
Computer Physics Communications 235 (2019) 246–257

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Application of the parareal algorithm to simulations of ELMs in ITER
plasma
D. Samaddar a,*, D.P. Coster b, X. Bonnin c, L.A. Berry d, W.R. Elwasif d, D.B. Batchelor d

a CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB UK
b Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany
c ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France
d Oak Ridge National Laboratory, Oak Ridge, USA

a r t i c l e i n f o

Article history:
Received 28 March 2018
Received in revised form 15 June 2018
Accepted 13 August 2018
Available online 26 September 2018

Keywords:
Time parallelization
Parareal algorithm
Scrape off layer (SOL)
SOLPS
Magnetically confined plasmas
Edge localized modes or ELMs
ITER
Tokamak

a b s t r a c t

This paper explores the application of the parareal algorithm to simulations of ELMs in ITER plasma. The
primary focus of this research is identifying the parameters that lead to optimum performance. Since the
plasma dynamics vary extremely fast during an ELM cycle, a straightforward application of the algorithm
is not possible and amodification to the standard parareal correction is implemented. The size of the time
chunks also have an impact on the performance and needs to be optimized. A computational gain of 7.8 is
obtained with 48 processors to illustrate that the parareal algorithm can be successfully applied to ELM
plasma.

Crown Copyright© 2018 Published by Elsevier B.V. All rights reserved.

1. Introduction

The ever increasing demand for improving complexities in sim-
ulations requires maximizing the efficient use of computational
resources. Traditional parallelization techniques (such as space
parallelization) although reducing the wall clock time, often reach
saturation on modern supercomputing machines. Parallelizing the
time domain ushers in a new possibility of optimizing resource
utilization. Parallel in time algorithms are not a replacement for,
but are complementary to, other schemes of parallelization. This
therefore allows utilization of the gain achieved from existing
parallelization and adding a large improvement in computational
gain.

Various parallel in time algorithms exist such as PITA [1],
parareal [2], RIDC [3,4], and PFASST [5]. This work explores the
application of the Parareal algorithm to a complex, non-linear
simulation in fusion plasma. Of all the algorithms that achieve tem-
poral parallelization, the Parareal algorithm has been the one to
have been used the most in non-linear plasma physics simulations
over the years [6–8]. The algorithm was introduced in [2] and its

* Corresponding author.
E-mail address: Debasmita.Samaddar@ukaea.uk (D. Samaddar).

convergence and stability have been analysed in great detail in
[9–17].

This work seeks to explore temporal parallelization of simula-
tions of Edge Localized Modes (ELMs) that play a crucial role in
the successful operation of any fusion device [18–22]. ELMs are
simulated using themulti-fluid codes SOLPS 5.0 [23,24] and SOLPS-
ITER [25,26]. ELMs have been observed in experiments on present
machines [27,28]. These modes exhibit irregular or quasi-regular
periodicity and lead to deposition of huge power fluxes on plasma
facingwalls.While ELMs are an area of strong active research in the
fusion community and there is significant information collected
from experimental databases, a complete understanding of ELMs
is still elusive to scientists.

ELMs are an MHD phenomena and MHD codes such as JOREK
[29] are used to investigate the cause of an ELM. ELMS can also be
studied using full scale turbulence codes such as BOUT + + [30].
However, investigating the impact of ELMs on the evolution of
the plasma properties due to interactions between all ion species
and electrons requires a different approach involving transport
equations such as in SOLPS. A number of largely parallel codes like
NIMROD [31], GEM [32], andM3D [33] are used to investigate ELMS
but no simulation currently fully captures both aspects (cause and
impact) of ELMs.

https://doi.org/10.1016/j.cpc.2018.08.007
0010-4655/Crown Copyright© 2018 Published by Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2018.08.007
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.08.007&domain=pdf
mailto:Debasmita.Samaddar@ukaea.uk
https://doi.org/10.1016/j.cpc.2018.08.007


D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257 247

SOLPS solves the fluid equations (which are not parallelized)
for the ions and can be coupled with the parallel Eirene code to
simulate the neutral particles in the plasma. However, simulating
1s of ELM can take 100 days ofwalltime. The cases discussed in [34]
which involved a much smaller tokamak AUG than ITER typically
took 200 days of wall clock time.

Since a major hindrance in studying the behaviour of ELMs
using computer simulations is their demand for extremely large
wall clock times. This is why adding a new dimension to the
parallelization is of significance in ELM research. A successful ap-
plication of the Parareal algorithm makes these simulations much
more feasible, allowing the inclusion of more complex physics
while still maintaining a reasonable computation time. However,
due to the strong non-linear phenomena involved, the application
of temporal parallelization to simulations of ELMs is unsurprisingly
far from straightforward and this work attempts to identify the
computational parameters and regimes that allow the best perfor-
mance.

The present research is a follow-up of the work detailed in [8].
[8] demonstrated that the parareal algorithm is applicable to edge
plasma simulations but relatively ‘steady’ states were used as test
beds. This work extends that application to more strongly coupled
non-linear phenomena called ELMs. Due to the complex non-linear
behaviour of ELMs, the application poses new challenges. The
characteristic time-scale of the plasma in [8] was ∼10 ms while
the time scales involved in this present work are very different.
ELMs involve time dependent behaviour with dramatic changes to
the system that last for 1 ms. The plasma conditions continue to
evolve after an ELM and before the onset of the next ELM. During
an ELM, the power at the targets can vary bymore than an order of
magnitude for example.

A modification to the application of the parareal correction
allows convergence and generates computational gain.

This paper is organized as follows: ELMs are described in Sec-
tions 2 and 3 details how they are implemented in the code to
be observed in the simulations. Section 4 describes the Parareal
Algorithm and the results are described in Section 5.

2. ELMs

Edge Localized Modes (ELMs) [35,36] are periodic bursts of
instabilities at the plasma edge in a tokamak. A tokamak is a fusion
device of toroidal geometry with complex magnetic field lines to
confine the burning plasma of a few hundredmillion Kelvin within
the vessel. As has beenmentioned in [8], simulations of the plasma
edge are particularly challenging due to the interactions with the
materials of the walls of the vessel accompanied by both radial
(perpendicular to the magnetic field lines) and parallel (parallel to
the field lines) transports.

It is desirable to operate a tokamak in the H-mode (High Con-
finementMode) [18,37–39] since that greatly enhances the energy
confinement time of the plasma. The energy confinement time τ

is the characteristic time scale in which the energy escapes the
plasma. In fact, H-mode confinement time is typically twice that
of L-mode (Low Confinement mode). The sharp transition from
L-mode toH-mode occurswhen the input heating power is above a
certain threshold. A sharp increase in the profile gradients (such as
of pressure, density or temperature) occurs over a very narrow re-
gion (typically a few cm) at the plasma edge. This results in the for-
mation of the ‘edge transport barrier’ or ‘H-mode pedestal’ which
generates the improved confinement. The suppression of turbulent
transport at the plasma edge is believed to be the reason behind the
improved confinement—although a complete understanding of the
mechanisms at play is still an area of active research.

While the improved confinement makes the H-mode an at-
tractive operating regime, the presence of instabilities makes it

more challenging. Two MHD instabilities become prominent. The
increasing pressure gradient leads to ballooning instabilities and
the gradient in the edge current generates the peeling insta-
bility. These two instabilities are believed to be responsible for
ELMs [18,19].

ELMs are characterized by sudden bursts of energy and a tran-
sient rise of heat loads on the divertor targets of the device. De-
pending on their amplitudes and frequencies, ELMs are classified
into types I (large amplitudes—hence often termed as ‘giant’ ELMs)
and II and III (smaller, hence often known as ‘grassy’ ELMs). Current
predictions estimate [21,40,41] the heat flux due to ELMs on the
divertor plates at ITER (the world’s biggest experimental tokamak)
will be up to 20 times larger than what can be tolerated for a
reasonable lifetime of the target materials. This makes research
into ELM control andmitigation of primary importance for making
fusion a viable source of energy.

Despite the potential significant reduction of ITER’s divertor
target lifetime due to power loads by ELMs, the particle outflux
associated with the ELMs has positive effects on H-mode plasma
performance. Indeed ELMs are required in present experiments to
exhaust impurities from the confined plasma and a similar role is
expected for ITER. As a result, controlled ELMs in H-mode is the
desired operational mode for ITER.

3. ELMs in the SOLPS code

The SOLPS 5.0 and SOLPS-ITER codes are described in detail
in [23–26]. SOLPS stands for Scrape Off Layer Plasma Simulator
which, as the name suggests, simulates the Scrape Off Layer (SOL).
The SOL is the region between the wall of the device and the Last
Closed Flux Surface (LCFS), characterized by open field lines. Both
codes solve the same set of equations and SOLPS-ITER is considered
to be an upgraded version of SOLPS5.0. Both codes use the B2.5
package that solves the Braginskii fluid equations for multiple
species or all charge states of every individual element present
in the plasma [20]. The density equation is given by Eq. (1) as an
example of the set of equations solved, which are described in
detail in [23].

∂n
∂t

+
1

√
g

∂

∂x

(√
gn
hx

(
bxV∥ + bzV⊥

))
+

1
√
g

∂

∂y

(√
g

hy
nVy

)
= Sn (1)

In Eq. (1), n is density, V is the velocity and Sn is the density
source term. Following [23], the coefficients h and g are given by
hx =

1
∥∇x∥ , hy =

1
∥∇y∥ , hz = 2πR with R being the major radius

and
√
g = hxhyhz . The ∥ and⊥ components are with respect to the

direction of the magnetic field.
The regimes studied are sufficiently collisional to justify the use

of fluid equations. In the present case, the fluid model is used for
both the charged species as well as the neutrals in the plasma as
in [20]. Ideally, it is desirable to use a kinetic model to simulate the
neutral species in the plasma, but using the fluid model makes the
computations tractable.

It is interesting to note that ELMs are believed to be intrinsically
MHD phenomena while SOLPS is not an MHD code. It must be
clarified that a code like SOLPS is used to study the impact of
ELMs (and provide insight into the effects of individual species
which is impossible to perform in an MHD code) rather than the
mechanisms for their generation (which is typically studied using
MHD codes [29]).

ELMs characteristically enhance the radial transport in a plasma
[42]. This is typically simulated by increasing the diffusive or con-
vective coefficient for a brief period (say 1 ms) at regular intervals.
The impact of that increase successfully lasts much longer than



248 D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257

Fig. 1. The particle density gradient driven radial diffusivity is increased by 10 times to simulate ELMs.

Fig. 2. A grid of size 96 × 36 was used for the fine or serial computation of the ELM plasma in the ITER device.

1 ms and simulates the behaviour of an ELM-plasma. These simu-
lations have been successfully benchmarked against experiments
in the JET, TCV and AUG tokamaks [21,22,34].

[8] studied relatively simpler cases in the tokamaks MAST and
DIII-D. The present work simulates a significantly larger device
– ITER – with a much higher number of species mix (98) in
the plasma. The physics involved in these simulations are very
similar to the cases described in [20]. The species include all
ions and neutrals of Deuterium, Tritium, Helium, Beryllium, Neon
and Tungsten and the complex interactions between the various
charge states are included in the simulations. As in [20], prompt
redeposition of Tungsten, which is otherwise released into the
plasma as a result of sputtering at the divertor targets, is included
in the calculations. It may be clarified that the redeposition is
based on a simple approximation but a more accurate ELM based
calculation is beyond the scope of this work. The density gradient

driven diffusivity has been increased by 10 times for 1 ms in every
20 ms to simulate the ELM triggered plasma. This is illustrated in
Fig. 1 where the diffusivity along the outer midplane is plotted for
two different times. The ELM affected area on the outer midplane
is estimated to be 40 cm for ITER. The ELM could also have
been simulated by varying the convective coefficient instead of the
diffusive coefficient. However, as discussed in [20], previous results
have not demonstrated significant variation in the quantities of
concern such as the maximum total power flux at the divertors.
But, looking at the behaviour of parareal convergence where the
ELMs are generated by varying the convective coefficient may be
investigated in the future.

A computational grid of size 96× 36 as shown in Fig. 2was used
as the fine model for the SOLPS computations of ELMs in the ITER
plasma. The typical size of the timesteps for the fine computations



D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257 249

Fig. 3. A typical ELM cycle using the SOLPS5.0 code package with the Fine solver as a serial computation is demonstrated.

was 10−5 s. A typical ELM cycle is shown in Fig. 3 where the elec-
tron density (inm−3) at the separatrix on themidplane (henceforth
will be referred to as nesepm) and the maximum total power flux
(inWm−2) (henceforth referred to as pwmxap) on the outer target
are plotted against time. It is seen that both these quantities are
greatly increased during the ELM. The ELM-crash phase includes
the peak values which then decrease through the remaining crash
phase.

The variables that are commonly being referred to in the rest of
the paper are summarized in Table 1.

4. Parareal algorithm

The parareal algorithmwas first introduced in [2]. It is described
in detail in [8]. The algorithm uses a predictor–corrector approach
with an accurate fine (F) integrator and another coarse integrator
(G). Identifying the optimum coarse predictor is generally the

biggest challenge in all complex applications. The parareal correc-
tion is given by Eq. (2).

λk
i+1 = F (λk−1

i ) + G(λk
i ) − G(λk−1

i ) (2)

λk
i+1 is the initial state for the (i + 1)th time slice at the kth

iteration. At the kth iteration λk
i is evolved to λk

i+1 using F(λk
i ) and

G(λk
i ).
Just as in [8], this paper also utilizes the event-based approach

given in detail in [43–45].
The coarse and fine calculations are repeated across a number

of parareal iterations k until convergence is achieved. Parareal
convergence across a time chunk or processor is said to have been
achieved when the ‘defect’ between two successive fine calcula-
tions (k and k−1) across that processor is below a tolerance value.
The sum of this defect in solutions across a time chunk between ti
and ti−1 is defined by

ζ k
i =

∫ ti

ti−1

⏐⏐λk(t) − λk−1(t)
⏐⏐⏐⏐λk−1(t)

⏐⏐ dt. (3)



250 D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257

Table 1
Variables used in the text.

Variable Description Units

nesepm Electron density at the separatrix on outer midplane m−3

tesepm Electron temperature at the separatrix on outer midplane eV
pwmxip Maximum total power flux on inner divertor Wm−2

pwmxap Maximum total power flux on outer divertor Wm−2

Fig. 4. The tolerance of the parareal computation is chosen in such a way so that the residual for the parareal calculation agrees with those of the fine (F) simulation.

The solution is then converged for time slice i if,

ζ k
i < tol, ∀i ≤ I. (4)

The integration in Eq. (3) is treated as a sum of discrete errors
at every point on the time axis, computed by the SOLPS integrator.
For the purposes of parareal convergence, Eq. (3) is applied to two
variables pwmxap and pwmxip. As alreadymentioned, pwmxap is
the maximum total power flux (in W .m−2) on the outer divertor.
pwmxip is the same for the inner divertor.

5. Results

The cases explored in this work used both the SOLPS5.0 and
SOLPS-ITER codes. In some cases, results from SOLPS-ITER were
more stable than those from SOLPS5.0. The value of tol in Eq. (4)
was 0.005. The choice of this value is based on the residual of the
solved equations as described in [8] and is justified by Fig. 4 which
illustrates that the residuals of converged parareal solutions and a
serial fine solution are comparable.



D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257 251

Fig. 5. A spurious rise in the electron density at the outer midplane obtained from the parareal computation using a grid of 48 × 36 and dtG = 10 ∗ dtF as the coarse solver.
The fact that the coarse solution at k = 1 is stable indicates the problem is in the parareal method.

Following the work in [8], a reduced grid model of size
48 × 36 with bigger timesteps was used as a coarse predictor for
the Parareal implementation. While this approach was relatively
straightforward for the cases explored in [8], the treatment turned
out to be much more challenging for a plasma with ELMs. The
parareal solutions had spurious rises and falls in the plasma quan-
tities such as temperature and density throughout the ELM cycles.
One such ‘catastrophic’ case is illustrated in Fig. 5(b) where there
is a rise in nesepm, the electron density at the separatrix on the
midplane (it must be noted that other quantities like temperature
and ion densities also behave similarly) when there is expected
to be a decrease as is seen in Fig. 3(a). The fact that there is
no unexpected instability in the coarse solution at k = 1 as
shown in Fig. 5(a) implies that the root of the problem lies in the
parareal correction. This was a simulation using 16 processors,
with ntimF = 100 and dtG = 10 ∗ dtF . ntim is the number of time-
steps solved per processor and dt represents the size of each time
step. The subscripts F and G represent the fine and coarse cases,
respectively. It may be noted that ntimF ∗ dtF = ntimG ∗ dtG is the
size of each ’time chunk’ solved on every processor.

A closer look at the parareal computation shows that in this
case, the unwanted ELM rise starts at the 14th time chunk, which
subsequently affects successive time chunks solved by other pro-
cessors. Plotting nesepm against time for both k = 1 and k = 2 in
Fig. 6 showed that the rise occurs at the parareal iteration k = 2,
which somewhat implies that the parareal correction as given by
Eq. (2) might be the cause for this behaviour.

A possible explanation might be obtained if we take into ac-
count that the radial profiles and the subsequent plasma dynamics
vary extremely rapidly during an ELM cycle. This is illustrated for
the electron density and temperature along themidplane in Figs. 7
and 8. With the fact that Eq. (2) is an algebraic correction at all
grid points, it is not very surprising that after applying Eq. (2), the
plasma profiles change to an ELM rise phase while it is expected to
be in an ELM crash phase or vice versa.

This issue due to the rapidly varying profiles during an ELM
is a cause for concern since the success of the parareal algorithm
depends on Eq. (2). However, implementing a restriction to the
parareal correction appeared to solve the problem. At the kth
parareal iteration, the value of each primary variable was not



252 D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257

Fig. 6. The parareal solutions are very sensitive to initial values in case of ELMs.

allowed to vary more than that of the fine value computed at the
(k − 1)th iteration by X%. To ensure that the study was restricted
to the correction to the grid points and to rule out any impact of
choosing a dtG greater than dtF , dtG = dtF = 10−5 s was chosen
with a grid of 48 × 36 for the coarse predictor. A series of simu-
lations were performed with different values of X = 1, 5, 20, 40.
While the undesirable behaviour in the solutions was eradicated
with a decreasing value of X, the number of iterations required for
parareal convergence was minimum at X = 1.

This might raise the issue that the coarse predictor is not very
different from the fine solution at all, and in fact, the necessity
of the ‘fine’ integrator may be questioned. It must be noted here
that the parareal correction is applied only to the primary variables
and the measurement of convergence is based on the maximum
total power fluxes (pwmxip and pwmxap) at the divertors. These
plasma quantities can vary more significantly with very slight
changes (even as small as 1%) to the primary variables. This is

illustrated in Fig. 9 where for iteration k = 1 across a processor,
with the same initial values of primary variables, a variation in
pwmxip is observed. The fact that the parareal correction is re-
quired to achieve the solution otherwise obtained by a serial, fine
run is shown in Fig. 10. Fig. 10 actually illustrates the evolution of
the solution through parareal iterations, k with the original coarse
solution having a different width for the peak (of pwmxip in this
case) as well as a shift along the time axis. A comparison of the
serial, fine solution and the parareal computation is discussed later
in this paper.

With this promise, the next numerical parameter that was
explored was the size of the time chunk solved per processor. This
involved varying ntimF and subsequently varying ntimG, keeping
dtF and dtG constant. The size of the time chunk has been a factor
influencing parareal performances in a large number of previous
applications [6,8] and was found to be a strong one in the present
case. Once again with restricting the time step sizes such that



D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257 253

Fig. 7. The radial profile of the electron density, ne, very rapidly varies during an ELM cycle. The distance is in metres.

Fig. 8. The radial profile of the electron temperature, te, very rapidly varies during an ELM cycle. The distance is in metres.

dtG = dtF = 10−5 s, a series of simulations were performed with 8
processors or time chunks varying the values of ntim. The results
are listed in Table 2. It was observed that ntim = 200 allowed
the best parareal performance. This dependence on ntim has been
observed many times but a full mathematical understanding of
the parareal algorithm with respect to it is still unclear. It may
be argued that with a large ntim, the coarse solution deviates
sufficiently such that the parareal correction can no longer recover
the ‘correct’ solution. Interestingly, with dtim = 10−5 s, ntim =

2000 actually is the time that includes an entire ELM, that is an ELM
rise and crash phases. One might therefore expect, that parareal
should be easier to implement when ntim = 2000, as most of the
radical changes in the plasma dynamics are confined within a time
chunk, and the breaks in the time line occur at ‘quiet phases’ in
an ELM cycle. However, it was found that parareal convergence

Table 2
The number of iterations were minimum at ntimF = ntimG = 200 with parareal
correction restricted to X = 1.

ntim Parareal iteration k

20 4
200 2
300 3
400 No convergence

2000 No convergence

was not at all achieved with chunk size, ntim = 2000. This could
indicate that the plasma dynamicswere still varying rapidly during
the ‘quiet phase’ and with such a long time chunk, the coarse
predictor was deviating enough to hinder parareal convergence.



254 D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257

Fig. 9. The maximum total power flux at the inner divertor (pwmxip) varies with changes to the grid size and size of the timesteps.

Fig. 10. The parareal solution is observed to converge over a number of iterations. The coarse solution has a different position of the peak as well as the width of the ELM is
different between the cases.

It is believed that SOLPS-like simulations with dt = 10−5 s
marginally resolve ELM physics with very rapidly varying plasma
dynamics. A step size of 10−6 s is desired. But a serial computation
of a single ELM cycle would then take about 16.25 days! However,
once the optimum parameters (ntimF = 200 & X = 1) were
identified, a set of parareal simulationswere performedwith dtF =

10−6 s & dtG = 10−5 s. With this coarsening of the predictor with
respect to the fine integrator resulted in an increase in parareal
iteration (k) as in Table 2. The case of ntimF = 200 & X = 1
now converged at k = 3. With the serial and parareal wall clock
times defined as Tser and TPR, respectively, the computational gain
is defined as gain =

Tser
TPR

. A computational gain of 7.8 was achieved
with 48 processors, which is expected to rise with increasing
processor counts.

Before analysing the parareal solutions, it may be noted that
very slight changes to the integrator or the code itself can result
in slight variations in the solutions. This is evident in the results
obtained from SOLPS 5.0 and SOLPS-ITER. Although both versions
of the code solve the same sets of equations, the solutions (pwmxip
and pwmxap) over a complete ELM cycle (2 ms) are illustrated

in Fig. 11. The Root Mean Squared Errors (RMSE) for these two
datasets are computed. RMSE is defined by the formula given in
Eq. (5) and is normalized by Eq. (6), where N is the total number
of datapoints, vn and un are the nth variables of SOLPS-ITER and
SOLPS 5.0, respectively. Comparing solutions from SOLPS 5.0 and
SOLPS-ITER, the normalized RMSE for pwmxip is 1.557E−02 and
for pwmxap it is 2.0203E−02.

RMSE =

√∑N
n=1(vn − un)2

N
(5)

Normalized RMSE =
RMSE

umax − umin
(6)

A similar comparison is performed using the parareal solutions
with respect to the corresponding SOLPS 5.0 solutions in Fig. 12.
As discussed above, although SOLPS 5.0 and SOLPS-ITER solve the
same set of equations, variations in the integrator can result in
finite, non-zero (although small) RMSE, due to the nature of the
problem (ELMs). This fact is evident when comparing the fine,
serial solutions with those obtained using the parareal algorithm.



D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257 255

Fig. 11. The solutions obtained from serial versions of SOLPS 5.0 and SOLPS-ITER are compared to one another.

The error bars in Fig. 12 are plotted using the maximum rela-
tive error (given by Eq. (7)) between the SOLPS 5.0 and SOLPS-
ITER solutions. The normalized RMSE for the parareal computation
was determined to be 1.95E−02 for pwmxip and 6.43E−03 for
pwmxap.

Relative error =
vn − un

un
(7)

5.1. Parareal using the event based method

Similar to the work in [8], the event based parareal schemewas
employed in this paper using the IPS (Integrated Plasma Simulator)
framework [43] & [44]. Following the same approach as in [8] let
tG be the wall clock time for the coarse (G) computation on a single

time slice and let tF be the same for a fine computation also on a
single time slice as well. Let N be the total number of time slices.

If at parareal iteration k, nc slices have converged then nk = N−

nc slices remain to perform a G and F calculation. In a traditional,
sequential MPI implementation of parareal, with G being a serial
process and F being performed in parallel, the wall clock time
required per iteration k can then be stated as follows:

tk = tG ∗ nk + tF (8)

If K is the total number of iterations required for convergence of
all N time slices, then summing across all iterations gives the total
time for a traditional parareal implementation using MPI.

Ttrad =

K∑
k=1

tk (9)



256 D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257

Fig. 12. The solutions obtained from serial versions of SOLPS 5.0 and the parareal computation are compared. The error bars represent the maximum relative error between
SOLPS 5.0 and SOLPS-ITER calculations using a serial processor.

The computational gain for sequential implementation of the
parareal algorithm using MPI may then be stated as follows:

gaintrad =
TF
Ttrad

=
tF ∗ N
Ttrad

(10)

For the case with 48 processors yielding a computational gain
of 7.8, the average values for tG and tF were tG = 922 s & tF =

14040 s. Using Eq. (10), which ignores communication overhead,
the computational gain is 2.425 for a traditional, MPI version of the
parareal algorithm.

6. Conclusion

The parareal algorithm is shown to work for a complex case of
ELMsimulations in ITERplasmawith 98 species. The rapidly chang-
ing radial profiles during an ELM cycle pose unique challenges for

this application. A modification to the application of the parareal
algorithm alleviates the problem. The parareal performance is also
found to be sensitive to the size of the time chunk solved per
processor. An optimum value for it is identified, and a simulation
with 48 processors yielded a computational gain of 7.8.

This application illustrates that ELM simulations can become
more tractable using the parareal algorithm. As a result more com-
plex physics can be incorporated into the model, such as kinetic
neutrals, and long simulations of multiple ELM cycles may be
performed within much shorter wall clock time.

Acknowledgements

This work has been funded within the framework of the EU-
ROfusion Consortium and has received funding from the Euratom



D. Samaddar et al. / Computer Physics Communications 235 (2019) 246–257 257

research and training programme 2014–2018, EU under grant
agreement no. 633053. The views and opinions expressed herein
do not necessarily reflect those of the European Commission.
This work has been part-funded by the RCUK Energy Programme,
United Kingdom [grant number EP/I501045]. To obtain further
information on the data and models underlying this paper please
contact PublicationsManager@ccfe.ac.uk. Also, the views and opin-
ions expressed herein do not necessarily reflect those of the ITER
Organization. The computations have been performed on the EU-
ROfusion Gateway Cluster.

References

[1] C. Farhat,M. Chandesris, Internat. J. Numer.Methods Engrg. 58 (9) (2003) 1397.
[2] J. Lions, Y. Maday, G. Turinici, C. R. Acad. Sci. Ser. I Math. 332 (7) (2001)

661–668.
[3] A.J. Christlieb, B.W. Ong, J.M. Qiu, Math. Comp. 79 (2009) 761–783.
[4] A. Christlieb, C. Macdonald, B. Ong, SIAM J. Sci. Comput. 32 (2) (2010) 818–835.
[5] M. Emmett, M.L. Minion, Commun. Appl. Math. Comput. Sci. 7 (1) (2012) 105.
[6] D. Samaddar, D.E. Newman, R. Sánchez, J. Comput. Phys. 228 (2010) 6558.
[7] D. Samaddar, T. Casper, S. Kim, L.A. Berry, W.R. Elwasif, D.B. Batchelor, W.

Houlberg, Appl. Math. Comput. (2018) submitted for publication.
[8] D. Samaddar, D. Coster, X. Bonnin, C. Bergmeister, E. Havlícková, L.A. Berry,

W.R. Elwasif, D.B. Batchelor, Comput. Phys. Comm. 221 (2017) 19–27.
[9] L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zérah, Phys. Rev. E 66 (5) (2002)

057706.
[10] G. Bal, Y. Maday, A Parareal Time Discretization for Non-linear PDEs with

Application to the Pricing of an American Put, in: Lect. Notes Comput. Sci. Eng.,
vol. 23, Springer, Berlin, 2002, p. 189202.

[11] G. Bal, Parallelization in time of (stochastic) ordinary differential equations,
2003. URL http://www.columbia.edu/~gb2030/PAPERS/paralleltime.pdf.

[12] P.F. Fischer, F. Hecht, Y. Maday, Proceedings of Fifteen International Con-
ference on Domain Decomposition Methods, Vol. 40, Springer Verlag, 2004,
pp. 433–440.

[13] M.J. Gander, E. Hairer, Domain Decomposition Methods in Science and Engi-
neering XVII, Vol. 60, Springer, 2008, p. 45.

[14] I. Garrido, M.S. Espedal, G.E. Fladmark, Proceedings of Fifteen International
Conference on Domain Decomposition Methods, Vol. 40, Springer, Berlin,
2004, p. 469.

[15] G. Staff, G. Rønquist, Proceedings of Fifteen International Conference on Do-
main Decomposition Methods, Springer Verlag, 2003, pp. 449–456.

[16] J. Reynolds-Barredo, D.E. Newman, R. Sánchez, D. Samaddar, L.A. Berry, W.R.
Elwasif, J. Comput. Phys. 231 (2012) 7851.

[17] A.-M. Baudron, J.-J. Lautard, Y. Maday, M.K. Riahi, J. Salomon, J. Comput. Phys.
(2018) submitted for publication.

[18] J. Connor, Plasma Phys. Control. Fusion 40 (5) (1998) 531.
[19] J. Connor, R. Hastie, H.Wilson, R.Miller, Phys. Plasmas 5 (7) (1998) 2687–2700.
[20] D. Coster, A. Chankin, H.-J. Klingshirn, R. Dux, E. Fable, X. Bonnin, A. Kukushkin,

A. Loarte, J. Nucl. Mater. 463 (2015) 620–623.

[21] B. Gulejová, R. Pitts, M. Wischmeier, R. Behn, D. Coster, J. Horacek, J. Marki, J.
Nucl. Mater. 363 (2007) 1037–1043.

[22] B. Gulejová, R. Pitts, D. Coster, X. Bonnin, M. Beurskens, S. Jachmich, A.
Kallenbach, et al., J. Nucl. Mater. 390 (2009) 412–416.

[23] R. Schneider, X. Bonnin, K. Borrass, D. Coster, H. Kastelewicz, D. Reiter, V.
Rozhansky, B. Braams, Contrib. Plasma Phys. 46 (1–2) (2006) 3–191.

[24] X. Bonnin, A. Kukushkin, D. Coster, J. Nucl. Mater. 390 (2009) 274–277.
[25] X. Bonnin,W. Dekeyser, R. Pitts, D. Coster, S. Voskoboynikov, S.Wiesen, Plasma

Fusion Res. 11 (2016) 1403102–1403102.
[26] S.Wiesen, D. Reiter, V. Kotov,M. Baelmans,W.Dekeyser, A. Kukushkin, S. Lisgo,

R. Pitts, V. Rozhansky, G. Saibene, et al., J. Nucl. Mater. 463 (2015) 480–484.
[27] Resonant magnetic perturbation experiments on mast using external and

internal coils for elm control.
[28] O. Gruber, A. Kallenbach, M. Kaufmann, K. Lackner, V. Mertens, J. Neuhauser,

F. Ryter, H. Zohm, M. Bessenrodt-Weberpals, K. Büchl, et al., Phys. Rev. Lett.
74 (21) (1995) 4217.

[29] G. Huysmans, O. Czarny, Nucl. Fusion 47 (7) (2007) 659.
[30] B. Dudson, M. Umansky, X. Xu, P. Snyder, H. Wilson, Comput. Phys. Comm.

180 (9) (2009) 1467–1480.
[31] C.R. Sovinec, T. Gianakon, E. Held, S. Kruger, D. Schnack, N. Team, Phys. Plasmas

10 (5) (2003) 1727–1732.
[32] B.D. Scott, Phys. Plasmas 12 (10) (2005) 102307.
[33] W. Park, E. Belova, G. Fu, X. Tang, H. Strauss, L. Sugiyama, Phys. Plasmas 6 (5)

(1999) 1796–1803.
[34] D. Coster, J. Nucl. Mater. 390 (2009) 826–829.
[35] J. Wesson, Vol. 149, Oxford University Press, 2011.
[36] P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Vol. 7, Taylor

& Francis, 2000.
[37] F. Wagner, G. Fussmann, T. Grave, M. Keilhacker, M. Kornherr, K. Lackner, K.

McCormick, E.Müller, A. Stäbler, G. Becker, et al., Phys. Rev. Lett. 53 (15) (1984)
1453.

[38] M. Keilhacker, Plasma Phys. Control. Fusion 29 (10A) (1987) 1401.
[39] F. Wagner, Plasma Phys. Control. Fusion 49 (12B) (2007) B1.
[40] J. Gunn, S. Carpentier-Chouchana, F. Escourbiac, T. Hirai, S. Panayotis, R. Pitts,

Y. Corre, R. Dejarnac, M. Firdaouss, M. Kočan, et al., Nucl. Fusion 57 (4) (2017)
046025.

[41] T. Eich, B. Sieglin, A. Thornton, M. Faitsch, A. Kirk, A. Herrmann, W. Suttrop, et
al., Nucl. Mater. Energy 12 (2017) 84–90.

[42] A. Loarte, G. Saibene, R. Sartori, D. Campbell, M. Becoulet, L. Horton, T. Eich, A.
Herrmann, G. Matthews, N. Asakura, et al., Plasma Phys. Control. Fusion 45 (9)
(2003) 1549.

[43] W. Elwasif, D. Bernholdt, A. Shet, S. Foley, R. Bramley, D.B. Batchelor, L.A. Berry,
Distributed and Network-based Processing (PDP), Pisa, Italy, 2010.

[44] W.R. Elwasif, S. Foley, D. Bernholdt, L.A. Berry, D. Samaddar, D.E. Newman, R.
Sanchez, MTAGS ’11 Proceedings of the 2011 ACM International Workshop on
Many Task Computing onGrids and Supercomputers, ACMNewYork, NY, USA,
2011, p. 15.

[45] L.A. Berry, W.R. Elwasif, J. Reynolds-Barredo, D. Samaddar, R. Sanchez, D.E.
Newman, J. Comput. Phys. 231 (17) (2012) 5945.

http://refhub.elsevier.com/S0010-4655(18)30302-3/sb1
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb2
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb2
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb2
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb3
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb4
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb5
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb6
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb7
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb7
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb7
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb8
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb8
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb8
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb9
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb9
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb9
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb10
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb10
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb10
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb10
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb10
http://www.columbia.edu/%7Egb2030/PAPERS/paralleltime.pdf
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb12
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb12
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb12
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb12
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb12
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb13
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb13
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb13
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb15
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb15
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb15
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb16
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb16
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb16
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb17
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb17
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb17
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb18
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb19
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb20
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb20
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb20
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb21
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb21
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb21
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb22
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb22
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb22
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb23
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb23
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb23
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb24
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb25
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb25
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb25
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb26
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb26
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb26
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb28
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb28
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb28
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb28
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb28
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb29
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb30
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb30
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb30
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb31
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb31
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb31
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb32
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb33
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb33
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb33
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb34
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb36
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb36
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb36
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb38
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb39
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb40
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb40
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb40
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb40
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb40
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb41
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb41
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb41
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb45
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb45
http://refhub.elsevier.com/S0010-4655(18)30302-3/sb45

	Application of the parareal algorithm to simulations of ELMs in ITER plasma
	Introduction
	ELMs
	ELMs in the SOLPS code
	Parareal algorithm
	Results
	Parareal using the event based method

	Conclusion
	Acknowledgements
	References


