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a b s t r a c t

Block-structured mesh generation techniques have been well addressed in the CFD community for
automobile and aerospace studies, and their applicability to magnetic fusion is highly relevant, due
to the complexity of the plasma-facing wall structures inside a tokamak device. Typically applied to
non-linear simulations of MHD instabilities relevant to magnetically confined fusion, the JOREK code
was originally developed with a 2D grid composed of isoparametric bi-cubic Bézier finite elements, that
are aligned to the magnetic equilibrium of tokamak plasmas (the third dimension being represented
by Fourier harmonics). To improve the applicability of these simulations, the grid-generator has been
generalised to provide a robust extension method, using a block-structured mesh approach, which
allows the simulations of arbitrary domains of tokamak vacuum vessels. Such boundary-aligned grids
require the adaptation of boundary conditions along the edge of the new domain. Demonstrative non-
linear simulations of plasma edge instabilities are presented to validate the robustness of the new grid,
and future potential physics applications for tokamak plasmas are discussed. The methods presented
here may be of interest to the wider community, beyond tokamak physics, wherever imposing arbitrary
boundaries to quadrilateral finite elements is required.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction and motivation

As fusion devices progress towards reactor-relevant condi-
tions, the exhaust of particles and heat onto plasma facing com-
ponents (PFCs) is acknowledged to be a major challenge [1]. In
JET, the tungsten divertor is subject to damage in high power
discharges, and there is growing concern that divertor heat loads
will be one of the main restricting factors for operation capa-
bilities in ITER [2]. Energy deposition on the divertor materi-
als, due to steady-state heat fluxes as well as transient MHD
events like Edge-Localised-Modes (ELMs), will be considerably
increased in burning plasma experiments like ITER. Effectively
most of the energy that crosses the separatrix into the Scrape-
Off Layer (SOL) is transported along field lines to the divertor
targets, and this effect is enhanced by increased heat conductivity

∗ Corresponding author at: CCFE, Culham Science Centre, Abingdon, Oxon,
OX14 3DB, UK.
1 See author list of [X.Litaudon, Nucl. Fusion 57, 102001 (2017)].
2 See https://www.jorek.eu team members.

at higher temperatures [3–5]. Combined with the large ampli-
tude of these heat-fluxes, the longer duration of experimental
pulses in reactor-sized devices will induce significant strain on
the tungsten tiles, possibly leading to erosion and melting [6]. The
tungsten tiles of the ITER divertor are designed to withstand up
to 10 MW m−2 in steady-state, and several thousands of transient
events of up to 20 MW m−2 [7,8].

Ultimately, heat fluxes on PFCs are determined by how much
energy escapes from the well-confined region inside the separa-
trix. It is well established that anomalous transport is responsible
for this energy crossing the separatrix [9], and it is also well estab-
lished that this occurs either in the form of turbulence filaments
(blobs), or in the form of large-scale ELM filaments [10–13].
Hence, on one side, elaborate physics models (Fluid, MHD, drift-
kinetic etc.) are indispensable to yield a robust understanding of
anomalous transport in tokamaks. On the other side, the elaborate
geometry of magnetic equilibria, including X-point and separa-
trix, is a fundamental ingredient for the accurate description of
filamentary transport at the plasma edge and in the SOL. This
has led a number of state-of-the-art numerical codes [14–18]
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to use various field- or flux-aligned grid techniques, since it is
essential to resolve the large parallel energy transport when these
filaments cross the separatrix. However, the extension of such
grids to the entire vacuum domain of a tokamak is not trivial,
and often not undertaken.

In order to provide accurate estimates of divertor and first-
wall heat-fluxes in present and future tokamak simulations, it is
essential to consider the exact plasma domain inside the vacuum
vessel wall. The precise location of individual wall components is
necessary to obtain their respective heat-fluxes, and the accuracy
of the global wall geometry is also required to represent the
transport of neutral particles in various regions of the plasma
domain. In addition, boundary conditions on wall components
that are not aligned to magnetic field lines constitute a key aspect
of simulations as a whole, particularly since boundary conditions
have a direct impact on the plasma dynamics in the entire SOL.

In this paper, we present a newly developed grid generator
developed for the JOREK code [19,20]. This block-structured mesh
generator enables the extension of single and double X-point
grids to the entire vacuum domain for arbitrary tokamak con-
figurations, and non-linear simulations of ELMs are performed
to demonstrate the robustness of such wall-extended grids for
the JET-ILW tokamaks. Block-structured mesh generation is a
technique that has already been thoroughly addressed by the CFD
community for a wide array of applications, including automobile
and aerospace [21–23]. The applicability of structured meshes to
magnetic fusion is particularly relevant due to the complexity of
the PFCs inside tokamaks. This work is part of a wider effort in
the fusion community to improve and generalise grid-generation
techniques, and it is complementary of recent works for triangu-
lar meshes [24], and for advanced magnetic configurations [25].
The particularity of the method developed here is that it adapted
to the quadrilateral topology imposed by the rectangular Bezier
elements used in JOREK, and thus it may be of interest to the
wider community, beyond tokamak physics.

The paper is organised as follows. Section 2 presents the JOREK
code, including its bi-cubic Bezier finite-element formulation, and
the visco-resistive MHD models used for simulations. Section 3
describes the methods used to extend flux-aligned grids to the
first-vessel wall for arbitrary tokamak geometries. Section 4 dis-
cusses the use of Bohm Sheath boundary conditions [9] with
wall-aligned grids. Section 5 shows initial results of ELM simula-
tions in the JET-ILW tokamak, and discusses prospects for future
studies with the new wall-extension grid generator in JOREK. This
article is closed with a brief conclusion in Section 6.

2. The JOREK code

2.1. Visco-resistive MHD with neutrals density

The 3D nonlinear MHD code JOREK was developed by Huys-
mans et al. with the specific aim to produce simulations of Edge-
Localised-Modes [19,26]. The MHD model used for the present
paper is similar to that used in previous ELM and disruption
studies [27,28]. It is a six-field reduced MHD model for the
variables ψ (poloidal magnetic flux), Φ (electric potential), v⃗∥

(parallel velocity), ρ (ion density), T (total temperature assuming
Ti = Te), ρn (neutral density), including the two-fluid diamag-
netic effects [29]. The reduction of the equations assumes that
the perpendicular velocity lies in the poloidal plane, and that
the toroidal magnetic field is constant in time, so that the to-
tal plasma velocity and the total magnetic field are expressed
respectively as

v⃗tot = v⃗∥ + v⃗⊥ = v⃗∥ + v⃗E + v⃗∗i

= v∥B⃗ + Re⃗φ × ∇Φ +
δ∗R
ρ

e⃗φ × ∇pi, (1)

B⃗ = B⃗φ + B⃗p =
Fo
R
e⃗φ +

1
R
∇ψ × e⃗φ, (2)

where R is the major radius, e⃗φ is the toroidal unit vector and
Fo = BoRo, with Bo being the magnetic field amplitude at the
reference major radius R = Ro. The diamagnetic component
of the perpendicular velocity is represented by the third term
v⃗∗i = δ∗Rρ−1e⃗φ × ∇pi, where pi is the ion pressure and δ∗

=

(ΩciRo)
−1, with the ion gyrofrequency Ωci = eBo/mi. Substituting

the identities (1) and (2) into the visco-resistive MHD equations
gives the reduced MHD model, first derived by H.R. Strauss [30],
with two separate equations for the parallel and the perpendic-
ular momentum. The complete set of normalised equations is
as follows, where diamagnetic terms are highlighted in green,
neutral density terms in red, and hyper-diffusive terms in blue
(also with subscript |hyp):

ρ
dv⃗E

dt
= −ρv⃗∗i · ∇v⃗E − ∇⊥p + J⃗ × B⃗ + µ∇

2 (v⃗E+v⃗∗i)

+
(
ρ2αrec − ρρnSion

)
v⃗E + µhyp∇

4v⃗E, (3)

ρ
dv⃗∥

dt
= −ρv⃗∥ · ∇v⃗∥ − ∇∥p + µ∇

2 (
v⃗∥ − VNBI

)
+

(
ρ2αrec − ρρnSion

)
v⃗∥ + µhyp∇

4v⃗∥, (4)
∂ψ

∂t
= η (j − jA)+ R [ψ,Φ] −

∂Φ

∂φ

−
δ∗R
ρ

[ψ, pe] +
δ∗

ρ

∂pe
∂φ

+ ηhyp∇
2j, (5)

∂ρ

∂t
= −∇ ·

(
ρ

[
v⃗∥ + v⃗E+v⃗∗i

])
+ ∇ · (D⊥∇⊥ρ)+ Sρ

+
(
ρρnSion − ρ2αrec

)
+ Dhyp∇

4ρ, (6)
∂p
∂t

= −v⃗E · ∇p − γ p∇ · v⃗E

+∇ ·
(
κ⊥∇⊥T + κ∥∇∥T

)
+

2
3R2 ηj

2
+ ST

+ξionρρnSion − ρρnLlines − ρ2Lbrem, (7)
∂ρn

∂t
= ∇ ·

(
D⃗n:∇ρn

)
+ Sρ −

(
ρρnSion − ρ2αrec

)
, (8)

where the density, temperature and current sources Sρ , ST and jA
have been introduced. The current source term jA also includes
the time-dependent bootstrap current calculated using Sauter’s
formula [31]. The convective derivative, the parallel gradient, the
perpendicular gradient, and the Poisson brackets are defined as
d
dt

=
∂

∂t
+ v⃗E · ∇,

∇∥ = b⃗
[
b⃗ · ∇

]
,

∇⊥ = ∇ − ∇∥,

[α, β] = e⃗φ · (∇α × ∇β) ,

b⃗ =
1
|B|

B⃗.

As defined in [28], Sion and αrec are the ionisation and recom-
bination rate coefficients for deuterium, ξion is the normalised
ionisation energy of a D atom (here set to 13.6 eV), and Llines and
Lbrem are the line and bremsstrahlung radiation rate coefficients
(based on ADAS data [32]). Note that this neutrals model is
an extremely simplified description of a very complex system,
without evolution equations for momentum or energy, which
have been shown to play a major role in SOL physics, particularly
detachment [15,33]. Here, the neutrals fluid spreads in a diffusive
manner, which is only valid for short mean-free-path regimes. In
this paper, the diffusive parameter is set to Dn = 10−4 m2 s−1,
similar to previous works from [28,34].
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Note that Eqs. can be reduced to scalar equations by pro-
jecting them in the poloidal and parallel directions, respectively,
by applying the operators ∇ ·

[
Re⃗φ × ()

]
and b⃗ · (). This reduced

set of equations (without the diffusive transport terms and the
diamagnetic terms) is equivalent to that derived by HR.Strauss,
where energy of the system is shown to be conserved at first
order [35,36].

The perpendicular mass and thermal diffusivities D⊥ and κ⊥

used in simulations are ad-hoc coefficients with a well at the
pedestal region to represent the H-mode transport barrier. Spitzer
resistivity η = ηo(Te/Te,o)−3/2 is used, with Te,o the electron tem-
perature at the magnetic axis. Likewise, a temperature-dependent
perpendicular viscosity is used: µ = µo(Te/Te,o)−3/2. The Bra-
ginskii parallel thermal conductivity κ∥ is expressed as κ∥ =

κ∥o(T/To)5/2. The ratio of specific heat is γ = 5/3. Hyper-diffusive
coefficients µhyp, ηhyp and Dhyp are also used in these simulations
to improve numerical stability, but with values small enough not
to influence the physics results. Typically, ηhyp ∼ η2 is chosen
(and similarly for µhyp and Dhyp).

The normalisation of the equations is based on the magnetic
permeability µo and the core density ρo, so that time is nor-
malised to a near Alfven time t = tSI/

√
µoρo. For a deuterium

plasma with particle density no = 6×1019 m−3, a normalised time
unit corresponds to approximately 0.5 µs. Naturally, the current
density is normalised as j̃ = µoj, the density as ρ̃ = ρ/ρo, and
pressure as p̃ = µop.

2.2. Spatial and Temporal Discretisation

The spatial discretisation of the JOREK code is made of a 2D
grid in the poloidal plane (as shown in Fig. 1), and a pseudo-
spectral Fourier representation in the toroidal direction. The 2D
poloidal grid is composed with isoparametric bi-cubic Bezier
finite elements, as described in [26]. This finite element grid is
aligned to equilibrium flux surfaces for the three regions of the
core, the SOL and the private region. This alignment along flux
surfaces is particularly important in the region of the separatrix,
in order to treat accurately the fast parallel transport of energy
along magnetic field lines.

In previous studies, the edge of the simulation domain was
generally defined as a flux surface in the SOL and private region,
and a straight line for the target region, as shown in Fig. 1.
This domain configuration is robust as it ensures Mach-1 Bohm
boundary conditions (when the plasma flow is set to the sound
speed) are only necessary on the target boundary.

The time stepping is done using the implicit Crank–Nicolson
scheme, so that the size of time steps depends only on the time
scale of the instabilities that are simulated. This implicit scheme
results in a sparse system of equations, which is solved using
a Generalized Minimal REsidual Solver (GMRES). The precondi-
tioner for this iterative GMRES is obtained by solving indepen-
dently each sub-matrix corresponding to different Fourier har-
monics, which amounts to a block-Jacobi preconditioner. These
sub-matrices are solved using the direct parallel sparse matrix
solver PaStiX [38].

In order to allow the n = 0 component of the E⃗×B⃗ and parallel
flows to evolve towards a stationary equilibrium, the simulations
are first run without toroidal modes, with only the equilibrium
n = 0. This allows the kinetic equilibrium to reach a steady state
consistent with the Bohm boundary on the target [9]. Note that
at the zeroth time step, v⃗∥ is Mach-1 on the target [9], and zero
inside the plasma, already at the nodes adjacent to the boundary.

Fig. 1. A typical low-resolution grid with X-point in the poloidal plane (the
toroidal direction is normal to the paper). The domain boundaries are defined
by flux surfaces in the SOL and the private regions (red), and by straight lines
for the divertor targets (green). The confined region of the plasma is where flux
surfaces are closed (inside the X-point contour), and the SOL region is where flux
surfaces are open onto the divertor target. More details on tokamak magnetic
topology can be found in Figure-2 of [37].

3. The wall-extension grid generator

In view of addressing immediate tokamak physics issues of
various domains, ranging from divertor physics [33] to plasma-
wall interactions during disruptions [39], the grid generator of
JOREK has been generalised to allow the extension of a flux-
aligned grid to any surrounding wall structures. The method
developed for this purpose is described here to demonstrate its
robustness.

The JOREK code builds a grid aligned to the ψ-map calculated
from the Grad–Shafranov equilibrium, which is the result of bal-
ancing the plasma pressure ∇p against the magnetic forces J⃗ × B⃗
in the static stationary momentum equation:

R2
∇ ·

(
1
R2 ∇ψ

)
= −µoR2 dp

dψ
− F

dF
dψ

. (9)

JOREK can take any input for the initial Grad–Shafranov equi-
librium, and use the exact pressure profile, the FF ′ profile (with
F ′

= dF/dψ) and the ψ-map given from any equilibrium such
as EFIT++ [40]. However, in some cases, particularly ELM studies,
it is desirable to use different pressure and FF ′ profiles than
the ones provided by external equilibrium solvers, to ensure
that the initial equilibrium is unstable with respect to peeling–
ballooning modes. In these cases, the ψ-map from the original
equilibrium is often inconsistent with the new pressure profile,
which results in a significant imbalance between the ∇p term and
the J⃗ × B⃗ term of 3. This would result in an inherently unstable
equilibrium. To ensure this balance is respected, JOREK solves its
own Grad–Shafranov equilibrium internally.

In previous cases, as for Fig. 1, a polar grid was used to solve
the new Grad–Shafranov equilibrium, for which the pressure and
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Fig. 2. (a) Magnetic flux contours (blue) for a Super-X configuration of the MAST-U device. The connected double-null separatrix contour is shown in red, the first-wall
in green, and the PF-coils in yellow. (b) The initial rectangular grid on which the JOREK Grad–Shafranov equilibrium is solved, to obtain a flux-map consistent with
ballooning unstable pre-ELM pressure profiles. For this Grad–Shafranov equilibrium, the boundary condition is the flux taken from the input equilibrium (a). This
initial rectangular grid is defined inside the first-wall, to avoid the necessity of taking PF-coil currents into account for the Grad–Shafranov equilibrium. (c) The
initial flux-aligned grid contained inside the first wall. This is the grid which can be extended. Note that a low-resolution grid is shown here for visual purpose. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

FF ′ profiles are given as input by the user, and the boundary
condition for the solver is taken as the ψ-values of the origi-
nal equilibrium data along the contour of this polar grid. The
final flux-aligned grid is then built using the new equilibrium
calculated on this polar grid. In the present case, since we aim
at building a grid that extends to the wall, instead of a polar
grid, a rectangular grid is built inside the first-wall, as shown in
Fig. 2b. This is convenient as it allows the fixed-boundary Grad–
Shafranov solver to ignore all PF-coil currents outside the wall,
so that the ψ-values along the wall are used as conditions for
the fixed-boundary problem. Note that the equilibrium in Fig. 2a
was obtained using the FIESTA code [41], such that the ψ-values
on the wall are consistent with the MAST-U coil-set with original
profiles.

Before extending a grid to the surrounding wall, we must build
an initial grid inside that wall. This is done in a similar manner as
in Fig. 1, where the target must be aligned to the wall. An example
of such initial grids is shown in Fig. 2c, for a MAST-U Super-X
configuration. Since the JOREK grid is composed of quadrilateral
elements, an extension of a given grid must be composed of a
number of quadrilaterals. Thus, the wall-extended grid is built
simply by adjoining additional quadrilateral grid patches to the
initial grid.

The flexibility of Bezier elements allows for grid patches to
have non-linear sides, including curves and angles (although of
course angles are best described if they lie on the vertex of an el-
ement). The idea of the new generator is that the user can provide
near-quadrilateral patches between the initial grid and the wall.
This is done by specifying the two sides of each patch, between
the grid and the wall, like the red lines in Fig. 3. Note that these
sides can be composed of multiple lines. The other two sides of

the patch are determined automatically, along the grid, and along
the wall, like the blue lines in Fig. 3. The only requirement is
that successive patches need to have matching sides. To ensure
a smooth transition between the initial grid and the patches, the
radial distribution of elements for the patches is automatically
adapted such that their radial resolution at the junction matches
that of the initial grid. Of course, the user can also specify the
radial resolution of the new patches, but the poloidal resolution,
however, is determined by the initial grid. In the case of matching
successive patches, as in Fig. 3, the radial resolution of the first
patch determines the radial resolution of the following patches.
Note that this patching method can be used any number of
times, such that new grid patches can also be added on top of
previous grid patches, which enables the description of complex
wall structures, such as corners or isolated vacuum regions. The
local refinement of Bezier elements, as in [26], could also allow
improved numerical stability at geometrically complex boundary
limits, but this particular feature has not been tested for the
purpose of this study, and is left for future works.

In Appendix, further details are provided for each step of the
grid construction and extension, including the method used to
build the first grid with legs that extend up to the wall, the
algorithm used to choose the nodes inside each patch, how to
obtain a smooth transition of resolution between the previous
grid and a new patch, and the simple method used to join grid
patches together. Alternatively, a working copy of the grid gen-
erator is available from the JOREK code, upon request on https://
www.jorek.eu. However, since this grid generator is tightly linked
to the Bezier FEM formulation used in JOREK, it cannot simply
be extracted as such, and further work would be required to
make it generic and applicable to any code. In particular, the

https://www.jorek.eu
https://www.jorek.eu
https://www.jorek.eu
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Fig. 3. An example of successive grid patches applied between the flux-aligned X-point grid and the wall. Grid extension patches need to be quasi-quadrangles, but
do not need to have linear sides. The user specifies the sides of the patch (red lines) using a set of input points (red points). The grid generator then automatically
extends the grid between the grid side and the wall side (blue lines). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

grid-generator requires an accurate calculation of ψ-contours,
which is simplified here due to the bi-cubic representation of
ψ within each element. The extension of this work to arbitrary
grid representation would mostly involve the restructuration of
the ψ-contour solver, since all other methods used are largely
independent of the FEM formulation.

This grid-extension method is generic and robust enough that
it may be applied to any toroidally axisymmetric tokamak device.
Fig. 4 shows examples of extended grids for MAST-U, JET-ILW
and JT-60SA, which all have very different wall contours and
separatrix shapes.

In Section 5, the robustness of the grid is demonstrated and
thoroughly tested using non-linear simulations of highly unsta-
ble peeling–ballooning modes. Additionally, the JOREK code also
solves the nonlinear elliptic partial differential equation for the
Grad–Shafranov equilibrium, in order to calculate the precise
values of each variable required for the physics model (Eqs. 3–8).
The convergence of the JOREK Grad–Shafranov solver, using the
fixed-point iteration method, provides a preliminary demonstra-
tion of the robustness of the new grid-generator. For example,
using the JET plasma in Fig. 4b (also used in Section 5), the
equilibrium solver converges to an averaged accuracy of 10−7

with: 16 iterations using the original grid topology as in Fig. 1
(no wall-extension), and 19 iterations using the wall-aligned grid
shown in Fig. 4b. While this remains reasonably fast, in non-linear
simulations, convergence and numerical stability for wall-aligned
grids strongly depends on the robustness of boundary conditions,
which cannot be evaluated by the Grad–Shafranov solver.

4. Sheath boundary conditions with a wall-aligned grid

With this new wall-extended grid, appropriate boundary con-
ditions are required. The usual case is that magnetic field lines are
incident to the boundary surfaces, thus requiring Bohm (Mach-1)
and Sheath boundary conditions [9]. These are expressed as:

v⃗tot · n⃗ = ±cs =

√
γ T b⃗ · n⃗, (10)

nT v⃗∥ + κ∥∇∥T = γshnT v⃗∥. (11)

where n⃗ is the unit vector normal to the boundary, b⃗ is the unit
vector along the magnetic field, γ = 5/3 and γsh = 4.5. In the
standard model, without neutrals density, density and temper-
ature have free outflow boundary conditions at the target (no
density reflection or recycling). However, when using the neutrals
density model, as described above, a reflective (or recycling)
coefficient ξre can be applied at the boundary, such that density
arriving at the target is (fully or partly) reflected as neutrals into
the simulation domain, as in [42]:

Dn∇ρn · n⃗ = −ξreρv⃗∥ · n⃗, (12)

It should be noted that the direction of the magnetic field
may change as we step along the boundary of the domain, such
that the sign of b⃗ · n⃗ may be going from positive, across zero,
to negative. This is illustrated in Fig. 5, where the velocity is in
normalised units, such that 0.01 corresponds to approximately
20 km/s. It implies that the Mach-1 boundary condition can
reverse direction within a grid element. A threshold is used for
the application of Mach-1 boundary conditions, which requires
that the angle α between the magnetic field and the boundary
is larger than 3◦, which is approximately twice the lower limit
given by Geraldini et al. [43]:√

me

mi
≪ α ≪ 1 (13)

If the angle α is smaller than 3◦, then instead Dirichlet bound-
ary conditions are applied to ψ , Φ , v⃗∥ and j, while Neumann
boundary conditions are applied to ρ, T and ρn. Even with rela-
tively low parallel viscosity for 4, simulations remain numerically
stable. In the ELM simulation presented in the next section, a
spacially uniform value of µ∥ = 10−6 kg m−1 s−1 was used. A
relatively small value of µ∥ was used here to test the numerical
robustness of the simulations, since larger µ∥ values should in
principle be numerically easier. In the SOL, at about 10eV, the
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Fig. 4. Examples of wall-extended grids for three devices: (a) MAST-U, (b) JET-ILW and (c) JT-60SA.

Fig. 5. (a) The direction of Mach-1 boundary conditions is determined by the direction of field lines going in/out of the domain boundary, which can change along
the wall, (b) The change in direction of the Mach-1 boundary condition can occur within a few elements. Note that the amplitude of the velocity is in normalised
units, such that 0.01 corresponds to approximately 20 km/s.

Braginskii viscosity is approximately 1.5 × 10−5 kg m−1 s−1.
Note that more advanced boundary conditions, such as in [44],
would be desirable for such wall-aligned grids, particularly for
diamagnetic drifts, but this is left for future developments.

5. Current physics applications with the wall-extended grids

First-wall and divertor heat-fluxes

In order to demonstrate the ability of the new wall-extension
grid-generator to handle non-linear simulations of large type-I
ELM crashes, a type-I ELMy H-mode experiment of JET-ILW has
been used. Pulse JPN-83334, which was thoroughly simulated and

analysed in [27], is a 2.4T, 2.4MA, low-triangularity plasma, with
25MW of NBI heating, and with the outer strike point positioned
on the main (bulk) tungsten divertor tile. The pre-ELM pedestal
electron density and temperature are 5 ·1019 m−3 and 1.2 keV re-
spectively, which is unstable with respect to ideal MHD balloon-
ing modes. For this test simulation, relatively high MHD param-
eters were used: a resistivity 200 times higher than ηspitzer , and
a viscosity (both parallel and perpendicular) of 10−6 kg m−1 s−1,
and diamagnetic effects are not included. The toroidal resolution
used was n = 2, 4, 6, 8, 10. More challenging simulations with
the wall-extended domain, using higher toroidal resolutions and
more challenging diffusive parameters, will be the focus of future
research in the coming years.
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Fig. 6. (a) The parallel heat-flux amplitude in a JET-ILW ELM simulation, (b) The electron temperature Te [eV] of the plasma at the wall boundary during an ELM
simulation in JET-ILW.

The energy loss of this simulated ELM is 3.9% of the total
plasma energy content, which is reasonably close to the exper-
imental value of 4.6% (averaged of all ELMs in the discharge).
The peak heat-flux on the divertor target reaches just above
380 MW m−2, which is also close to the experimental value of
360 MW m−2 (also averaged over all ELMs), and close to values
found previously in [27]. Note that, while reasonable agreement
is achieved between this simulation and the corresponding ex-
periment, the purpose of this work is not to validate the JOREK
simulations (which would require diamagnetic effects as well as
lower resistivity and viscosity), but rather to demonstrate the
robustness of the new wall-extended grid and its applicability to
simulations of type-I ELM instabilities. Fig. 6a shows the parallel
heat-flux for a snapshot of this simulation, while Fig. 6b shows
the temperature of the plasma at the first wall boundary at this
same snapshot. Detailed comparisons between wall-grids and
non-extended grids are now under way, but will be the subject
of future publications. In particular, whether the γsh parameter
of Eq. (11) has any influence on the energy losses during an ELM
remains an open question.

Divertor configurations, gas-fuelling, and detachment

One of the main interests of providing an accurate description
of the first-wall boundary in JOREK simulations is to enable
the simulation of various gas-puffing levels as well as divertor
configurations. As described in [45], JET-ILW experiments have
demonstrated the importance of gas-puffing levels regarding ELM
dynamics as well as global confinement levels. Similarly, the sep-
aratrix position with respect to the gas-injection valves and the
divertor pumps plays a major role in neutrals dynamics and, as a
consequence, pedestal performance in JET-ILW experiments [46].

Although the neutrals model described in Section 2.1 and
in [28] may not be sufficient to fully describe the complete
neutrals dynamics in the SOL of JET-ILW (or other devices), it
could provide a preliminary insight into the effect of SOL neutrals
levels on pedestal and ELM physics. Fig. 7 shows a test simulation
of an ELM using the full model described in Section 2.1. The
interaction of plasma filaments with the neutrals background
is clearly visible in the upper SOL region. Note that this is a
demonstrative simulation, and that the neutrals background of

the SOL may be higher in the experiments, which would affect
how ELM filaments interact with the neutrals in the SOL. Such
detailed physics studies could be addressed in future works.

Further work is under way to benchmark JOREK simulations
of neutrals simulations with SOLPS [47], particularly addressing
simulations of detachment and ELM burn-through in the new
MAST-U device [48,49]. As shown in Fig. 4a, the detailed descrip-
tion of the entire plasma domain enables the representation of
increased neutrals pressure inside the closed divertor leg, crucial
for detachment studies, as well as the computation of heat-fluxes
on the nose of the divertor (where the outer wall almost reaches
the outer leg, just below/above the X-points). However, this is a
continuing effort which is left for future publications. In addition,
a project is underway to add kinetic neutrals as particles [50].

6. Summary and future studies

A new grid generator has been developed for the JOREK code,
enabling any equilibrium to be meshed, including the entire
plasma domain, all the way to the first wall. The appropriate fluid
boundary conditions are applied to all wall surfaces, providing a
detailed description of SOL flows. This paper demonstrates the
practical feasibility of building grids for various tokamak devices,
and an advanced JET-ILW ELM simulation shows the robustness
of such new grids when used for state-of-the-art non-linear MHD
simulations.

Block-structured mesh generation is widely used in the CFD
community, and this work is part of a common effort to bring
this technique to the fusion community [24,25]. The method
developed here is adapted to the quadrilateral topology imposed
by rectangular Bezier elements, and so it may be of interest to the
wider scientific community, beyond tokamak physics.

The wide range of physics areas accessible with this new grid
generator is duplicated by its coupling with the JOREK neutrals
density model. Advanced studies of divertor, SOL and pedestal
physics, including detachment, ELM burn-through and impurity
transport, can now be done in a detailed and systematic manner.
This work also contributes a significant step towards the full 3D
description of plasma-wall interactions in disruption studies with
the JOREK-STARWALL code [39,51]. The goal of detailed 3D tiled-
wall representation, to provide precise calculations of hiro and
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Fig. 7. A simulation of ELM filaments using the neutrals density model with divertor reflection of neutrals. Electron density (left) and neutrals density (right) are
shown in the divertor region. Both quantities are normalised to the central ne value: 0.65 × 1020 m−3 .

Fig. 8. A synthetic diagnostic of JET fast-visible camera for a JOREK ELM
simulation (left), compared to an experiment (right). This picture represents
well the surprisingly high level of 3-dimensional details required for an accurate
description of the wall. This work is a first step towards such detailed spatial
discretisations.

halo currents during disruptions, is a long-term challenge, and
one of ITER’s and DEMO’s most pressing issues. Fig. 8, which
shows a JOREK simulation with ELM filaments (left), compared to
the visible camera during a JET experiment (right), gives a good
notion of the level of three-dimensional details that would be
required for an accurate description of the actual plasma facing
components. How such detailed geometry affects the plasma
behaviour remains a largely unexplored issue of tokamak physics.

Acknowledgements

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding from the
Euratom research and training programme 2014–2018 under
grant agreement No 633053, and from the RCUK Energy Pro-
gramme [Grant Number EP/I501045]. To obtain further informa-
tion on the data and models underlying this paper please contact
PublicationsManager@ccfe.ac.uk. This work used the HELIOS su-
percomputer (IFERC-CSC), Japan, under the Broader Approach
collaboration, implemented by Fusion for Energy and JAEA. The
views and opinions expressed herein do not necessarily reflect

those of the European Commission or the ITER Organization. The
HEC ARCHER computer (UK), as part of the Plasma HEC Consor-
tium EPSRC grant EP/L000237/1, and the MARCONI computer at
CINECA in Italy, were also used. Finally, the PRACE project Tier-0
JVSITPEI has provided support on the MareNostrum HPC-cluster
at BSC-Barcelona, Spain.

Appendix. Details of the grid-to-wall extension method

This Appendix gives some details of the methods used for
the key aspects of the grid-generator which extends a grid to
the tokamak wall. The implementation of the generator can be
available upon request by contacting JOREK experts on https:
//www.jorek.eu.

Joining grid-patches together

One of the central routines of the new grid generator is simply
to join different grid patches together. This is straight-forward
and uses the fact that element nodes are labelled if they lie on the
boundary of the domain, which is determined simply by checking
how many elements a node belongs to: unless it belongs to 4
elements, it is a boundary node. Looping around the boundary
of the main grid patch, each node position is compared to each
one of the second grid patch. If their position matches within
10−5 m, the node is included into a list of ‘common nodes’. The
grid elements and nodes of the second patch are then appended
to the first one, with the exception of the ‘common nodes’. Note
that we do not check whether the two grid patches overlap, since
this should not occur in the present context.

When joining a new patch to the main grid, the ‘common
nodes’ will, by definition, need to be the same. In practice, this
means that the resolution of the new patch is determined by the
resolution along the boundary of the main grid. Thus, only the
radial resolution can be chosen by the user. For cases where the
new patch needs to be aligned on two of its sides, like the second
patch of Fig. 3, the resolution of the patch in both directions is
determined by the main grid.

Building the initial grid with wall-extended divertor legs

Details of the construction of ψ-aligned grids are already
provided in [37], however for this new grid generator, the original
method was slightly modified to improve the robustness of the
generator. The initial grid, without the wall-extending patches,
is constructed in two parts: the central part (above and below

http://PublicationsManager@ccfe.ac.uk
https://www.jorek.eu
https://www.jorek.eu
https://www.jorek.eu
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Fig. 9. The initial X-point grid, before the wall extension, is built in two parts: the main plasma region (green) and the divertor legs (red and blue). These are then
patched together to form the X-point grid (black). Building each leg individually allows more flexibility to extend them all the way to the wall of the tokamak. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. (a) In order to obtain a smooth transition of resolution between the grid and new patches, it is typically necessary to compress or expand the resolution
near the other end of the patch (i.e. at the wall). The two cases are represented here. The resolution of new patches (red) needs to match the main ψ-aligned grid
(black). This results in a compression of resolution near the wall on one side (green arrow), and in an expansion of the resolution on the other side (red arrow),
(b) Since the edges of the patch are know, they can be used to define a parametrisation and segment the patch into the requested mesh in a smooth manner. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the lower and upper X-point respectively), and the divertor legs.
The construction of the central grid is similar to the one de-
scribed in [37]. Once the central grid is built, each divertor leg is
constructed independently, by segmenting ψ-contours between
the central grid and the wall. Both lower legs are then patched
together, and then patched to the main grid (similarly for the
upper divertor legs). This is illustrated in Fig. 9.

The divertor legs are extended up to the divertor by seg-
menting the length of ψ-contours between the central grid limit
and the wall, and grid elements are thus determined between
the segments of two ψ-contours. This segmentation allows for
a compression of the resolution near the X-point and/or near the
wall, which is important for accurate description of Mach-1 and
Sheath boundary conditions (see Section 4).

Obtaining a smooth transition between the main grid and a new
patch

The transverse resolution of a new patch can be compressed or
expanded at the border with the main grid. Typically, we assume
that 1/3 of the transverse width of the patch is sufficient to allow
for this compression/expansion to provide a smooth transition.
However, depending on the requested transverse resolution, this
can lead to a compression/expansion of resolution at the other
end of the patch (i.e. on the wall), particularly if the transverse
width of the patch varies strongly along its length. Such an
example can be seen in Fig. 4a and is reproduced with a zoom
in Fig. 10a, showing both cases: a compression of resolution
on the wall (green arrow), and an expansion of resolution on
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the wall (red arrow). Generally, a higher resolution on the wall
is preferable, such that the latter case should be avoided. One
additional improvement for future developments would be to
add user parameters, for each patch, to control the compression
parameters of the radial resolution.

Defining elements inside an arbitrary patch

To obtain smooth transitions of resolutions between grid
patches, the grid patches themselves must allow for a variation of
resolution between the 4 edges of the patch. The method used to
obtain this can be explained as follows. Firstly we assume that
the resolution in both directions of the patch is known, since
it is determined by the user and/or the main grid onto which
we are attaching the patch, as explained above. Secondly, we
parametrise the interior of the patch based on its edges (which
are known). Thirdly, we segment the parametrisation variables
using the requested resolution, and use the resulting values to
obtain the positions of nodes on the final patch.

Let the 2D patch be parametrised by (s, t) such that any point
of the patch is determined by P(s, t) = (Px(s, t), Py(s, t)) with
0.0 ≤ s ≤ 1.0 and 0.0 ≤ t ≤ 1.0. Since the edges of the patch are
known, they may be used to define the parametrisation P(s, t) as:

P(s, t) = (1 − t)P(0, t) + tP(1, t) + (1 − s)[P(s, 0) − L(s, 0)]
+ s[P(s, 1) − L(s, 1)] (14)

where L(s, 0) is the straight line segment between P(0, 0) and
P(1, 0), and likewise L(s, 1) the straight line segment between
P(0, 1) and P(1, 1). This is illustrated in Fig. 10b.
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