched∣
∣Smatched∣ + ∣Smissed∣ × 100, (9)

which gives the proportion of isolated analysis filaments that are
detected.

FIG. 10. (a) Synthetic camera frame and (b) corresponding inversions with
detected (synthetic) filaments represented by ellipses with solid (dashed) lines.
Matched filaments are shown in green, false (missed) filaments in red, overlap-
ping filaments in blue and filaments outside the analysis region (white dashed
rectangle) or with low amplitudes in pale pink. The white contour and color bar
indicate ϵthresh. The color scale depends on the arbitrary synthetic amplitudes in
the synthetic images.

2. Precision
We define precision as

fprec = ∣Dmatched∣
∣Dmatched∣ + ∣Dfalse∣ × 100. (10)
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This is the proportion of all detections that are true positives.
These are termed identification FoMs as they describe how

effectively filaments are identified by the technique.

3. Parameter fractional errors
By calculating the average absolute fractional differences

between the measured and synthetic filament parameters the tech-
nique can be tuned to individually minimize errors in the position,
width, and amplitude of the filaments. The percentage error in a
parameter p can be expressed as

fp = ⟨ ∣pmeasured − pinput∣
pinput

⟩
matched

× 100, (11)

where {pmeasured} and {pinput} are the sets of detected and synthetic
filament parameter values, respectively, and the angular bracket rep-
resents the ensemble average over all matched filaments. Parameter
fractional errors are calculated for filament position, widths, and
amplitudes.

The FoMs calculated using Eq. (11) are termed measurement
FoMs as they concern the accuracy with which each parameter is
measured.

D. Filament amplitude detection threshold
The analysis of synthetic images provides an objective means of

setting the threshold amplitude for filament identification described
in Sec. III D. The parameter ϵthresh is chosen so as to maximize
the precision and sensitivity figures of merit, while sampling a
sufficiently large portion of the total filament population.

The first function of ϵthresh is to ensure the exclusion of small
local maxima below the noise floor. However, further increases in
ϵthresh yield improvements in the FoMs due to the exclusion of
spurious ghost filaments.

At large ϵthresh, only the largest filaments in the population
remain in the analysis set, leading to increased sensitivity to fila-
ments in {Sanalyze}, since the detectable objects are brighter and hence
more distinct. The precision also increases since only spurious struc-
tures from interactions between the very strongest filaments remain,
leading to fewer false positives.

Figure 11 shows how much of the total filament population
( fsens) is excluded for successive gains in precision ( fprec) and sen-
sitivity to the targeted filament population ( fsens,isolated) as ϵthresh is
increased.

The optimal value, ϵthresh = 1.5 × 10−2, is chosen, as above this
value there are relatively modest gains in precision and isolated sen-
sitivity. At this level, 50% of the total filament population lies above
the amplitude threshold. The technique detects 36% of the total fil-
ament population and 74% of isolated analysis filaments. This is
achieved with a 98.8% true positive detection rate. These FoM values
are summarized in Table III.

The dependence of fsens,domain on ϵthresh is broadly exponen-
tial, rolling over slightly at low amplitudes as the noise floor of
the technique is approached. The distribution peaks at 59%, indi-
cating that, for a decaying exponential amplitude distribution,
over half of the total filament population is potentially detectable
(i.e., above the noise floor of this technique), with the draw-
back that at this amplitude threshold there are almost equally as
many false positives ( fprec ≈ 57%). The precision saturates around

FIG. 11. Dependence of the precision (blue), analysis sensitivity (orange), and total
sensitivity (green) FoMs on filament amplitude detection threshold, ϵthresh. Dashed
lines show the FoM values achieved at the value of ϵthresh = 1.5 × 10−2 used in
the analysis.

ϵthresh = 2.0 × 10−2, above which nearly all detections are true
positives.

E. Breakdown of filament detections
With the figures of merit in place and the threshold set, we can

now quantify the performance of the inversion technique. Table I
gives a breakdown of the number of filaments that are assigned
to each category by the matching algorithm for the reference syn-
thetic data set, analyzed with ϵthresh = 1.5 × 10−2. Around 10% of
all the synthetic filaments spawned around the full toroidal extent
of the machine fall within the window in toroidal angle of 46○

under analysis and within the borders of analysis domain. 50% of
those filaments have amplitudes above ϵthresh, while 49% both have
amplitudes above ϵthresh and do not overlap with higher amplitude
filaments. Around 1% of filaments within the analysis domain are
obscured by higher amplitude filaments, which present themselves
together as a single local maxima in intensity. While these under-
lying filaments, obscured by larger filaments cannot be detected,
they raise the amplitude of the larger detected filaments. However,
we do not expect these filament interactions to occur routinely in
experiment.

Table II gives a breakdown of the detected filaments. Of the
7441 detections, only 91 (1.2%) were false positives that did not
match to a synthetic filament.

TABLE I. Breakdown of the numbers of synthetic filaments in each analysis category
for the reference synthetic data set, analyzed with ϵthresh = 1.5 × 10−2.

Set Sx |Sx| ∣Sx ∣
∣Sdomain ∣ (%) ∣Sx ∣

∣Sanalysis ∣ (%) ∣Sx ∣
∣Sisolated ∣ (%)

Sdomain 20 243 100 . . . . . .
Sanalysis 10 134 50 100 . . .
Sisolated 9 978 49 98 100
Smatched 7 341 36 72 74
Smissed 2 637 13 26 26
Soverlap 156 0.8 1.5 . . .
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TABLE II. Breakdown of the numbers of detected filaments in each analysis category
for the reference synthetic data set, analyzed with ϵthresh = 1.5 × 10−2.

Set Dx |Dx| ∣Dx ∣
∣Ddomain ∣ (%)

Ddomain 7432 100.0
Dmatched 7341 98.8
Dfalse 91 1.2

F. Error distributions and corrections
After quantifying the detection capabilities, we now address

the problem of assessing the quality of the measurements. For each
detected filament, it is possible to calculate the absolute error on a
parameter p, as defined by ξp = pdetected − psynthetic. Since different fila-
ments can have different errors, the latter are statistically distributed.
Assessing the average errors, μξp identifies systematic errors arising
from distortions in the inversion which can be corrected for through
offsets in future measurements. Assessing the standard deviation in
the errors, σξp, quantifies the random errors that remain after the
systematic errors are corrected for.

Figure 12 shows the resultant distributions of absolute errors,
ξp, on the position and width measurements for all matched out-
put ({Smatched}) filaments from the reference synthetic data set. Each
parameter shows a broadly Gaussian distribution of errors over at
least an order of magnitude in frequency, although long low fre-
quency tails are present. The mean and standard deviation of the
fitted Gaussians are listed in Table III. The table also gives the fp
values given by Eq. (11) for each parameter (note fR−Rsep has been
normalized relative to the 5 cm SOL width between the last closed
flux surface (LCFS) and the first limiting structure).

The average errors in the R and ϕR positions are small, at
0.3 cm and −0.2 cm, respectively. The widths of the fitted Gaus-
sian are also small, each around 0.2 cm, although the raised wings

FIG. 12. Distribution of errors in detected filament parameters for radial position,
toroidal position, radial width and toroidal width (left to right, top to bottom, respec-
tively). The solid blue lines shows the distributions of errors, while the dashed
orange lines shows Gaussian fits to the distributions.

TABLE III. Summary of the figures of merit from analyzing the reference synthetic
data set with ϵthresh = 1.5 × 10−2. The first three FoMs should be maximized and
the remainder minimized. Values prior to the systematic offset correction are given in
brackets. fR−Rsep has been normalized relative to the 5 cm SOL width between the
LCFS and the first limiting structure.

Error

Quantity, p μp σp FoM fp (%)

fprec . . . . . . 98.8
fsens,isolated . . . . . . 74
fsens,domain . . . . . . 36
R − Rsep (cm) 0.32 0.14 4 (7)
Rϕ (cm) −0.25 0.18 15 (22)
δR (cm) 0.56 0.27 33 (70)
δRϕ (cm) 1.1 0.73 26 (67)

and long, largely symmetric tails with Fisher kurtosis values of 8.9
and 12.3, respectively, indicate that rare large errors of greater than
1 cm can occur with greater frequency than suggested by the Gaus-
sian widths. Almost 3% of R positions having errors greater than
1 cm (5σ) and around 13% of ϕR positions having errors greater
than 1 cm (5σ). The high accuracy of the position measurements is
important for accurate filament velocity measurements, correspond-
ing to velocity errors of the order 0.3 km/s in both radial and toroidal
directions. For a typical filament traveling radially at 0.7 km/s and
toroidally at 4 km/s, this corresponds to percentage errors of 40%
and 7%, respectively. The systematic errors in the width δR and δϕR
are more significant, at 0.6 cm and 1.8 cm, respectively. These over
estimations of widths arise from a number of factors, most impor-
tantly, the finite analysis grid resolution, overlap of filaments and
distortions during the inversion process. The error distributions are
described well by the fitted Gaussian, with widths of 0.3 cm and
0.7 cm, respectively, although again the tails of the distributions
are slightly more pronounced, with kurtosis values of 7.9 and 1.1,
respectively.

With the systematic errors in these parameters, μξp, identified,
they are applied as offset corrections in the analysis that follow, so
that measurements should only be subject to random measurement
errors.

G. Position and width distribution measurements
The ability to accurately measure the statistical properties of fil-

aments is essential to build reliable first principles models and to
assess their intermittent loads on the plasma facing components. We
now wish to understand how well our technique is able to reproduce
the distributions of the synthetic filaments.

Figure 13 compares the frequency density distribution func-
tions of filament positions and widths for the original synthetic
filaments ({Sdomain}, orange dashed lines) and the detected output fil-
aments ({Ddomain}, black solid lines). The detected values have been
corrected by the systematic offsets identified in Sec. V F.

The distribution functions of radial and toroidal positions are
very well recovered, closely following the synthetic distributions.
The detected width distributions preserve the overall shape of the
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FIG. 13. Comparison of input and output frequency density distributions of filament
positions and widths for the reference synthetic data set. Distributions of synthetic
input filaments are given by orange dashed lines and detected distributions by
black solid lines.

originals, although the distribution of δR is more peaked and the dis-
tribution of δϕR has its peak shifted to the larger widths by around
0.6 cm. This gives us confidence that detected distributions of fila-
ment positions and widths accurately reflect the forms of the true
underlying physical distributions.

It is useful to analyze these results in more detail, in
particular, the partial distributions of specific subsets in order
to determine trends. These partial distributions are displayed
and compared in Fig. 14, which we will now discuss. The

FIG. 14. Comparison of input and output normalized frequency distributions of
filament positions and widths for the reference synthetic data set. Dashed and
dotted lines indicate sets of synthetic filaments, while solid lines indicate sets of
detected filaments recovered from the analysis procedure. The frequencies for the
full set of synthetic filaments (dotted gray line) have been divided by 9 to fit on the
same axes.

distributions of matched ({Smatched}) and missed ({Smissed}) fila-
ments collapse onto the overall distribution of synthetic filaments
({Sdomain}) showing that filaments are not selectively detected and
thus the full extent of the distributions are evenly sampled. This
is strong evidence that filaments have the observed properties and
are not, for instance, all a single size. Similarly, the distribution of
matched detections ({Dmatched}) collapses onto the overall distribu-
tions of detections.

The distribution of false positive detections ({Dfalse}), however,
shows separate structure that cannot be resolved in Fig. 14 due to
their low frequency. Indeed, false detections are over twice as likely
to occur at low R values, which is anticipated since line of sight
effects mean ghost filaments typically occur at lower R values than
the two true filaments which overlap to produce them. The dis-
tribution of false positive detections has two peaks in ϕR located
around ϕR = −20 cm and +30 cm, indicating locations where line
of sight effects are particularly prone to producing ghost filaments.
Both width distributions have higher relative false positive rates for
larger width filaments, especially in the case of δϕR. Dashed and dot-
ted lines show the original distributions, while solid lines show the
measured distributions. The dotted gray lines show the distributions
for all 200 000 synthetic filaments in the data set distributed around
the full toroidal extent of the machine (divided by 9 to fit on the
same axes), while all other lines refer to sets of filaments within the
analysis domain. Here, the proportion of filaments in each match-
ing category is clear, demonstrating how few filaments are missed or
false detections.

H. Amplitude distribution measurements
In order to compare the synthetic and detected filament ampli-

tude distributions the synthetic amplitudes must be mapped to
corresponding amplitudes in the inversion data.

Figure 15 shows the inversion amplitude measured at the true
center of each synthetic filament in the reference synthetic data set
as a function of the uncalibrated synthetic input amplitude. While
there is some scatter resulting from the overlap of filaments and dis-
tortions in the inversion, there is a strong linear dependence with
a Pearson correlation coefficient of 0.79. Excluding high amplitude

FIG. 15. 2D histogram showing the relationship between synthetic input field line
emission amplitude and resulting inversion field line emission amplitude. The color
indicates the frequency of each bin (pixel).
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outliers, the gradient of a linear fit to the data yields the calibra-
tion factor required to compare input amplitudes and inversion
amplitudes directly.

Figure 16 compares the distributions of detected filament
amplitudes and calibrated synthetic amplitudes, using line styles
consistent with Fig. 14. The vertical gray line indicates the ampli-
tude threshold ϵthresh = 1.5 × 10−2, below which detections are
not attempted. The output distribution successfully captures the
exponential nature of the input distribution, but for a roll over at
low amplitudes, arising from the increased proportion of missed
filaments at low amplitude. The majority of false positive detec-
tions also occur at low amplitudes. The matched synthetic filaments
curve continues below ϵthresh due to the subset of synthetic filaments
with amplitudes below ϵthresh that manifest in the inversion with
amplitudes above ϵthresh and are detected.

In order to assess the fidelity of the amplitude measurements
and ensure that measured exponential amplitude distributions are
not an artifact of the measurement technique, other data sets with
different amplitude distributions have been analyzed, each contain-
ing 5000 frames.

Data set A1 shares the same experimentally representative
parameter distributions as the reference synthetic data set, A, but
contains only one filament per frame. This data set is used to assess
the effect of filament overlap on results from the reference data set.

Data set Aδ ,1 contains a single randomly positioned filament
per frame, each with the same fixed amplitude and filament size. This
heavily simplified data set collapses the input amplitude and width
distributions onto delta functions so that the width of the recov-
ered amplitude distribution is solely due to the intrinsic inaccuracies
in the analysis technique. The output amplitude distribution then
provides an estimate of the intrinsic random error on an amplitude
measurement.

Data set Aδ contains the same distributions as Aδ ,1, but with
40 filaments per frame, so that the effects of filament overlap can be
readily identified.

Figure 17 shows the calibrated synthetic amplitude distribu-
tions for each of these data sets (dashed lines) and the inversion
amplitudes measured at the true center of each filament in the anal-
ysis domain (solid lines). In the case of the simple Aδ ,1 data set,
the input delta function in amplitude is dispersed but maintains

FIG. 16. Synthetic and detected amplitude distributions. Line styles are con-
sistent with Fig. 14. The vertical gray line indicates the amplitude threshold
ϵthresh = 1.5 × 10−2.

FIG. 17. Calibrated original and measured inversion amplitude distributions for
(a) data sets A and A1 with exponential amplitude distributions and (b) data sets
Aδ and Aδ ,1 with delta function amplitude distributions. Dashed lines are the cal-
ibrated input amplitude distributions, while solid lines show the distributions of
inversion amplitudes. The vertical dashed gray line indicates the delta function
in input amplitudes for the Aδ and Aδ ,1 data sets.

the peaked, broadly symmetrical shape. Given there is only one fil-
ament per frame, this data set demonstrates the intrinsic dispersion
in amplitudes resulting from the inversion technique without any
filament overlap. The Gaussian width of the measured distribution
is around 15% of the mean, indicating that this is the typical size
of error that can be expected on amplitude measurements, without
filament overlap effects.

When multiple filaments are introduced as in the Aδ data set,
the highly peaked distribution shape is retained, but the interactions
between filaments lead to further broadening of the distribution to a
Gaussian width around 25% of the mean, a shift to higher amplitudes
and an enlarged high amplitude tail. It should be noted that while
the bulk of these effects will primarily be the result of the overlap
of foreground and background filaments and are thus relevant to
experimental measurements, the high amplitude tail and a degree of
the broadening will be due to overlap of nearby filaments which are
not anticipated experimentally.

In the case of the single filament, physically representative data
set, A1, the inversion amplitudes closely follow the input, indicating
that in the absence of filament overlap, amplitude distributions are
recovered reliably. The addition of multiple filaments per frame in
A introduces a constant positive offset due to the overlap of fore-
ground and background filaments raising the average intensity of
each projected field line.

As the filaments are uniformly distributed around the machine
and there are many possible points of intersection between
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different field lines in the field of view of the camera, the average
effect of the filaments outside the analysis domain is to provide an
effectively uniform background of emission. However, variation in
field line intersection in different parts of the image due to line of
sight effects will lead to some dispersion in the background offset.
Hence, a roll over is observed in the measured amplitudes. There-
fore, the measured amplitude distribution is representative of the
true distribution at all but the lowest amplitudes, except for an
approximately constant shift to higher amplitudes due to filament
overlap. Given the roll over occurs below the optimal blob detection
amplitude threshold, ϵthresh = 1.5 × 10−2, and the constant offset does
not affect the distribution shape, this should not affect experimental
conclusions about measured amplitude distributions.

VI. EXPERIMENTAL PARAMETER DISTRIBUTIONS
To give an example of the potential of our new technique, we

now apply it to a real discharge carried out on MAST. The analy-
sis was performed on 4000 frames from discharge 29 852, over the
time window 0.205–0.245 s, with ϵthresh = 0.015 and the systematic
offset corrections applied as determined by the synthetic filament
study. This was a double null discharge, with a plasma current of
Ip = 700 kA and an injected neutral beam power of PNBI = 2 MW.

Figure 18 shows the measured experimental distributions of
filament positions and widths, obtained with the new inversion tech-
nique, in black. Given the findings from the synthetic data analysis,
orange dashed lines have been added to sketch, without any pretense
of rigor, possible inferred distributions for each parameter.

A bimodal distribution is recovered for the R positions, with
the peak at low major radius likely due to ghost filaments which
have their highest relative frequently at low R. The primary peak
is described well by a log-normal distribution as observed previ-
ously and assumed for the synthetic data sets. The peak in detections
occurs around the separatrix where both the number of filaments

FIG. 18. Distributions of filament parameters for experimental data from MAST shot
29 852, t = (0.205, 0.245) s, with ϵthresh = 1.5 × 10−2. Solid black lines show the
measured distributions with the systematic error offset correction applied. Dashed
orange lines are sketches of the inferred most probable true distributions shapes
given the insight gained from the synthetic analysis.

FIG. 19. Distributions of filament amplitudes for experimental data from MAST
shot 29 852, t = (0.205, 0.245) s, with ϵthresh = 1.5 × 10−2. The solid black line
shows the measured distribution. The dashed orange line is a sketch of the inferred
most probable true distributions shapes given the insight gained from the synthetic
analysis. The vertical dashed line indicates ϵthresh.

and the neutral particle density is high. Inside the separatrix the
detection rate falls off sharply due to the rapid fall off in neutral den-
sity, given the neutral ionization mean free path at the separatrix is
∼1 cm.

As far as the toroidal distribution is concerned, a reduced detec-
tion rate is observed at large ϕR which is significantly stronger than
is seen in the synthetic data set, but is still believed to be a diagnostic
artifact from line of sight effects. The region of increased detection
density at low ϕR does not coincide with the highest region of false
detections in the synthetic data, so it is likely the increased detections
at low ϕR are a result of greater sensitivity rather than increased false
positives.

Both radial and toroidal width distributions have similar shapes
to the those measured from the reference synthetic data set, indicat-
ing the widths are well described by log-normal distributions.

Figure 19 shows the measured distributions of filament ampli-
tudes for the experimental data set in black, again with an orange
dashed line added to sketch out the possible distribution that can
be inferred from the synthetic data analysis. An exponential ampli-
tude distribution is observed with a roll over around ϵthresh, similar
to that observed for the reference synthetic data set. This observa-
tion of an exponential amplitude distribution is in agreement with
previous measurements with Langmuir probes15,30 and GPI.60

VII. DISCUSSION
The fast camera data processing technique discussed here has

been thoroughly investigated to understand its accuracy and relia-
bility. A number of further factors should be considered that affect
the precision and reliability of the technique.

The grid resolution of field lines used in the geometry matrix
plays an important role in the precision of technique’s output. This
must be sufficiently high to resolve the smallest filaments of interest,
which are of the order of several millimeters across and in gen-
eral a few ion Larmor radii. However, the distortion and smoothing
in the inversion and regularization process enlarges structures in
R-Rϕ space, such that, provided these effects are accounted for as
in the systematic error correction, the grid resolution can be slightly
coarser than the structures being measured.
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The resolution that can practically be used is limited by the
computational time per analysis filament and the extent of the anal-
ysis region. It is desirable that the analysis region be large for two
reasons. First, analyzing a large region makes best use of the avail-
able data and produces more filament detections, so that stronger
statistical conclusions can be drawn from the larger sample sizes.
Second, a large analysis domain maximizes the proportion of data
that is not affected by boundary effects (which scales as the prod-
uct of the grid dimensions). The grid resolution used in Sec. V was
chosen to achieve an equitable balance, such that the necessary fea-
tures could be resolved, without increasing the computation cost to
an extent that it would prohibitively limit the amount of data that
could be analyzed.

The camera spatial resolution, limited by its pixel resolution
and viewing perspective, also limits the accuracy of the filament
measurements. Filament widths in the camera field of view are
often only of the order of a few pixels across over much of their
length, leading to pronounced discretization of the intensity distri-
bution across their width. This leads to sharp discontinuities in pixel
intensity along field lines, particularly in areas where the field lines
pass at 45○ to the image axes. This can result in artificial inhomo-
geneities along field lines and striations in inversion intensity, which
complicate identification.

While the camera sensor has a 12 bit bit-depth (0–4095), the
OpenCV61 image processing library used in the prepossessing stages
of the analysis requires the images to be converted to 8 bit bit-depth
(0–255). This reduction in dynamic range propagates through to the
inversion and reduces the fidelity of filament contour selection. The
smallest, faintest filaments are only a few pixels across and contain
pixels with intensities at the lower end of the 8-bit dynamic range
(0–255). Therefore, the range of the amplitudes in the contour can
be small leading to significant “terracing” of the intensities across
the contour. When fitting the 2D Gaussians across only a few points,
this can have noticeable effects for fitting to the smallest, faintest
filaments. Therefore, avoiding the conversion to 8-bit data for the
OpenCV operations would preferable in future.

At 100 kHz the camera’s integration time is 3.3 μs, during which
fast filaments9 with total velocities of ∼4 km/s can be expected to
move up to 1.3 cm. Kirk et al.12 has previously investigated the
effects of exposure time on filament measurements under similar
conditions and has found it not to be significant.

A source of error that has not been quantified in this bench-
marking exercise is that arising from inaccuracies in the magnetic
equilibrium and camera calibration, which will never be perfect
descriptions of the physical systems. A nonquantitative assessment
of these errors has shown they can be significant for poor quality
camera calibrations and equilibrium reconstructions. However, if
care is taken in producing these inputs their effects on the bench-
marking conclusions should not be large. While quantification of
these sources of error is an important area of future study, it is
beyond the scope of this work.

Future analysis will also explore the effect of impurity emission
on the unfiltered camera measurements, particularly measured fila-
ment widths. While these effects are expected to be negligible, they
shall be assessed using the CHERAB62 spectrally resolved ray tracing
code.

The technique has thus far been developed looking at L-mode
filaments as a first case. This is because they are brighter and

more frequent than inter-ELM filaments,36 yet avoid the higher
energies and currents involved in ELMs, in which significant bal-
looning is expected to occur, distorting the filament’s local mag-
netic field from that of the magnetic equilibrium and weakening
the assertion that filaments are well aligned to the known mag-
netic equilibrium (in the absence of reliable nonequilibrium mag-
netics data). However, this should not prohibit applications to
inter-ELM and ELM filaments and these will be explored in future
work.

The technique will first be applied across the large archive of
existing fast camera footage from MAST, before being applied to
MAST-U, which will be equipped with two Photron SA-X2 cam-
eras. MAST-U studies will provide an excellent opportunity to
understand the influence of alternative divertor configurations on
filamentary transport. The technique should also be imported to
other machines, provided that good equilibrium reconstruction and
sufficiently bright filaments are present.

VIII. CONCLUSIONS AND OUTLOOK
A novel technique has been detailed for the processing of visual

imaging data and the identification of plasma filaments moving
in the region of the edge and scrape-off layer above the X-point
(i.e., upstream), under the assumptions that filaments are strongly
aligned to the equilibrium magnetic field and are relatively homo-
geneous along their length. The technique has been benchmarked
using synthetic camera data, containing filaments with known prop-
erties. This has enabled the precision, reliability, and limitations of
the technique to be assessed, in order to properly inform experimen-
tal applications and further development of the technique. Of those
filaments in the analysis region of interest with sufficient ampli-
tudes, the technique has been shown to successfully identify 74%,
with only 1.2% of detections being false positives. Standard errors
on filament’s radial and toroidal positions are around ±2 mm, while
standard errors on radial and toroidal widths are around ±3 mm and
±7 mm, respectively.

Given a sufficiently large sample, the measured filament data
has been shown to qualitatively reproduce features of the input dis-
tributions. An active area of interest for future development of the
technique is in the use of convolution neural networks for identifi-
cation of filaments in inverted camera data, which has the potential
to overcome geometric line of sight effects and significantly improve
detection accuracy.65 Application of the technique to stereoscopic
fast camera data will also be performed to assess the effects of the
viewing angle and explore inversion techniques independent of the
assumption that filaments are strongly field aligned.

The next step will be to apply the technique to large quan-
tities of past camera data, in order to compose a large database
of filaments and their properties. The technique can be readily
extended to include tracking of filaments in order to provide infor-
mation about filament radial and toroidal velocities. This should
provide the breadth and quantity of data necessary to perform
detailed statistical analyzes of filament properties to understand
their roles in shaping SOL profiles and their dependence on engi-
neering and physics quantities. While the identification technique
assumes filaments are homogeneous along field lines, once the fil-
aments have been found their parallel structure in the images can
also be investigated, opening up many new possibilities. While
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in the process of finalizing the paper, we learned of a different
approach with similar aims presented in Ref. 64, testifying the
attention of the community to the subject of experimental filament
analysis.
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APPENDIX A: ALTERNATIVE APPROACH
TO THE CAMERA ANALYSIS

Section III C describes the standard inversion technique used
in this paper. In the moment matrix discussed there, the emission of
each field line is given by the sum of the intensities along the field
line and it therefore represents the average properties of the emis-
sion along the field line. However, a completely different approach
to the analysis of the camera data is possible. Indeed, knowing how
a given field line projects on the camera image, we can identify how
the emission changes along it by tracking down the intensity on each
pixel belonging to the said field line. This produces the possibility to
investigate different statistical moments of the intensity distribution
along the field lines and therefore acquire additional information.
By doing this, we have dropped the assumption that the emission is
homogeneous along the field lines, which was essential in the main
inversion technique. If instead of taking the matrix product of GT

with I, we take the elementwise product we produce a “weighted
geometry matrix,”

Fij = GijIi, (A1)

where Fij is the intensity of the i-th pixel in the camera image mul-
tiplied by the corresponding intensity of the i-th pixel in the basis
image of the j-th field line. In Eq. (A1), we are suspending the use of
the Einstein summation convention. The familiar moment matrix
used above can be recovered by taking the sum over each column
of Fij,

Ej =∑
i
Fij. (A2)

The primary advantage of taking the sum of the pixel intensi-
ties along each field line is that the linear operation preserves
the ability to perform the subsequent least squares optimization
to reduce the distortion of the structures in the moment matrix.
The use of a linear field line intensity metric also has the bene-
fit of preserving relative filament amplitudes and internal filament
structure.

However, a range of “parallel” operators acting on the columns
of weighted geometry matrix, Fi(F), other than the sum Fi = ∑

i
can

quantify the emission along the field lines in different ways that also
provide useful information for the analysis of field aligned plasma
structures, as expressed by

ξj = Fi(Fij). (A3)

Many quantitative measures of field line intensity can be conceived
of and have been tested in order to most reliably identify filaments.
Each have different strengths for constraining different filament
properties, but are often accompanied with a range of weaknesses
and limitations.

The geometric mean (G. M.), (∏n
i=1 xi) 1

n , which penalizes small
values in the data series more effectively than the arithmetic mean
(A. M.), 1

n ∑n
i=1 xi, is effective at differentiating field lines that con-

sistently lie on top of filaments from those that do not. While it is
not compatible with a subsequent least-squares optimization due to
the nonlinearity of the operation, the G.M. is effective at identify-
ing and measuring the position of filaments with far less compu-
tational expenditure. However, it is less appropriate for measuring
filament widths and amplitudes. Of all the functional forms investi-
gated, the geometric mean squared (G. M.2) of the intensity along
the field lines has been found to have the best all round proper-
ties for constraining the identification of filaments. However, other
metrics such as the 2nd and 98th percentiles of the distribution of
intensities along a field line, or parameterizations of smoothness,
have potential for identifying ghost filaments. This is because they
are sensitive to the short portions of field lines with particularly low
intensities that typically occur where parent filaments intersect and
the alignment of the shadow field lines to the parent structures is
poorest.

These metrics are of particular interest as multiple channel
inputs for convolutional neural network filament identification algo-
rithms. These algorithms’ performance can improve dramatically
with a broader range of input information.

APPENDIX B: SYNTHETIC CAMERA DATASETS
Four synthetic datasets each consisting of 5000 frames were

used in this work. In Tables IV and V, U represents the uniform dis-
tribution, L(x; σ,μ) = 1

σx
√

2π
exp(− (ln(x)−μ)2

2σ2 ) the log-normal distri-

bution, E(x; 1
β) = 1

β exp(− x
β) the decaying exponential distribution,

TABLE IV. Distribution information for filament parameters in synthetic data sets A
and A1. Due to the parameterization of the field lines in ϕR space, the inversion
domain is slightly wedge shaped. To account for this filaments are not generated in a
5○ toroidal wedge. The center of the distribution is set such that this wedge is on the
far side of the machine where the field lines are not in the camera field of view.

Property Distribution Parameters References

R λL + ν μ = 0, σ = 0.5 27 and 28
Position λ = 0.04, ν = 1.36

ϕ λU + ν λ = 355, ν = 2 58

Width

δR λL μ = 0, σ = 0.4 12 and 36
λ = 0.01

δϕR λL μ = 0, σ = 0.4 12 and 36
λ = 0.8

Amplitude A E μ = 0, σ = 0 18, 30, and 59
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TABLE V. Distribution information for filament parameters in synthetic data sets Aδ
and Aδ ,1.

Property Distribution Parameters

R λL + ν μ = 0, σ = 0.5
Position λ = 0.04, ν = 1.36

ϕ λU + ν λ = 355, ν = 2

Width δR δ μ = 1.5
δϕR δ μ = 1.5

Amplitude A δ μ = 0.02

and δ(x; μ) = δ(x − μ) represents the Dirac delta distribution. λ and
ν are used as scaling and offset parameters, respectively.

1. Reference synthetic data set
The reference synthetic data set, A, is the primary synthetic data

set used in this paper. The distributions for each filament parame-
ter are chosen so as to be best representative of experimental data
(see Table IV). Each frame contained 40 filaments, giving good
resemblance to experimental data.

2. Single filament physical data set
The A1 data set was produced with the same filament parameter

distributions as the reference synthetic data set, but with only one
filament in each frame, each of which were ensured to be within the
inversion domain. Having only a single filament in each inversion
removes the effect of filament overlap and integration.

3. 40 filament simplified data set
The Aδ data set was produced with the same spatial distribution

of filaments as in the reference synthetic data set, but the ampli-
tude and width distributions were replaced by delta functions (see
Table V).

4. Single filament simplified data set
The Aδ ,1 data set was produced with the same filament param-

eter distributions as the Aδ data set, but with only one filament in
each frame.
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