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a b s t r a c t

HALO (HAgis LOcust) solves the initial value Vlasov–Maxwell problem perturbatively for application to
certain nonlinear wave-particle problems in tokamak plasmas. It uses the same basic approach as the
HAGIS code (Pinches et al., 1998) for wave evolution but is built on the LOCUST-GPU full-orbit code
(Akers et al., 2012) for the solution of the Hamiltonian fast particle motion in cylindrical coordinates.
The wave amplitude and particle evolution include all finite Larmor radius effects. We describe and
benchmark the currently implemented Alfvén eigenmode workflow, demonstrating correct particle
motion, linear and nonlinear power transfer. The formulation and numerical scheme are sufficiently
general as to allow easy future implementation of different kinds of eigenmodes, such as modes close
to the ion-cyclotron frequency. The code can model multiple eigenmodes and multiple fast ion species
simultaneously, and supports the general form of the equilibrium distribution in constants of motion.

CrownCopyright© 2019 Published by Elsevier B.V. All rights reserved.

1. Introduction

For tokamaks to allow reactor relevant regimes of operation, a
proportion of the confined plasma must necessarily be comprised
of energetic ions. The anticipated abundance of non-Maxwellian
alpha particles in the burning plasma regime on ITER would be
both a key physics achievement and a new stability considera-
tion. It is well understood, both from current experiments and
significant theoretical study, that fast particles can resonantly
destabilize wave eigenmodes in the bulk thermonuclear toka-
mak plasma, which can degrade performance and damage the
plasma-facing components through energetic ion redistribution
and loss.

Existing experiments with neutral beam injection (NBI) and
ion cyclotron resonant heating (ICRH) have confirmed the desta-
bilization of predicted bulk plasma eigenmodes such as the
toroidal Alfvén eigenmode (TAE) [1] or the reverse shear Alfvén
eigenmode (RSAE) [2]. In addition to the well-understood Alfvénic
modes in the bulk plasma, wave activity in the ion-cyclotron
range has also been observed, as well as lower frequency ener-
getic particle modes (EPM) [3] which are thought to be large co-
herent motions of the fast-particles themselves interacting with a
broad Alfvén continuum. A number of stability modelling strate-
gies have been employed with varying levels of self-consistency
and difficulty [4].
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For the Alfvénic modes that have been identified as eigen-
modes of the bulk plasma, very good agreement has been shown
between the linear MHD theory and the observations [5]. This
experimental fact is a powerful motivation for a general per-
turbative nonlinear predictive code for wave-particle interaction,
where all the nonlinearity is assumed to be due to the perturbed
fast ions rather than the bulk plasma. The perturbative approach
is fundamentally the same as the nonlinear Landau damping
solution given by O’Neil [6] and Mazitov [7] and later applied
to Alfvén waves in the fusion context by Berk and Breizman [8],
where particle orbits in tokamak geometry were computed using
a guiding centre drift model with a simplified Alfvén wave ex-
pression [9]. The formulation of a Hamiltonian theory of guiding
centre motion in realistic magnetic geometry [10] allowed similar
solutions of the drift-kinetic-Maxwell problem in codes such as
ORBIT [11], FAC [12] and HAGIS [13]. All these codes relied on
a delta-f scheme [14], forcing the identically zero equilibrium
contribution to the power transfer to be ignored in the marker
population, improving Monte Carlo statistics in the remaining
contribution coming from the perturbation.

In this work, we present the new HALO (HAgis LOcust) code,
which is a full orbit implementation of the perturbative delta-
f approach, allowing nonlinear modelling of any bulk plasma
eigenmode at arbitrary frequency using the Vlasov–Maxwell sys-
tem of equations. The high performance LOCUST-GPU code [15]
serves as the orbit following foundation for the wave-particle
physics described in this paper.
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2. Physical model

In this section, we rederive a perturbative wave-particle treat-
ment for a general Vlasov–Maxwell system and an associated
delta-f noise reduction scheme. Our goal is to make the derivation
sufficiently general to be useful to those working in both astro-
physical and laboratory plasmas, as well as to make the orderings
required for the perturbative approach as transparent as possible.
We deviate from the usual variational approach [9] and instead
start with Maxwell’s equations.

2.1. Derivation of wave evolution equations

Starting with the Fourier transformed wave-equation

−
c2

ω2 ∇ × ∇ × Ẽ(x, ω) + Ẽ(x, ω) = −
iµ0c2

ω
J̃(x, ω) (1)

we may identify the linear response of the total current density,
and separate it from the nonlinear J̃NL (x, ω) and free current
J̃free (x, ω)

−
c2

ω2 ∇ × ∇ × Ẽ (x, ω)+ Ẽ (x, ω)

= −
iµ0c2

ω

[∫
dx′σ

(
x, x′, ω

)
Ẽ
(
x′, ω

)
+ J̃NL (x, ω)

+J̃free (x, ω)+ J̃σ (x, ω)
]

(2)

This rearrangement has been expressed a number of equiva-
lent ways in the literature [16,17] such as

K
(
x, x′, ω

)
=
ϵ
(
x, x′, ω

)
ϵ0

=

(
δ
(
x − x′

)
I +

iµ0c2

ω
σ
(
x, x′, ω

))
(3)

Λ
(
x, x′, ω

)
=

[
−

c2

ω2 δ
(
x − x′

)
∇

′
× ∇

′
× +K

(
x, x′, ω

)]
(4)

where K
(
x, x′, ω

)
is the dimensionless dielectric tensor and the

corresponding wave equation is∫
dx′Λ

(
x, x′, ω

)
Ẽ(x′, ω)

= −
iµ0c2

ω

(
J̃NL (x, ω)+ J̃free (x, ω)+ J̃σ (x, ω)

)
(5)

Without loss of generality, we can require that the conductiv-
ity σ

(
x, x′, ω

)
is chosen in such a way as to keep the dielectric

tensor K
(
x, x′, ω

)
equal to the transpose of its complex conjugate

K
(
x, x′, ω

)
= K † (x, x′, ω

)
(6)

and express remaining linear currents by the J̃σ (x, ω) term. It is
well known that if the dielectric tensor has this Hermitian matrix
property then solutions to the wave equation in the absence
of other currents conserve energy. Moreover, under appropriate
boundary conditions the differential wave operator is self-adjoint
under the inner product∫

dx
∫

dx′ a†(x)Λ
(
x, x′, ω

)
b(x′)

=

∫
dx
∫

dx′ b†(x)Λ
(
x, x′, ω

)
a(x′) (7)

We will adopt the notation of Breizman et al. [18] making all
terms in the wave equation have dimensions of current density

g
(
x, x′, ω

)
≡ −

ω

iµ0c2
Λ
(
x, x′, ω

)
(8)

∫
dx′ g

(
x, x′, ω

)
Ẽ(x′, ω) = J̃NL (x, ω)+ J̃free (x, ω)+ J̃σ (x, ω)

(9)

Consider the linear homogeneous (undriven) MHD equation∫
dx′ gMHD

(
x, x′, ω

)
Ẽ(x′, ω) = 0 (10)

This formalism supports any model for the plasma conductivity
σ
(
x, x′, ω

)
that makes the dielectric K

(
x, x′, ω

)
Hermitian, so it is

not restricted to just linear MHD. However, given the examples in
this paper deal with shear Alfvén waves, we will label the linear
response with ‘‘MHD’’ for the purposes of this derivation, but we
will drop the label outside this derivation in order to avoid the
implication that it has to be MHD.

The corresponding inhomogeneous (driven) MHD problem is∫
dx′ gMHD

(
x, x′, ω

)
Ẽ(x′, ω) = J̃free (x, ω) (11)

The free currents are independent of the electric field (by defi-
nition). If the drive from free currents is sufficiently weak, then
solutions to an externally driven inhomogeneous equation at ω
near ω′ will resemble a homogeneous solution at ω′. We thus
assume |ω| ≫ |ω − ω′

|

gMHD
(
x, x′, ω

)
≈ gMHD

(
x, x′, ω′

)
+ ϵ

[(
ω − ω′

) ∂
∂ω

]
· gMHD

(
x, x′, ω′

)
(12)

where we have introduced the formal small ordering parameter
ϵ which is the ratio of driving current to the dielectric currents⏐⏐ω − ω′

⏐⏐
|ω|

∼

⏐⏐⏐J̃free (x, ω)⏐⏐⏐⏐⏐⏐∫ dx′ σMHD (x, x′, ω) Ẽ(x′, ω)
⏐⏐⏐ ≪ 1 (13)

We include ϵ simply as a label to remind the relative sizes of
various terms, which should be set ϵ = 1 to obtain the physical
formulas.

The weakly driven MHD problem becomes∫
dx′

[
gMHD

(
x, x′, ω′

)
+ ϵ

[(
ω − ω′

) ∂gMHD
(
x, x′, ω′

)
∂ω

]]
· Ẽ
(
x′, ω

)
= ϵ J̃free (x, ω) (14)

The weakly driven MHD problem outlined above is analogous
to certain classes of wave-particle problems where the currents
are not free. In these problems, the plasma response currents
are dominated by linear Hermitian dielectric currents, and the
remaining nonlinear and linear response currents are deemed
much smaller in comparison∫

dx′

[
gMHD

(
x, x′, ω′

)
+ ϵ

[(
ω − ω′

) ∂
∂ω

]
gMHD

(
x, x′, ω′

)]
· Ẽ
(
x′, ω

)
= ϵ J̃NL (x, ω)+ ϵ J̃σ (x, ω) (15)⏐⏐ω − ω′

⏐⏐
|ω|

∼

⏐⏐⏐J̃σ (x, ω)⏐⏐⏐⏐⏐⏐∫ dx′ σMHD (x, x′, ω) Ẽ(x′, ω)
⏐⏐⏐

∼

⏐⏐⏐J̃NL (x, ω)⏐⏐⏐⏐⏐⏐∫ dx′ σMHD (x, x′, ω) Ẽ(x′, ω)
⏐⏐⏐ ≪ 1 (16)

These orderings must be motivated by the specific wave phenom-
ena being studied (see Appendix for TAE discussion). The weak
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current sources depend on the electric field, so to form a closed
system for the electric field, the relationship between the current
sources and the electric field must be known.

We now seek to solve the wave equation for the nonlin-
ear interaction of resonant and non-resonant fast particles. We
combine the source currents into one term J̃fast (x, ω)∫

dx′

[
gMHD

(
x, x′, ω′

)
+ ϵ

[(
ω − ω′

) ∂
∂ω

]
gMHD

(
x, x′, ω′

)]
· Ẽ
(
x′, ω

)
= ϵ J̃fast (x, ω) (17)

Note the subtle difference between demanding that the fast
particle contribution be small and the weaker assumption that
the resonant and nonlinear contribution be small. It is well known
that MHD is not sufficient to describe the Hermitian dielectric
motion of fast particles, since particles can drift from flux sur-
faces. Care must be taken not to double count Hermitian dielectric
current contributions in any choice of bulk plasma model. This
so-called ‘adiabatic’ contribution is discussed in the Appendix.

Exploiting the property that Λ
(
x, x′, ω

)
is self-adjoint with

electric field eigenmodes e
(
x, ω′

;ωj
)
, we may multiply by any

adjoint eigenmode e†
(
x, ω′

;ωj
)∫

dx
∫

dx′ e†
(
x;ωj

)
δ
(
ω′

− ωj
) [(

ω − ω′
) ∂
∂ω

]
· gMHD

(
x, x′, ω′

)
Ẽ
(
x′, ω

)
= δ

(
ω′

− ωj
) ∫

dx e†
(
x;ωj

)
J̃fast (x, ω) (18)

Integrating and performing the inverse transform to reobtain the
real field δE

(
x′, t

)
∫

dx
∫

dx′ e†
(
x;ωj

) [∂gMHD
(
x, x′, ωj

)
∂ω

(
∂δE

(
x′, t

)
∂t

+iωjδE
(
x′, t

))]
= −i

∫
dx e†

(
x;ωj

)
δJ fast (x, t) (19)

The lowest order unknown real field may be written as a sum
of eigenmodes δE

(
x′, t

)
= Re

{∑
A (t;ωk) e−iωkte

(
x′

;ωk
)}

. The
real field is therefore half the sum of complex contributions from
positive and negative frequencies ±ωk. Crucially, the perturbative
expansion is only valid in the neighbourhood ω ≈ ωj. This is a fur-
ther limitation of the perturbative approach in that eigenmodes
must have distinct frequencies, with no ‘chirping’ sufficiently far
as to overlap with any other modes.

The evolution equation for A
(
t;ωj

)
is obtained by looking in

the neighbourhood of ω ≈ +ωj

Ȧ
(
t;ωj

) ∫
dx
∫

dx′ e†
(
x;ωj

)
i
∂gMHD

(
x, x′, ωj

)
∂ω

e
(
x′

;ωj
)

= 2
∫

dx eiωjte†
(
x;ωj

)
δJ fast (x, t) (20)

with the equivalent redundant expression for A∗
(
t;ωj

)
obtained

for ω ≈ −ωj
Using the mode energy density averaged over a wave period

(cf. Shafranov [17], equation 15.16)

δWMHD =

∫
dx
∫

dx′ e†(x, ω)
∂
(
ω2KMHD

(
x, x′, ω

))
ω∂ω

ϵ0

4
e
(
x′, ω

)
(21)

we find for gMHD

Ȧ
(
t;ωj

)
= −

1
2δWMHD

eiωjt
∫

dx e†
(
x;ωj

)
δJ fast (x, t) (22)

δWMHD = −
i
4

∫
dxdx′e†

(
x;ωj

) ∂gMHD
(
x, x′, ωj

)
∂ω

e
(
x′

;ωj
)

(23)

δE
(
x, t;ωj

)
= Re

{
A
(
t;ωj

)
e
(
x;ωj

)
e−iωjt

}
(24)

The linear growth of the real wave amplitude a (t)may be related
with the instantaneous real power transfer to the particles

A
(
t;ωj

)
≡ aj (t) eφjt ,

ȧ
a

= γL + γNL (t) (25)

P ≡

∫
dx δE · δJ fast (26)

giving the well-known linear relationship when γNL (t) = 0

γL = −
P

a22δWMHD
(27)

The solution of the wave-particle problem is thus reduced to
choosing the most relevant eigenmodes of the bulk
plasma e

(
x;ωj

)
, computing the motion of the resonant particle

population δJ fast (x, t) in the presence of those eigenmodes, and
evolving the amplitude and phase of those modes A

(
t;ωj

)
in

response to the normalized complex power transfer
∫
dr eiωjte†(

x;ωj
)
δJ fast (x, t) in inverse proportion to the mode energy δWMHD.

2.2. Mode energy for TAE problems

For a cold plasma in the MHD ordering, the linear shear
Alfvén response manifests as a polarization drift of ions on an
equilibrium magnetic field and E∥ = 0

vp (x, t) =
d
dt

(
E⊥ (x, t)

B (x)Ωc (x)

)
=

mi

ZeB2 (x)
dE⊥ (x, t)

dt
(28)

Staying within the linear approximation, we use the equilibrium
density

ni(x)vp (x, t) =
ni (x)mi

ZeB2 (x)
dE⊥ (x, t)

dt
(29)

Fourier transforming and identifying the Alfvén speed vA =
B

√
µ0mini

, we obtain the appropriate generalized Ohm’s law for the

TAE

J̃TAE (x, ω) =

∫
dx′

(
−iω

1
µ0
δ
(
x′

− x
) 1
v2A (x′)

Ẽ⊥

(
x′, ω

))
(30)

σTAE
(
x, x′, ω

)
= −iω

1
µ0
δ
(
x′

− x
) 1
v2A (x′)

I (31)

Using the definition of the wave equation

∂gTAE
(
x, x′, ω

)
∂ω

=
2i
µ0

(
1
c2

+
1

v2A (x′)

)
δ
(
x′

− x
)

(32)

The first term on the right-hand side of Eq. (32) corresponds to
the displacement current which is smaller than the second term

by v2A
c2

and is neglected. Thus, we obtain the mode energy for the
Shear Alfvén wave [19,20]

δWTAE =
1

2µ0

∫
dx

e†
(
x;ωj

)
e
(
x;ωj

)
v2A (x)

=
1
µ0

∫
dx
δe2

(
x;ωj

)
v2A (x)

=
1
µ0

∫
dx δb2 (x;ωj

)
(33)

where we have also included expressions in terms of the real
time-averaged square electric δe and magnetic δb fields of the
linear modes for A

(
t, ωj

)
= 1. It should be noted that the

eigenmode e
(
x;ωj

)
must be a clearly distinguishable mode free

of any continuum resonance. Where any continuum resonance is
present, the resonance region must not be included in computing
the mode energy.
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2.3. delta-f model for the fast ion current

Solving for the electric field in Maxwell’s wave equation re-
quires an evolution equation for the currents in self-consistent
response to the field. Most of the current in the perturbative
model is due to the linear dielectric currents of the non-resonant
oscillatory plasma. For the TAE problem, this Hermitian dielectric
current is calculated from the closed linear MHD equations.

The remaining fast current is responsible for resonant drive
and damping of the mode. The fast current for an ion of charge
Ze is obtained from the distribution function

δJ i,fast (x, t) =

∫
dv f (x, v, t) Zev (34)

The motion of the fast particles is assumed to satisfy a Hamil-
tonian H(x, p, t) with a distribution that evolves according to a
collisionless kinetic equation, with no particle sources or sinks.
For the full-orbit problem, the Vlasov equation is relevant
∂ f (x, v, t)

∂t
+ v ·

∂ f
∂x
(x, v, t)+

Ze
m
(E(x, t) + v × B(x, t))

·
∂ f
∂v
(x, v, t) = 0 (35)

(a general treatment for arbitrary Hamiltonian is left for the
Appendix).

In the absence of any perturbation, we assume the existence
of an equilibrium

v ·
∂F0
∂x

(x, v, t)+
Ze
m
(E0(x) + v × B0(x)) ·

∂F0
∂v

(x, v, t) = 0 (36)

Letting f (x, v, t) = F0 (x, v) + δf (x, v, t), we seek an evolution
equation for the unknown perturbed distribution δf , arriving at
∂δf
∂t

+ v ·
∂δf
∂x

+
Ze
m
(E0 + δE + v × (B0 + δB))

∂δf
∂v

= −
Ze
m
(v × δB + δE)

∂F0
∂v

(37)

The left-hand side is the time derivative of the perturbed dis-
tribution taken along perturbed Hamiltonian trajectories. The
right-hand side is the source term that depends only on the
perturbed forces and the initial equilibrium. The linear version of
the initial value problem is recovered by following unperturbed
orbits on the left-hand side of Eq. (37), retaining the perturbations
to the motion only in the source term on the right-hand side.

The perturbed forces are calculated from the wave equation
forming a closed system of equations for the waves and the
perturbed fast current.

2.4. The neutralizing partner electron current

In addition to the bulk plasma currents and the fast ion cur-
rents, there are currents associated with the additional
neutralizing partner electrons that accompany the fast ions to
ensure quasi-neutrality. If those electrons are taken as cold,
then only the non-resonant response of the electrons will con-
tribute, and that contribution will be adiabatic changes to the real
mode frequency. Taking the electrons as cold will allow separate
later inclusion of non-adiabatic thermal Landau electron damping
contributions as calculated by other means.

For mode frequencies far below the electron cyclotron fre-
quency, the neutralizing linear electron response is (see
Appendix B)

J e,partner (x, ω) = iω
Z2
fastnfaste2

meω2 E∥ (x, ω) b̂ (x)

− Zfastnfaste
E (x, ω)× b̂ (x)

B0
(38)

Ignoring the parallel electric field for shear Alfvén waves implies
the real neutralizing electron current is only due to E×B motion,
which we may write nonlinearly for the real current

δJ e,partner (x, t) = −Zfastnfaste
δE (x, t)× B (x, t)

B2 (x, t)
(39)

This current must be included in the amplitude evolution equa-
tion in order to predict the change in the real mode frequency.

To satisfy the perturbative treatment, this current contribution
to the amplitude evolution must be sufficiently small, however
this is guaranteed to be cancelled by a component of the fast ion
motion which is also E × B in a magnetized plasma

δJ i,fast (x, t) = eZfastnfast

[
δE (x, t)× B (x, t)

B2 (x, t)
+ O

(ρ
L

)
+ · · ·

]
(40)

The expression used in HALO is thus δJ fast (x, t) = δJ i,fast (x, t)+
δJ e,partner (x, t).

3. Numerical method

3.1. delta-f scheme marker evolution

Using the discrete representation, the ith marker is associated
with a unique initial position in phase space (xi, vi)

∂F0
∂x

(x, v, t) ≈

∑
i

δ (x − x(t; xi, vi)) δ (v − v(t; xi, vi))

×
∂F0
∂x

(x, v)∆3xi∆3vi (41)

∂F0
∂v

(x, v, t) ≈

∑
i

δ (x − x(t; xi, vi)) δ (v − v(t; xi, vi))

×
∂F0
∂v

(x, v)∆3xi∆3vi (42)

δf (x, v, t) ≡

∑
i

δ (x − x (t; xi, vi)) δ (v − v (t; xi, vi))

× δf (x, v, t)∆3xi∆3vi (43)

The volume spanned by a marker∆3xi∆3vi for a uniform and reg-
ular loading is defined as the product of lengths taken from half-
way between one adjacent marker to another adjacent marker at
their initial positions in phase space. The volume is a constant of
the motion due to the Hamiltonian nature of the orbits.

Inserting into the delta-f equation and integrating, we find

d
dt
δfi (t) = −

Ze
m
(vi (t)× δB (xi (t) , t)+ δE (xi (t) , t))

·

(
∂F0
∂v

)
x
(xi (t) , vi (t)) (44)

The general form of the 2D equilibrium distribution function
assuming no equilibrium electric field is

F0 =

∑
sgn(v∥)

F (E, µ, Pφ; sgn(v∥)) (45)

n (x) =

∑
sgn(v∥)

∫
dv F (E, µ, Pφ; sgn(v∥)) (46)

where the invariants of motion energy E, gyroinvariant µ and
toroidal canonical momentum Pφ and sgn(v∥) label each possible
equilibrium orbit. The nature of an equilibrium is that it is a
function of the unperturbed field and unperturbed particle orbits.
Therefore, the coordinate mapping we require is from the space
(x, v, t) to the space of invariants of the unperturbed motion.
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Perturbed fields do not appear in these equilibrium invariants, it
is only the trajectories that are perturbed.

F0 = F
(
E (xi (t) , vi (t)) , µ (xi (t) , vi (t)) , Pφ (xi (t) , vi (t)) ;

sgn(v∥ (0))
)

(47)

Pφ (x, v) = mRvφ + Zeψ0 (x) (48)

E (x, v) =
1
2
mv2 (49)

µ (x, v) =

1
2mv

2
⊥

B0(x)
+ O

(ρ
L

)
(50)

where we have written only the lowest order in gyroradius ex-
pansion ρ

L for the gyroinvariant. Applying the chain rule to the
equilibrium equation we arrive at our delta-f scheme in cylindri-
cal coordinates

d
dt
δfi (t) = −δ̇vR

[
mvR

(
∂F0
∂E

)
µ,Pφ

+
∂µ

∂vR

(
∂F0
∂µ

)
E,Pφ

]

− δv̇Z

[
mvZ

(
∂F0
∂E

)
µ,Pφ

+
∂µ

∂vZ

(
∂F0
∂µ

)
E,Pφ

]

− δv̇φ

[
mvφ

(
∂F0
∂E

)
µ,Pφ

+ mR
(
∂F0
∂Pφ

)
µ,E

+
∂µ

∂vφ

(
∂F0
∂µ

)
E,Pφ

]
(51)

with all quantities understood to be measured along a marker tra-
jectory (xi (t) , vi (t)), and δv̇ ≡

Ze
m

(vi (t)× δB (xi (t) , t)+ δE (xi (t) , t)).
When ω

Ω
≪ 1 as expected for low-n shear Alfvén waves, the

∂F0
∂µ

contributions to δf may be ignored and we set µ (t) = µ(0).

Now we obtain an explicit expression for the work done by the
wave on the delta f markers

f (x, v, t) ≈

∑
i

δ (x − xi (t)) δ (v − vi (t)) [F0 (x, v)

+ δfi (t)]∆3xi∆3vi (52)

J i,fast (x, t) = Ze
∑

i

viδ (x − xi (t)) [F0 (x, vi)+ δfi(t)]∆3xi∆3vi

(53)

Ȧi,fast
(
t;ωj

)
= −

1
2δWTAE

eiωjtZe
∑

i

e†
(
xi(t);ωj

)
· vi [F0 (xi (t) , vi (t))+ δfi (t)]∆3xi∆3vi (54)

In a 2-D equilibrium, the function F0 (x, v) is axisymmetric, which
implies that we have contributions from the equilibrium pro-
portional to

∫
dφcosnφ which vanish identically. Dropping the

equilibrium contribution therefore reduces the noise significantly,
owing to the smallness of δf when compared with F0

Ȧi,fast
(
t;ωj

)
= −

1
2δW

eiωjtZe
∑

i

e†
(
xi(t);ωj

)
viδfi (t)∆3xi∆3vi

(55)

As mentioned earlier, correct treatment of the adiabatic con-
tribution to the mode evolution requires the inclusion of the
neutralizing partner electrons δJ e,partner (x, t). The natural way to
include the neutralizing partner electron contribution in HALO is
for each marker to have a correction to its velocity in the complex

Fig. 1. Alfvénic workflow currently implemented in HALO.

power transfer calculation to remove the E × B motion giving

Ȧ
(
t;ωj

)
= −

1
2δW

eiωjtZe
∑

i

e†
(
xi (t) ;ωj

)
(vi − vE×B)

× δfi (t)∆3xi∆3vi (56)

vE×B (xi (t) , t) =
δE (xi (t) , t)× B (xi (t) , t)

B2 (xi (t) , t)
(57)

4. Applications

4.1. MHD eigenmodes from MISHKA for TAE studies

The Alfvénic eigenmode workflow currently implemented in
HALO is shown schematically in Fig. 1 and is the basis for the ex-
amples presented in the rest of this paper. A solution to the Grad–
Shafranov equation in cylindrical coordinates is first obtained
either via a reconstruction process from experiment via EFIT [21],
by prediction, or by postulate. In particular, the profiles p(ψ) and
FF ′(ψ) and the location of the boundary is required. With the
equilibrium profiles and boundary known, a second solution of
the Grad–Shafranov equation must be obtained in a straight-field
line coordinate system using the HELENA [22] code. This solution
produces a high-fidelity equilibrium reconstruction suitable for
linear MHD analysis, as well as a coordinate mapping between the
cylindrical and straight field line coordinate systems. The high-
fidelity equilibrium is provided to the MISHKA [23] linear MHD
code and a set of eigenmodes of interest are computed.

The MISHKA eigenmodes are represented with the perturbed
fluid velocity in the straight field-line coordinates (s, θ, ϕ). For
ideal modes, MISHKA outputs two variables (v1, v2) where v1 is
related to the contravariant radial (s) component of the perturbed
flow velocity Ṽ and v2 is related to V̂ 2

=

[
Ṽ × B0

]
1

v1(s, θ, ϕ) = eλteinϕ
∑
m

eimθ
N∑
i=1

(
v1m,iH

1 (s)+ dv1m,iH
2 (s)

)
(58)

v2(s, θ, ϕ) = eλteinϕ
∑
m

eimθ
N∑
i=1

(
v2m,ih

1 (s)+ dv2m,ih
2 (s)

)
(59)

where the second summation is over radial grid points. The
radial dependence is represented using Hermite polynomial basis
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Table 1
Parameters chosen for alpha particle driven TAE case.
Parameter Value

ϵ = a/R0 0.25
vA/2aΩc 0.03
R0 3.0 m
B0 3.0 T
D:T (%) 50:50
q0 1.82
q95 3.31
Te 20 keV
Ti 20 keV
nα(0)/ne(0) 1%

functions of which there are two per radial grid point. For reasons
of pollution avoidance v1 is expressed in terms of cubic Hermite
polynomials H1 (s) and H2 (s) whereas v2 is expressed in terms
of quadratic polynomials h1 (s) and h2 (s) [22].

The non-zero covariant components of the vector potential
relate to the velocity components and in-turn the electric and
magnetic fields in straight-field line coordinates

J =
dψ
ds

qR2

RBφ
(60)

A1 =
−iv2
λ

(61)

dψ
ds

qÂ2 = −
v1

λ
(62)

Â2 ≡ [A × B0]1 /B2
0. (63)

JδB1
= −i

(
m
(
dψ
ds

Â2

)
+ n

(
dψ
ds

qÂ2

))
(64)

JδB2
= inA1 +

∂

∂s

(
dψ
ds

Â2

)
(65)

JδB3
=
∂

∂s

(
dψ
ds

qÂ2

)
− imA1 (66)

δEi = −
λAi

c
(67)

The straight field line representation of the eigenmode is then
transformed to conventional cylindrical coordinates using the
mapping and metric tensor provided from HELENA. Note that
the variables used in MISHKA as repeated above are expressed
in cgs Gaussian units, whereas in the rest of the paper we have
employed S.I. units.

At time of publication, we did not yet include the adiabatic
neutralizing electron contribution, which we expect to be a small
correction to the mode frequency.

4.2. Benchmark case: alpha particle driven TAE

For benchmarking and demonstration purposes, an alpha-
particle-driven unstable TAE test case was contrived based on
a circular equilibrium, with parameters comparable to existing
large tokamak experiments (see Table 1).

For simplicity, equilibrium flux functions were polynomials
adjusted by hand in HELENA to give a monotonic q-profile with
an n = 6 TAE found with MISHKA at s ≈ 0.5, and temperature
and density profiles were assumed flat.

Although HALO supports input of arbitrary fast ion distribu-
tion functions of the equilibrium form F (E, µ, Pφ; sgn

(
v∥

)
), the

alpha particle distribution was taken to be F = α (E) γ (Pφ) with

polynomial γ
(
Pφ
)

∝

(
1 − Pφ

2
)10

and slowing down distribution
[12,24]

α (E) ∝
1

v3 + v3c
Erfc

[
E − 3.5 MeV

106 × 103
√
Ti [keV]

]

Fig. 2. Comparison of Poincaré plots produced by HALO (top) and HAGIS
(bottom). Resonant orbits at critical locations become trapped in the wave
forming islands.

vc ≡

(
3
√
π
meZ1
4

) 1
3

√
2Te
me

Z1 =
0.5
2mp

+
0.5
3mp

(68)

4.3. Particle orbit test: wave-particle trapping of resonant orbits
comparison with HAGIS

To solve the coupled Maxwell–Vlasov system, the fast particle
response to the waves must be faithfully represented. The fields
must satisfy Maxwell’s equations, and the particles must move
according to the Lorentz force law. Equivalently, particles must be
shown to move according to the phase-space Lagrangian Equation
(D.14).

To test the fast particle response to the eigenmodes, a set of
alpha particle markers at different radial locations were launched
in the presence of the benchmark n = 6 TAE with a fixed mode
amplitude dBr

B0
= 3×10−3. All particles were loaded as deeply co-

passing µ = 0 and with the same velocity matching the Alfvén
speed at the magnetic axis. Both HAGIS and HALO were run
recording particle position and wave phase over many orbits, to
identify resonantly trapped alpha particle islands in phase space.
The comparison of orbits given by the two codes is given in Fig. 2
and shows excellent qualitative agreement.

A more quantitative test comes from conserving the invariant

K = E −
ω

n
Pφ (69)

This is a particularly stringent test that particles follow orbits
derived from the Lagrangian Equation (D.14) because it relates
the time and spatial derivatives of the perturbing fields to each
other through
d
dt

E = −
∂L
∂t

(70)

d
dt

Pφ =
∂L
∂φ

(71)

noting that here, the perturbed field is included in Pφ as opposed
to the rest of the paper where it denotes the equilibrium invariant
∂L0
∂φ̇

(see Appendix). The radial excursions shown in Fig. 2 imply a
corresponding change in toroidal canonical momentum due to a
breaking of axisymmetry. Fig. 3 shows that although the mode is
varying the test particle canonical momentum by up to 10%, the
invariant is found to be conserved to better than ∆K

K ∼ 1× 10−5.
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Fig. 3. Variation in toroidal canonical momentum for test particle orbits (left) and the preservation of wave invariant K (right).

Fig. 4. Comparison of linear growth rates between HAGIS and HALO, varying
the mode frequency.

4.4. Stability test: linear growth-rate comparison with HAGIS

Spatial gradients in the particle distributions are a source of
free energy for TAEs that propagate in the fast ion-diamagnetic
direction due to a universal instability drive [25], with drive
occurring if

ω < nω∗ = n
∂F/∂Pφ
∂F/∂E

(72)

The temporal evolution of the TAE is characterized initially by a
linear phase where the mode is governed by exponential growth.
In this phase, the mode energy is small when compared with the
free energy in the gradients. Moreover, the fields of the mode are
sufficiently small as to not significantly perturb the equilibrium
orbits of the resonant particles.

A scan of frequency for the TAE benchmark case was run
in both the HALO and HAGIS codes, and a comparison of the
measured linear growth rates is shown in Fig. 4. The linear
growth rates in HALO show roughly a factor 2 reduction in drive
compared with the HAGIS drift calculation. The difference in drive
between HAGIS and HALO lies in the drift approximation for the
power transfer evaluating the electric field at the average guid-
ing centre rather than the rapidly varying instantaneous particle
location

ȦHAGIS
(
t;ωj

)
= −

1
2δW

eiωjtZe
∑

i

e†
(
X i (t) ;ωj

)
V iδfi (t)∆3xi∆3vi

x ≡ X + ρ

V ≡ Ẋ (73)

The drift-kinetic, gyrokinetic [26,27] and quasi-linear [28] theo-
ries can be obtained by gyroaveraging the Vlasov equation over
the rapid gyration timescales, resulting in equations in terms of
the guiding centre position. Although the guiding centre drift
velocity is a good approximation to the average motion of the
particles, the field evaluated at the guiding centre is not a good
approximation for the average field. At frequencies much lower
than the cyclotron frequency, both the gyrokinetic and quasi-
linear equations for the perturbed distribution function include
terms lacking in the drift theory proportional to J0 (k⊥ρ) which
captures the finite Larmor radius (FLR) effect of the decreased
average electric field experienced by the particle. A simple cal-
culation shows that such a decrease in drive is to be expected for
the benchmark case; k⊥ ≈

m
r ≈

12.5
0.4 , and at the Alfvén speed

ρ ≈ 0.045m giving J0 (k⊥ρ) = 0.57.
For the sole purpose of comparison with the linear HAGIS

results, a ‘‘drift-order’’ mode in HALO was implemented, where
the electric field in the power transfer Eq. (55) was modified to
be evaluated at the guiding centre position

e†
(
xi (t) ;ωj

)
→ e†

(
X i (t) ;ωj

)
(74)

giving good agreement in Fig. 4.
Note that before any attempt is made to include this finite

Larmor radius correction in a drift-kinetic code such as HAGIS, a
technical point worth mentioning here is that the drift velocity
V i in guiding centre codes should be computed to one-higher
order in Larmor radius for the resulting power transfer to be
consistent with the 1st order drift-kinetic equation, owing to the
charge of the particle appearing in the fast particle power transfer
δE · δj [29]. This technical point is the reason for traditional drift-
kinetic power calculations being formulated through the pressure
rather than the electric field.

4.5. Nonlinear tests: mode saturation and frequency chirping due to
phase space holes and clumps

The long-term nonlinear behaviour of the wave-particle sys-
tem relies on solving the initial value problem for both wave
evolution and particle evolution. The verification of linear growth
rate implies that the power transfer between waves and particles
is correct in the linear phase. We have also shown that test
particle orbits are correctly perturbed by a finite mode and are
resonantly trapped in the wave.
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Fig. 5. Nonlinear growth and saturation of the TAE (right), and comparison between change in wave energy and sum of change in particle energy (left).

What remains to be shown is that there is sufficient temporal
and spatial resolution in order to faithfully compute the wave
power transfer in the nonlinear phase, conserving total energy.

The long-term nonlinear behaviour of the TAE alpha-particle
benchmark is given in Fig. 5, showing the classic growth and
saturation expected, and the conservation of energy between
waves and particles. As the field grows, particle orbits deviate
significantly from equilibrium orbits and can become resonantly
trapped within the wave potential. The field energy grows as
A2, whereas the region in phase space that can supply energy
grows approximately as A3/2. When the two energies become
comparable, the exponential growth slows until saturation when
the gradients in the distribution are removed via phase-mixing
of trapped orbits on a timescale comparable with the nonlinear
bounce frequency [6].

A further test of nonlinear evolution is the creation of
Bernstein–Greene–Kruskal (BGK) nonlinear waves that chirp in
frequency. These holes and clumps in phase-space result from
the shearing of trapped particle islands as the amplitude of the
saturated state is modulated by damping [30,31].

A marginally unstable version of the TAE benchmark was
created by considering an additional source current in the wave
equation

Ȧ
(
t;ωj

)
= −

1
2δW

eiωjt
∫

dx e†
(
x;ωj

) [
δJ fast (x, t)+ δJd (x, t)

]
(75)

this can be rewritten as an equation for the time varying growth-
rate

Ȧ
(
t;ωj

)
=
(
γfast (t)− i∆ωfast (t)

)
A
(
t;ωj

)
+ (γd (t)− i∆ωd (t)) A

(
t;ωj

)
(76)

To produce nonlinear chirping, we assume a linear damping
contribution γd (t) = γd,∆ωd (t) = 0

Ȧ
(
t;ωj

)
= −

1
2δW

eiωjt
∫

dx e†
(
x;ωj

)
δJ fast (x, t)+ γdA

(
t;ωj

)
(77)

The nonlinear TAE benchmark described earlier was repeated
with a linear damping term included such that γd

γL
= 0.9. Fig. 6

gives the amplitude and frequency evolution of the marginally
unstable evolution. The rapid amplitude modulation is typical of
marginally stable TAE simulations performed with HAGIS [32]
and with other codes [33]. Also evident is the expected steady
production of BGK modes sweeping in frequency symmetrically

Fig. 6. Amplitude (above) and Fourier spectrogram (below) of the TAE
benchmark made marginally unstable.

above and below the eigenfrequency as expected from the bump-
on-tail theory [34] and observed in previous TAE calculations [35]
and has been observed in experiment [36].

4.6. Conserved quantities and convergence

The full-orbit motion of δf markers is described by the tra-
jectories obtained from the Lagrangian given by Eq. (D.14) as
solved using the orbit-following portions of the LOCUST-GPU
code [15] with either of the phase-volume preserving Boris or
Strang particle orbit integrators [37].

For fully self-consistent HALO solutions, Eqs. (51) and (55), as
well as the particle trajectories specified by Eq. (D.14) are inte-
grated simultaneously in time as an initial value problem. Parti-
cles are loaded in 6D phase space using a quasi-random Hammer-
sley sequence [38] in order to reduce noise in the power transfer
integral. The rapid variation in the quantity e†

(
xi(t);ωj

)
vi gov-

erns the power transfer timescale, with only the drift contribution
having any consequence for Alfvénic modes which oscillate on
an ω ≈ k∥vA timescale. Slower still is the growth time of
Ȧ as dictated by the perturbative model. In order to integrate
the rapidly varying power transfer between infrequent wave
amplitude updates, a 6th order finite difference scheme was used.
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Fig. 7. Convergence properties of the coupled wave-particle system. Plots of convergence with timestep (a) and number of markers (b) are shown, as well as the
global conservation of particles in the delta-f scheme (c).

The numerical scheme for coupled wave-particle solution has
been tested for convergence in temporal and spatial integration
and the results for the benchmark case are given in Fig. 7. A time
step of 1 × 10−9 s in the benchmark problem corresponds to
≈

2π
Ωc

1
40 which is enough to solve the perturbed motion of the

particles and conserve orbit invariant K , but appears insufficient
in the continual time integration of power transfer e†

(
xi(t);ωj

)
vi.

Halving the timestep to ≈
2π
Ωc

1
80 for the 6th order scheme gives

a dramatic improvement, with diminishing returns for further
reductions. We have so far only attempted running LOCUST-GPU
with simulations below 12 million particles, however we obtain
convergence in global energy conservation at around 1 million
particles.

Note the complete absence of any slowly growing or slowly
decaying amplitude in the converged solution, which has been a
stubborn feature in some other delta-f based results but one that
we have been able to eliminate with high-order integration and
sufficient statistics.

Also related to global energy conservation is the total particle
conservation in the delta-f scheme. The perturbed distribution
function δf represents the deviation of the distribution function
from equilibrium and must therefore contain both positive and
negative values as particles are moved from one area of phase
space to another. Thus, exact particle number conservation would
require that∫

dxdvδf =

∑
δfi∆3xi∆3vi = 0 (78)

The total number of particles in the system includes the unper-
turbed particles as well as the perturbed particles and the frac-
tional error in the total particle conservation is

∫
dxdvδf /

∫
dxd

vF0, however such a test is rather insensitive by virtue of the small
proportion of particles involved in driving the mode, i.e. δf ≪ F0.
A more stringent test

∫
dxdvδf /

∫
dxdv|δf | is presented instead,

which is a more direct measure of the error in the code as it
computes wave-particle power transfer. The relative conservation
of perturbed particles in Fig. 7 implies a random fluctuation in
the computed wave growth of the order of 1% with no systematic
drift evident.

5. Conclusion and further work

We have presented the theory and validation of a new wave-
particle code HALO which perturbatively solves the Maxwell–
Vlasov problem when the nonlinearity is dominated by particle
currents that do not play a large role in the structure and fre-
quency of the eigenmode. The approach generalizes the HAGIS
code by allowing arbitrary particle motion in arbitrary geometry,
interacting with eigenmodes whose frequencies are limited only
by the particle integration timescale. The workflow currently im-
plemented pertains to the TAE problem in tokamaks, however our
presentation has been deliberately general so that this approach
can be replicated easily for other kinds of bulk plasma modes.

For our TAE workflow, we have presented benchmarks against
the drift-kinetic code HAGIS, with and without the new FLR
corrections provided by HALO. The FLR corrections were found to
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be significant for an invented benchmark case with parameters
that resemble current large tokamak experiments.

We plan to extend HALO to support workflows for modes
other than the well-studied TAE problem, such as those located
in the ion-cyclotron and ion-acoustic range of frequencies. It
is likely that we will use the two-fluid extension to MISHKA,
MISHKA3 [39], which includes the Hall-term required in the ion-
cyclotron range of frequencies (see Appendix), and for modes at
low frequencies, viscous and heat flow effects.

The robustness of this method has undoubtedly been due in
part to the Hamiltonian nature of the equations assumed. How-
ever it is well understood that the nonlinear evolution of TAEs
seen in experiment requires collisions and sources/sinks to be
modelled in order to reproduce all of the experimentally observed
behaviour, including asymmetric frequency chirping [40]. Colli-
sions have been implemented in various hybrid and gyrokinetic
codes [41,42], but a fully consistent delta-f set of equations that
includes collisions appears to be far from straightforward. This
will likely be the focus of future work to complete the TAE model
implemented in HALO.
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Appendix A. Applicability to the TAE problem versus the EPM
problem

TAE stability in a tokamak is a good example of a problem
where the orderings used in HALO are valid. The weak cur-
rents not captured in the self-adjoint MHD operator include the
drive provided by fast particles, the linear damping provided
by thermal ions, the linear damping provided by crossing of
the continuum, and the nonlinear response. TAEs are discrete
modes which exist in gaps in the Shear Alfvén continuum. They
are weakly driven and damped and there is good experimental
evidence for their mode structure resembling MHD solutions [5].

We turn our attention to the non-resonant nonlinear currents.
The fluid current associated with the TAE mode is given by the
polarization drift of ions

vp (x, t) =
d
dt

(
E⊥ (x, t)

B (x)Ωc (x)

)
=

mi

eiB2 (x)
dE⊥ (x, t)

dt
(A.1)

vp (x, t) =
mi

ei|B + δB|
2

dE⊥

dt
≈

mi

ei
(
B2 + δB2

) dE⊥

dt
(A.2)

vp (x, t) =
mi

ei

dE⊥

dt

(
1
B2 −

δB2

B4 + · · ·

)
(A.3)

The polarization drift is almost completely compressionless, so
the polarization current depends on equilibrium ion density

Jp (x, t) = ni (x)mi
dE⊥

dt

(
1
B2 −

δB2

B4 + · · ·

)
(A.4)

Identifying the linear and nonlinear responses⏐⏐⏐J̃NL⏐⏐⏐⏐⏐⏐σMHDẼ
⏐⏐⏐ =

δB2

B2 + · · · (A.5)

A fast particle driven TAE has a linear fast particle driven
growth rate γ

ω
≈1% with a corresponding saturation amplitude

of δB
B ≈ 0.1%. The perturbative approach which assumes a fixed

mode structure is clearly a good approximation in such a regime
and the fast particle nonlinearity is the dominant nonlinearity at
least until mode saturation.

Conversely, energetic particle modes (EPMs) do not satisfy the
perturbative orderings by definition [43,44] and are not valid
modes to be considered self-consistently with HALO; specifically,
the distribution function in the vicinity of the resonant velocity
has strong gradients which produce currents that are responsible
both for the drive of the modes as well as the modes’ very exis-
tence. The coherent motion of the fast current does not merely
provide an external drive, but rather, the coherent motion is the
EPM⏐⏐⏐J̃NL⏐⏐⏐⏐⏐⏐σMHDẼ

⏐⏐⏐ ∼ 1 (A.6)

EPMs such as fishbones can also occur at low frequencies where
strong damping interactions with the Alfvén continuum produce
large response currents⏐⏐⏐J̃σ ⏐⏐⏐⏐⏐⏐σMHDẼ

⏐⏐⏐ ∼ 1 (A.7)

The strong continuum damping implies a low-quality linear
plasma response at the fishbone frequency. With such a broad
bulk plasma response, discussion of a bulk plasma linear ‘‘mode’’
is meaningless.

Appendix B. Mode energy of modes in the ion-cyclotron range

Although this paper has focused on the TAE, HALO is suffi-
ciently general to allow study of arbitrary perturbative eigen-
modes. Here we give the derivation of ∂gCOLD

∂ω
required for dWCOLD

which is valid for any cold plasma eigenmode below the electron
cyclotron frequency.

The general cold plasma displacement velocity for a given
particle species is [17]

v (x, ω) = i
e
m

ω

ω2 −Ωc (x)2

(
Ẽ (x, ω)−

Ωc
2 (x)
ω2 Ẽ∥ (x, ω) b̂ (x)

)
−

Ωc(x)2

ω2 −Ωc(x)2
Ẽ (x, ω)× b̂

B0
(B.1)

Looking first at the electron current, for frequencies well be-
low the electron cyclotron frequency

J̃e (x, ω) = i
nee2

meω
Ẽ∥ (x, ω) b̂ (x)− ne

Ẽ (x, ω)× b̂ (x)
B0

(B.2)

and for ions of charge Ze and cyclotron frequency Ωc

J̃i (x, ω) = i
niZ2e2

mi

ω

ω2 −Ωc (x)2

×

(
Ẽ (x, ω)−

Ωc
2 (x)
ω2 Ẽ∥ (x, ω) b̂ (x)

)
− niZe

Ωc(x)2

ω2 −Ωc(x)2
Ẽ (x, ω)× b̂

B0
(B.3)



M. Fitzgerald, J. Buchanan, R.J. Akers et al. / Computer Physics Communications 252 (2020) 106773 11

Using quasi-neutrality we find, after some manipulation, that the
total current is

J̃ (x, ω) = − iω
nimi

B2
0

Ω2
c

Ω2
c − ω2 Ẽ⊥ (x, ω)

+

(
niZ2e2

miω
+

ne2

meω

)
iẼ∥ (x, ω) b̂ (x)

+
ω2

Ω2
c − ω2

ne
B0

Ẽ⊥ (x, ω)× b̂ (x) (B.4)

We can clearly identify a binormal Hall current which is out
of phase with the polarization current. This Hall current is the
additional physics required in dWCOLD that is ignored for Alfvénic
modes. Decomposing the electric field along the orthogonal di-
rections ê1, ê2, b̂ we obtain the conductivity tensor σ

(
x, x′, ω

)
(cf. Shafranov [17]) defined through the generalized Ohm’s law
expression

J̃ (x, ω) =

∫
σ
(
x, x′, ω

)⎛⎝Ẽ1

Ẽ2

Ẽ∥

⎞⎠ d3x′ (B.5)

σCOLD(x, x′, ω) = δ(x − x′)

( A (x, ω) iH (x, ω) 0
−iH (x, ω) A (x, ω) 0

0 0 P (x, ω)

)
(B.6)

where

A (x, ω) = −iω
nimi

B2
0

Ω2
c

Ω2
c − ω2 (B.7)

iH (x, ω) =
ω2

Ω2
c − ω2

ne
B0

(B.8)

P (x, ω) = i
(
niZ2e2

miω
+

ne2

meω

)
(B.9)

Taking the derivative of Eq. (B.6) gives the equation given in
Box I.

In the MHD limit ω ≪ Ωc , the off-diagonal Hall H (x, ω) con-
tributions to the mode energy vanish leaving only the diagonal
polarization drift found in Eq. (33) for the perpendicular field.

Appendix C. The adiabatic contribution and the HAGIS and FAC
expressions

In HALO, the perturbed distribution in Eq. (55) contains both
the real and imaginary components of the correction to fre-
quency. The linear real contribution to the frequency from the
imaginary power transfer is also known as the ‘‘fluid’’, ‘‘incom-
pressible’’ or ‘‘adiabatic’’ part of δf [25]

d
dt
δfadiabatic(t) =

dδPφ
dt

∂F
∂Pφ

+ e
dδΦ
dt

∂F
∂E

−
d
dt

(
µ
δB
B

)
∂F
∂µ

(C.1)

d
dt
δf (t) =

d
dt
δfadiabatic(t) +

d
dt

h(t) (C.2)

where h(t) is the usual label for the non-adiabatic contribution.
Both the HAGIS and FAC codes (as well as the linear CASTOR-

K code [45]) explicitly ignore adiabatic contributions to the mode
frequency and focus instead on computing the growth rate due
to real power transfer. By using MHD for the mode structure,
this implies that these codes are ignoring the fast particle pres-
sure contributions to the mode structure and frequency. More
recently, there has been work in combining the LIGKA code
with HAGIS to weaken this assumption both linearly and non-
linearly [46].

We can re-obtain the non-adiabatic HAGIS/FAC evolution
equations Eq. 21 in [13] and Eq. 29 in [12] by considering a low-
β MHD approximation for an Alfvén eigenmode

∇ ×

∑
m

αmB0 = δB (C.3)

αm =
k∥mΦm

B0ω
(C.4)

The power transfer term in Eq. (55) is then proportional to

eiωjte†
(
xi (t) ;ωj

)
v = −

∑
m

(
v · ∇Φ∗

me
iωjt + v ·

∂

∂t
α∗

me
iωjtB0

)
= −eiωjt

∑
m

(
v · ∇Φ∗

m + iωv∥

k∥mΦ
∗
m

B0ω
B0

)
(C.5)

Ignoring the adiabatic contribution implies
dΦ∗

m

dt
=
∂Φ∗

m

∂t
+ v · ∇Φ∗

m = 0 (C.6)

Giving the HAGIS/FAC results

A
(
t;ωj

)
≡ X

(
t;ωj

)
− iY

(
t;ωj

)
(C.7)

Skjm = Im
{
ei(km·xk−ωjt)Φm

}
(C.8)

Ckjm ≡ Re
{
ei(km·xk−ωjt)Φm

}
(C.9)

Ẋ
(
t;ωj

)
=

1
2δW

Ze
∑
m

∑
k

(
k∥m (xk (t)) v∥k (t)− ωj

)
× Skjmδfk (t)∆3xk∆3vk (C.10)

Ẏ
(
t;ωj

)
= −

1
2δW

Ze
∑
m

∑
k

(
k∥m (xk (t)) v∥k (t)− ωj

)
× Ckjmδfk (t)∆3xk∆3vk (C.11)

Appendix D. Two approaches to delta-f — canonical versus
non-canonical

A similar delta-f scheme can be constructed for any Hamil-
tonian motion, where the fast current is given by a density in
Hamiltonian phase space f̂ (q, p, t)

δJ i,fast (q, t) = Ze
∫

dp f̂ (q, p, t) v (q, p, t) (D.1)

For any coordinate system the conservation of particles gives

∂ f̂ (q, p, t)
∂t

+
∂

∂q
·

(
q̇f̂ (x, p, t)

)
+
∂

∂p
·

(
ṗf̂ (x, p, t)

)
(D.2)

The additional assumption of Hamiltonian motion

q̇ =
∂H (q, p, t)

∂p
, ṗ = −

∂H (q, p, t)
∂q

(D.3)

allows the conservation law to be written as a total derivative
along the particle orbits

df̂ (q, p, t)
dt

=
∂ f̂ (q, p, t)

∂t
+ q̇ ·

∂ f̂ (q, p, t)
∂q

+ ṗ ·
∂ f̂ (q, p, t)

∂p
= 0

(D.4)

The distribution function is separated into equilibrium and
perturbed portions f̂ (q, p, t) = F̂0 (q, p) + δ f̂ (q, p, t), as is the
Hamiltonian H (q, p, t) = H0 (q, p)+ δH(q, p, t) with the equilib-
rium satisfying

∂H0 (q, p)
∂p

·
∂ F̂0 (q, p)
∂q

−
∂H0 (q, p)

∂q
·
∂ F̂0 (q, p)
∂p

= 0 (D.5)
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∂σCOLD

∂ω

(
x, x′, ω

)
= − δ(x − x′)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i
1
v2A

Ω2
c

(
Ω2

c + ω2
)(

Ω2
c − ω2

)2 −
2Ω2

cω(
Ω2

c − ω2
)2 ne

B0
0

2Ω2
cω(

Ω2
c − ω2

)2 ne
B0

i
1
v2A

Ω2
c

(
Ω2

c + ω2
)(

Ω2
c − ω2

)2 0

0 0 i
(
niZ2e2

miω2 +
ne2

meω2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(B.10)

Box I.

the evolution of δ f̂ along the particle orbit is then

d
dt
δ f̂ (q, p, t) = −

∂δH (q, p, t)
∂p

·
∂ F̂0 (q, p)
∂q

+
∂δH (q, p)

∂q
·
∂ F̂0 (q, p)
∂p

(D.6)

An awkward feature of the Hamiltonian approach lies with
relating the canonical momentum to measurable quantities i.e.:
the velocity. Although the equilibrium F̂0 (q, p) has no explicit
time dependence (by definition), the transformation between p
and v is time-dependent because it depends on the perturbation
through p(x, v, t) = mv + eA0(x) + eδA(x, t). Choosing to ignore
the perturbation in the momentum creates a discrepancy that is
linear in the mode amplitude. Given that the growth rate scales
as the square root of mode amplitude, an approximation for
resonant particles only is p (x, v, t) ≈ mv + eA0(x) which may
be sufficient to capture the non-adiabatic response.

The alternative non-canonical prescription [14] is based on the
well-known procedure given by Littlejohn, which starts with the
Vlasov equation

δJ i,fast (x, t) = Ze
∫

dvf (z, t) v (D.7)

z = (x, v) (D.8)
∂ f (z, t)
∂t

+ ż ·
∂ f (z, t)
∂z

= 0 (D.9)

and relates to any canonical description through a trivial scaling
factor m3f (z, t) = f̂ (q, p, t). This is the approach of the existing
drift-kinetic and gyrokinetic theory, and the same as used in
HALO.

The separation of equilibrium and perturbed motion in phase
space is described with a Lagrangian

L (z, ż, t) = L0 (z, ż)+ δL(z, ż, t) (D.10)
d
dt
∂L0 (z, ż)
∂ ż

=
∂L0 (z, ż)
∂z

→ ż0(t),

d
dt
∂δL (z, ż)
∂ ż

=
∂δL (z, ż)
∂z

→ δż(t) (D.11)

with equilibrium defined through f (z, t) = F0 (z)+ δf (z, t) and

ż0(t) ·
∂F0 (z(t))
∂z

= 0 (D.12)

and corresponding delta-f equation

d
dt
δf (t) = −δż(t) ·

∂F0 (z(t))
∂z

(D.13)

The phase-space Lagrangian in z = (x, v) is

L (x, v, ẋ, v̇, t) = (mv + eA0 + eδA) · ẋ −

(
eΦ0 + eδΦ +

m
2

v · v
)

(D.14)

The transformation of phase-space variables from z = (x, v)
to any other z is completely arbitrary since the Lagrangian is
coordinate independent. A particularly simple choice used in the
HAGIS/FAC codes is to write the distribution using equilibrium
invariants of motion F = F (E, µ, Pφ; σ ). This gives immediately
their result when µ̇ is taken as zero and z = (E, µ, Pφ, . . .)

d
dt

E = −
∂L0 (z, ż)
∂t

→ Ė = 0,
d
dt

Pφ =
∂L0 (z, ż)
∂φ

→ Ṗφ = 0

(D.15)

d
dt
δf (t) = −Ė

∂F0
(
E, µ, Pφ; σ

)
∂E

− Ṗφ ·
∂F0

(
E, µ, Pφ; σ

)
∂E

(D.16)
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