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a b s t r a c t

CALANIE (CALculation of ANIsotropic Elastic energy) computer program evaluates the elastic interac-
tion correction to the total energy of a localized object, for example a defect in a material simulated
using an ab initio or molecular statics approach, resulting from the use of periodic boundary conditions.
The correction, computed using a fully elastically anisotropic Green’s function formalism, arises from
the elastic interaction between a defect and its own periodically translated images. The long-range
field of elastic displacements produced by the defect is described in the elastic dipole approximation.
Applications of the method are illustrated by two case studies, one involving an ab initio investigation
of point defects and vacancy migration in FCC gold, and another a molecular statics simulation of a
dislocation loop. We explore the convergence of the method as a function of the simulation cell size,
and note the significance of taking into account the elastic correction in the limit where the size of
the defect is comparable with the size of the simulation cell.
Program summary
Program Title: CALANIE, version 2.0
Program Files doi: http://dx.doi.org/10.17632/3h6xffk9h6.1
Licensing provisions: Apache License, Version 2.0
Programming language: C/C++
Nature of problem: Periodic boundary conditions (PBCs) are often used in the context of ab initio and
molecular statics atomic scale simulations. A localized defect in a crystalline material, simulated using
PBCs, interacts elastically with its own periodically translated images, and this gives rise to a systematic
error in the computed defect formation and migration energies. Evaluating the correction to the total
energy resulting from effects of elastic interaction between a defect and its periodic images, to alleviate
the contribution to the total energy arising from PBCs, is an essential aspect of any accurate total energy
calculation performed using PBCs.
Solution method: The energy of interaction between a localized defect and its periodically translated
images is computed in the linear elasticity approximation. The energy of elastic interaction is expressed
analytically in terms of the elastic dipole tensor of the defect and elastic Green’s function. Elements
of the dipole tensor are computed as a part of the simulation evaluating the formation energy of the
defect. Elastic Green’s function and its first and second derivatives are computed numerically from
the elastic constants of the material. The method and the corresponding numerical procedures are
implemented in the CALANIE computer program. The program evaluates matrix elements of the elastic
dipole tensor of a localized defect and the elastic correction to the total energy arising from the use
of periodic boundary conditions.
Restrictions: The approach assumes the validity of the linear elasticity approximation. This limits the
accuracy of evaluation of the elastic correction, which becomes less precise if the size of the defect is
comparable with the size of the simulation cell.
Unusual features: An open source code, containing full detail of the relevant theoretical concepts,
algorithms and numerical implementation.
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1. Introduction

Mechanical deformation, or irradiation by energetic particles,
produces a variety of defects in a crystalline material, for ex-
ample dislocation loops, vacancy clusters, voids, Frenkel pairs,
and extended dislocations [1–4]. Defect structures evolve under
the effect of external stress and temperature. Defects migrate,
segregate and agglomerate as a result of elastic interaction, me-
diated by the deformation of the crystal lattice [5–9]. Evolution
of defect structures changes mechanical and physical properties
of the material [10].

Electronic and atomic scale simulations are the indispensable
numerical simulation tools that help understand the fundamental
laws driving microstructure evolution and its effect on mechan-
ical and physical properties of the materials. Ab initio density
function theory (DFT) calculations [11,12] are commonly used for
computing the formation and migration energies of small defects.
The energy of formation of a defect at equilibrium determines
the relative probability of its occurrence, whereas the energy of
migration determines the rate of thermal transformation of an
already formed defect structure. Molecular dynamics [2,3] and ki-
netic Monte Carlo [13–15] simulations provide information about
reaction rates and relaxation pathways characterizing complex
configurations of defects.

To avoid considering surface effects, simulations are often
performed using periodic boundary conditions (PBCs). Through
periodic boundary conditions, a spatially localized defect situated
in a simulation cell interacts elastically with an infinite number
of its own images situated in periodically translated simulation
cells [6–9]. Since elastic fields effectively have infinite range, and
the energy Eel of elastic interaction between any two defects
varies as the inverse cube of distance R between the defects Eel ∼

R−3 [8], if a relatively small cell is used in a simulation, the elastic
energy of interaction between a defect and its periodic images
can be substantial. This can affect the accuracy of calculations
performed using PBCs and make the total energy data strongly
dependent on the cell size. Although in principle the issue can be
partially circumvented using a larger simulation cell, in practice
this may not necessarily be a realistic option because of the
limitations imposed by the available computational resources or
numerical algorithms. For example, in a conventional DFT calcu-
lation, the simulation cell size is still limited to a few hundred
atoms.

A possible way forward is to introduce an elastic correction
to the calculated formation energy. A first order correction, as-
suming the linear elasticity approximation, can be derived using
the elastic dipole tensor formalism [6–9], which only requires
knowing the elements Pij of elastic dipole tensor of the defect and
the elastic constants tensor Cijkl of the material. This information
can be readily derived from the same DFT or molecular statics
calculation.

An elastic dipole tensor fully defines the elastic field produced
by a defect in a material [8,16,17]. The elastic strain field asso-
ciated with a localized defect, or even a large but still localized
agglomerate of defects, can be expressed in an explicit analytical
form using the notion of the dipole tensor. From the dipole tensor
it is also possible to evaluate the relaxation volume tensor of
a defect or an ensemble of defects [17,18]. By considering all
the defects in a certain volume element of the material as a
compound object characterized by its dipole tensor, it is possible
to formulate a continuum model spanning the spatial scale many
orders of magnitude larger than an atomistic simulation [17]. In
addition, the notion of the dipole tensor enables treating inter-
actions between defects. A dipole tensor can be defined for an
arbitrarily large configuration of defects, for example the entire
defect structure created in a collision cascade simulation can be

described by a dipole tensor, enabling extending the treatment to
a macroscopic scale [17,18].

In previous studies, we derived analytical equations for treat-
ing the elastic fields of defects in a simulation cell using periodic
boundary conditions [8]. We have also derived equations for eval-
uating the elastic correction to the energy of a localized defect [9],
and implemented them in our program CALANIE. It is appropriate
to make this code, suitable for evaluating the elastic correction to
the total energy, and for calculating the elastic dipole tensor of a
defect in a simulation cell, available as an open source computer
program. Full numerical and algorithmic aspects of the code are
described below.

In what follows we review the fundamental theory and ex-
plain the meaning of various equations. We also discuss the
numerical implementation of the method, followed by the details
of the compilation procedure, and the format of input and output
files. We give two examples illustrating applications of the code.
The first example involves ab initio calculations of point defects
and vacancy migration in FCC gold. This example illustrates the
applicability of CALANIE to both equilibrium and non-equilibrium
configurations. The second example illustrates molecular statics
calculations of mesoscopic size dislocation loops. We investigate
the numerical convergence of elements of the dipole tensor and
formation energy of a defect as a function of the simulation
box size, and the significance of applying elastic correction to
the formation energy in the limit where the simulation cell is
relatively small.

2. Theory

2.1. Elastic dipole tensor

In a continuum elasticity theory, the elastic strain energy of a
defect in an infinite medium is defined as a volume integral over
the entire space:

ED =
1
2

∫
V

σij(r)ϵij(r)dV , (1)

where ϵij and σij are the coordinate-dependent elastic strain and
stress fields. Assuming the validity of the linear elasticity approx-
imation, we write σij = Cijklϵkl, where Cijkl is the rank four elastic
constant tensor. The above equation now acquires the form

ED =
1
2

∫
V
Cijklϵkl(r)ϵij(r)dV . (2)

In the presence of infinitesimal external strain ϵext
ij , elastic energy

ED can be represented by a Taylor series expansion:

ED(ϵext
ij ) = ED(ϵext

ij = 0) +

(
δED
δϵext

ij

)
ϵextij =0

ϵext
ij + · · · . (3)

The energy of elastic interaction between a defect and external
strain field is defined as [16]:

E = −Pijϵext
ij , (4)

where Pij is the elastic dipole tensor of a defect. Comparing
Eqs. (3) and (4), we can identify the dipole tensor with a volume
integral

Pij = −

(
δED
δϵext

ij

)
ϵextij =0

= −

∫
V

σ D
ij dV , (5)

where σ D
ij is the stress field resulting from the presence of a defect

in the medium.
In practice, calculations are not performed in an infinite

medium. Infinite medium is simulated by applying periodic



P.-W. Ma and S.L. Dudarev / Computer Physics Communications 252 (2020) 107130 3

boundary conditions to a finite size simulation cell. This is equiv-
alent to placing N identical defects in an infinite medium in the
form of a lattice of defects, defined by the translation vectors of
the simulation cell, and taking the limit N → ∞.

We can write the total stress as a linear sum of contributions
from all the identical periodically translated defects as [8],∫
V

σ D
ij dV +

∑
n̸=0

∫
V

σ
Im,n
ij dV = N

∫
V

σ D
ij dV , (6)

where σ
Im,n
ij is the stress field due to the nth image of the defect.

Dividing both sides of the above equation by N , we find∫
V

σ D
ij dV =

1
N

∫
V

⎛⎝σ D
ij +

∑
n̸=0

σ
Im,n
ij

⎞⎠ dV =

∫
Vcell

σijdV . (7)

Therefore, the total stress induced by a defect, integrated over
infinite medium, equals the total stress of the defect plus all its
images, integrated over the simulation cell in a periodic boundary
condition calculation. The proof is based on the linear elasticity
approximation stating that the total stress field is a linear sum
of stresses produced by the defect and all its images, and on the
fact that the stress field in a simulation cell is the same as in any
periodically translated cell. The simulation box used for a defect
calculation needs to be of exactly the same shape and size as
in the corresponding perfect lattice case, to mimic the infinite
medium conditions.

Eq. (5) can now be written in terms of the macrostress σ̄ij
developing in a simulation cell under the PBCs, namely

Pij = −

∫
Vcell

σijdV = −Vcellσ̄ij. (8)

The macrostress σ̄ij is identical to the average stress in the cell.
We note that the volume integral may be ill-defined if the equa-
tion is applied to a discrete atomistic configuration. Nevertheless,
the expression remains valid and can be derived in the discrete
atomistic limit [18].

Provided that the total energy of the system depends only on
atomic positions, such that ED = ED({Rn}), where {Rn} is a set of
coordinates, we write

Pij = −

(
δED
δϵext

ij

)
ϵextij =0

= −

∑
n,α

δED
δRn,α

(
δRn,α

δϵext
ij

)
ϵextij =0

. (9)

Here n is the index of an atom and α refers to a Cartesian
coordinate. The first term in the right-hand side is the component
of force Fn,α acting on an atom. The second term can be obtained
assuming that all the position vectors move in response to the
applied external strain according to the transformation

R → (I + ϵ)R, (10)

which leads to(
δRn,α

δϵext
ij

)
ϵextij =0

= Rn,jδαi. (11)

The dipole tensor then becomes

Pij =

∑
n

Fn,iRn,j = −Vcellσ̄ij. (12)

This is the same formula for evaluating the dipole tensor as that
derived using the Kanzaki force method [16]. In agreement with
the Virial Theorem at 0 K, the right-hand side of the above equa-
tion can also be expressed in terms of the macrostress, i.e. the
global stress arising in a simulation cell due to the presence of a
defect in it.

In a DFT calculation, the macrostress developing in a cell due
to the presence of a defect in it, is calculated from the variation
of the total energy treated as a function of strain, taken in full
tensorial form. In both the continuum and discrete limits, we
arrive at exactly the same expression for the dipole tensor. This
equation relates linear elasticity to both electronic and atomic
scale simulations.

If the cell used for simulating a defect structure has a different
shape in comparison with the perfect lattice case, the way of
treating the problem is to assume as if the simulation cell is
subjected to external strain. The strain tensor describing the
external applied strain ϵapp, given that ∥ϵapp

∥ ≪ 1, relates the
perfect and deformed simulation cells as follows

Vperf (I + ϵapp) = Vdef , (13)

where I is the identity matrix, Vperf
= {Lperf1 , Lperf2 , Lperf3 } is the

matrix of translation vectors of the perfect lattice cell and Vdef
=

{Ldef1 , Ldef2 , Ldef3 } is the matrix of translation vectors of the cell
containing a defect. Therefore the strain tensor is simply

ϵapp = (Vperf )−1Vdef
− I. (14)

Whenever an applied strain is present, the dipole tensor should
be evaluated using the expression [6,7,9]

Pij = Vcell(Cijklϵ
app
kl − σ̄ij). (15)

There are other methods, using which one can deduce the
elastic dipole tensor from an atomic scale simulation [6,16,19].
Varvenne and Clouet [7] concluded that only the residual stress
method described above is tractable and practical in the limit of
a small simulation cell, especially in relation to ab initio calcu-
lations. Below we explore the convergence of Pij, and assess the
effect of the simulation cell size on the elastic correction energy.

For a linear defect, such as a self-interstitial atom (SIA) crow-
dion defect, we write [8]:

Pij = Cijkl

(
Ω (1)nknl +

Ω (2)

3
δkl

)
(16)

where n = (cosφ sin θ, sinφ sin θ, cos θ ) is a unit vector charac-
terizing the orientation of the axis of the defect, and Ω (1) and
Ω (2) represent the relative contribution of the anisotropic and
isotropic components to the relaxation volume of a defect, where
the total relaxation volume of the defect is given by the sum

Ωrel = Ω (1)
+ Ω (2). (17)

Values of Ω (1) and Ω (2) can be derived from ab initio calculations.
This formula can be used for estimating the magnitude of change
in the elastic correction energy for a defect that undergoes free
rotation [8].

2.2. Elastic correction energy

The formation energy of a defect equals [9]:

EF
def = [Edef (Ndef ) − Eapp

] −
Ndef

Nperf
Eperf (Nperf ) − Ecorr

el , (18)

where Edef is the energy of a simulation cell containing a defect,
Eperf is the energy of a perfect lattice cell used as a reference
configuration, Ndef is the number of atoms in the cell containing
a defect, Nperf is the number of atoms in a perfect lattice cell, Eapp

is the contribution to the elastic energy due to the applied strain,
and Ecorr

el is the elastic correction energy arising from the PBCs.
The energy associated with the external applied strain equals
[6]:

Eapp
=

V perf

2
Cijklϵ

app
ij ϵ

app
kl − Pijϵ

app
ij , (19)
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where V ref is the volume of the simulation cell. We neglect the
change of the volume of the cell due to elastic deformation,
assuming that the applied strain is small. Taking into account
the volume change, proportional to the integral of the trace of
elastic strain tensor over the volume of the cell, would imply
going beyond the linear elasticity approximation.

The first term in Eq. (19) accounts for the elastic energy
associated with the homogeneous deformation of the simulation
cell. The second term is the energy of interaction between the
defect and external applied strain.

The elastic correction energy Ecorr
el is a part of the total result-

ing from the use of periodic boundary conditions. It consists of
two parts

Ecorr
el = EDD + Ecorr

strain. (20)

EDD is the energy due to elastic interaction between the defect and
its periodic images, described in the elastic dipole–dipole inter-
action approximation. Ecorr

strain is the self-strain correction energy.
Adopting the far-field elasticity approximation, the regularized
elastic interaction energy EDD can be written in terms of the elas-
tic dipole tensor and anisotropic elastic Green’s function [6–8,20]
as

EDD = Etotal
DD + Ecorr

DD . (21)

The first term

Etotal
DD =

1
2

∑
n̸=0

PijPkl
∂

∂xj

∂

∂xl
Gik(Rn) (22)

is a sum of pairwise elastic dipole interactions between a defect
at the original cell and its periodic images, situated at points Rn.
This sum is conditionally convergent, see Refs. [6,8]. The second
term

Ecorr
DD = −

1
2Vcell

∑
n̸=0

∫
Vcell

PijPkl
∂

∂xj

∂

∂xl
Gik(Rn − r)d3r (23)

regularizes the strain produced by the periodic images and en-
sures the absolute convergence of sum (22).

The self-strain correction energy equals

Ecorr
strain = −

1
2
Pij
(
−ϵ̄D

ij

)
=

1
2Vcell

∫
Vcell

PijϵD
ij (r)d

3r. (24)

As we only need to account for the linear elastic part of the
strain field of the defect, we use the far-field approximation again,
namely

Ecorr
strain = −

1
2Vcell

∫
Vcell

PijPkl
∂

∂xj

∂

∂xl
Gik(r)d3r. (25)

This term corrects the total energy for the effect of elastic strain
produced by the defect in the original cell. Eq. (25) has the form
similar to Eq. (23), and corresponds to the first, n = 0, term in
the series.

In practice, Eqs. (23) and (25) can be expressed and computed
as surface integrals over the surface of the simulation cell. This is
a simple corollary of the divergence theorem [9,21,22], namely∫
Vcell

Pkl
∂

∂xj

∂

∂xl
Gik(r)d3r =

∮
Scell

Pkα
∂

∂xj
Gik(r)nαdS. (26)

Here n is the unit vector of external surface normal vector, and
index α refers a Cartesian component of this vector. Calculating
the first derivative of elastic Green’s function is numerically more
expedient than the second derivative, and the same applies to the
calculation of surface integrals as opposed to volume integrals.
Elastic Green’s function as well as its first and second derivatives
can be evaluated numerically using Barnett’s approach [23].

A limitation of the current theory is that it only applies to a
defect that is sufficiently well localized within the cell, and where
its non-linear core part is some distance away from the surface
of the simulation cell. This enables representing the elastic field
of the defect in the neighbouring cells using the elastic dipole
formalism where the defect is effectively treated as a point ob-
ject. Our method does not apply to extended defects, such as
dislocations, unless the dimensionality of the problem enables
reducing it to a purely two-dimensional case, where dislocations
are treated as infinite straight lines and where the strain field
generated by every segment of a dislocation line is described by
Mura’s formula [24]. In this case the elastic correction energy can
be computed using the method developed by Cai et al. [25].

3. Algorithm

It is not practically feasible to compute Etotal
DD and Ecorr

DD by
summing up an infinite number of terms in the series. Provided
that we include the same number of terms in both series, the sum
of them, EDD, converges in the limit where the cutoff distance
is sufficiently large [8]. Calculating Etotal

DD is relatively straight-
forward, since we can evaluate the second derivative of elastic
Green’s function numerically. The calculation of Ecorr

DD is somewhat
more involved as it requires evaluating integrals over the surface
of the simulation cell, see Eq. (26).

A simulation cell involving PBCs usually has six faces and in
general the surface integration is performed over the surface of
a rhombohedron. For an arbitrary function F , the surface integral
over the surface of a rhomboid in a three dimensional system of
coordinates can be written as∫
S
F (r(u, v))dS =

∫ 1

−1

∫ 1

−1
F (r(u, v))J(u, v)dudv (27)

where

J(u, v) =

 ∂r
∂u

×
∂r
∂v

 (28)

is the transformation Jacobian. The position vector r is a function
of u and v in terms of the translation vectors of the simulation
cell. For example, the position vector at the top and bottom
surfaces of a box is

r =
u
2
Lx +

v

2
Ly ±

1
2
Lz, (29)

where the + and − signs in the last term correspond to the top
and bottom surfaces, respectively. The Jacobian for both the top
and bottom surfaces is now

J(u, v) =
1
4

Lx × Ly
 . (30)

The Jacobian for the other four surfaces can be evaluated in a
similar way.

Integration from −1 to 1 is performed numerically using the
nine-point Gaussian quadrature method. In the two-dimensional
case, the double integration is performed in a nested manner,
namely∫ 1

−1

∫ 1

−1
f (u, v)dudv ≈

∑
i

∑
j

wiwjf (ui, vj) (31)

where wi and wj are the weights with respect to ui and vj. This
fully defines the numerical procedure required for evaluating the
surface integral in Eq. (26). A test involving eleven-point Gaussian
quadrature integration was also performed, and produced the
same result up to four decimal places [8].

We have verified our calculations of EDD by performing sum-
mation over cubic, spherical and ellipsoidal volumes [8], grad-
ually increasing the cut-off distance, and found that the results
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were absolutely convergent. Considering the balance between
efficiency and accuracy, we chose spherical summation volumes
with the cutoff radius of 10 + δ times translation vectors, where
the magnitude of δ is small. The values computed using our code
were verified numerically against the values computed numer-
ically using the ANETO code [6], which is a FORTRAN program
developed independently by Varvenne et al. for a similar pur-
pose. The authors of Ref. [6] attribute their methodology to Cai
et al. [25], who developed it for correcting the elastic interactions
between dislocations in two dimensions, using an electrostatic
analogy. No electrostatic analogy was used in the derivation of
equations given in the preceding section of this paper.

4. Compilation of the program

CALANIE is a code written in C++. It can be compiled using
any modern C++ compiler, including Intel and GNU compilers. No
linking to external libraries is required. The code can be compiled
in two different ways, for two different purposes. The first one is
for general type ab initio calculations. Using g++, one can compile
CALANIE using the following command line

$ g++ -DABINITIO -DSTRESSeV -o calanie CALANIE_2.0.cpp

or

$ g++ -DABINITIO -DSTRESSGPa -o calanie CALANIE_2.0.cpp

Option -DABINITIO defines the word ABINITIO in the code, such
that the program is compiled for the purpose of correcting the
elastic energy and obtaining the dipole tensor from the output of
a general purpose ab initio program. Option -DSTRESSeV means
that stresses in the input file should be given in eV units. In other
words, the input stresses are not the macro-stresses themselves,
but the macro-stresses multiplied by the cell volume. If one
uses VASP [26–29], the corresponding values are given in the
line entitled ‘‘Total’’ in the corresponding ‘‘OUTCAR’’ file. On the
other hand, one can use a more general option -DSTRESSGPa.
The stresses in the input file should then be given as the resid-
ual stresses, and should be expressed in GPa units. The sign
of stresses follows the convention adopted in VASP. A value of
positive stress means that the simulation cell attempts to expand,
whereas a negative value of stress implies contraction.

The second compilation option is needed for analysing the
relative elastic effect, assuming that a linear defect can rotate. It
can be compiled using the command

$ g++ -DORIENTATION -o calanie CALANIE_2.0.cpp

This compilation command is required for analysing changes in
the elastic correction energy of a defect, assuming that it can
rotate freely according to Eq. (16). This enables assessing the
stability of a defect under the influence of stresses developing
in the supercell under PBCs. An application of this compilation
option was illustrated in our earlier study [8].

5. Input and output

CALANIE uses two input files. They are input_data and in-
put_elastic. These files need to be located in the same directory
in order to execute CALANIE. Both are ASCII files.

When we use option -DABINITIO, in the input_data file we
need to specify the translation vectors, the linear scaling factor,
and the residual stresses in the perfect cell and in the cell con-
taining a defect. They should be specified using the following
format

box_ref_11 ???

box_ref_12 ???

box_ref_13 ???

box_ref_21 ???

box_ref_22 ???

box_ref_23 ???

box_ref_31 ???

box_ref_32 ???

box_ref_33 ???

a_lattice_ref ???

box_def_11 ???
...

box_def_33 ???

a_lattice_def ???

stress11_ref ???
...

stress33_ref ???

stress11_def ???
...

stress33_def ???

The numerical value that follows a keyword is the input value, the
position of which is indicated by ??? above. Keywords box_ref_αβ

and box_def_αβ are the translation vectors of the perfect ref-
erence cell and the cell containing a defect, and α, β = 1, 2, 3.
Keywords a_lattice_ref and a_lattice_def are linear scaling fac-
tors. Keywords stressαβ_ref and stressαβ_def are the residual
stresses in the reference cell and in a cell containing a defect.
One and only one value should be specified. All the nine matrix
elements for the translation vectors and residual stresses are
required.

If we consider a relaxed defect configuration in a simulation
cell, there are two commonly used simulation conditions. One
is a fixed boundary (net zero strain) condition, and the other
is a net zero stress condition. In the case of a fixed boundary
(net zero strain) condition, values of box_ref_αβ and box_def_αβ

are the same. Values of stressαβ_ref should all be zeros, and
stressαβ_def are the corresponding stress values characteriz-
ing the stress in the cell containing a defect. In the case of a
stress-free condition, values of box_def_αβ are the cell transla-
tion vectors for the cell relaxed to the zero value of macrostress,
whereas the values of stressαβ_ref and stressαβ_def should all
vanish.

In the input_elastic file, the first two lines are the comment
lines. The third to eighth lines contain values of elastic constants
in the Voigt notation Cij, in GPa units, followed by the compliance
constants Sij, also in the Voigt notation, given in GPa−1 units. The
input should appear as follows
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#comments

#comments

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

Once both input files input_data and input_elastic are available,
the program can be run from the same directory by executing
the command

$ ./calanie

We provide a simple python script make_input_elastic.py to
help generate input_elastic. The user needs to provide a file
with the name input_elastic_Cij with only the first eight lines
of input_elastic. By running make_input_elastic.py, one generates
a file input_elastic with the required values of Sij. Sample files
with names input_data_2, input_elastic and input_elastic_Cij are
included in the distribution of CALANIE.

When using option -DORIENTATION, in input_data we only
need to specify the translation vectors and linear scaling factor
for the reference cell. We also need the values of Ω (1) and Ω (2)

through the keywords of Omega1 and Omega2 in Å3 units. A
sample file named input_data_1 illustrates this part of input. The
input_elastic file is the same as in the previous case. However,
when we run the program, we need to specify the orientation of
a defect in terms of θ and φ, namely

$./calanie θ φ

The dipole tensor of the defect can be calculated using Eq. (16),
followed by the calculation of its elastic correction energy.

There is no specific output file format associated with either
option. Outputs are printed out directly. Values of Pij, Eapp, Etotal

DD ,
Ecorr
DD , EDD, Ecorr

strain, and Ecorr
el are computed and displayed. The re-

laxation volume tensor Ωij and relaxation volume Ωrel are also
evaluated according to equations Ωij = SijklPkl and Ωrel = Tr(Ωij).

6. Applications

6.1. Ab initio calculations: Point defects in FCC gold

Elastic correction can be readily applied in the context of a cal-
culation of formation and migration energies of point defects. We
have applied CALANIE to improve the quality of ab initio defect
energies in FCC gold, which were partially described in a study
by Hofmann et al. [30]. The calculations were performed for a
vacancy and several self-interstitial atom (SIA) defects, where the
latter included a ⟨100⟩ dumbbell, an octahedral site interstitial, a
⟨110⟩ crowdion, and a ⟨110⟩ dumbbell.

All the ab initio density functional theory (DFT) calculations
were performed using Vienna Ab initio Simulation Package (VASP)
[26–29]. We used the revised-TPSS exchange–correlation func-
tional [31,32]. The spin–orbit coupling was also included, to

Table 1
The number of atoms, approximate cell size (in the units of cubic unit cell
size), and the k-point mesh that were used in the calculations of vacancy,
⟨100⟩ dumbbell, octahedral site interstitial, ⟨110⟩ crowdion, and ⟨110⟩ dumbbell
defects in FCC gold.

No. of atoms Approx. cell size k-points

Vac 107 3 × 3 × 3 4 × 4 × 4
⟨100⟩d 145 3 × 3 × 4 4 × 4 × 3
Octa 109 3 × 3 × 3 4 × 4 × 4
⟨110⟩c 193 3 × 4 × 4 4 × 3 × 3
⟨110⟩d 193 3 × 4 × 4 4 × 3 × 3

Table 2
The total energy Edef of a simulation box containing a defect, the total energy
Eperf of a perfect lattice simulation cell, the applied strain energy Eapp , the
elastic correction energy Ecorr

el , and the formation energy EF
def of a vacancy, a

⟨100⟩ dumbbell, an octahedral site interstitial, a ⟨110⟩ crowdion, and a ⟨110⟩
dumbbell in FCC gold. The value of EF

def with no elastic correction, corresponding
to Eapp

= 0 and Ecorr
el = 0, is also given for comparison. All the values are given

in eV units.
Edef Eperf Eapp Ecorr

el EF
def EF

def
(no corr)

Vac 4056.141572 4093.103600 −0.010717 0.00848 0.939 0.937
⟨100⟩d 5499.210885 5457.464770 −0.273714 0.18303 3.938 3.847
Octa 4135.011821 4093.103600 −0.375941 0.28347 4.102 4.009
⟨110⟩c 7318.341711 7276.601601 −0.275946 0.15802 3.959 3.841
⟨110⟩d 7318.342569 7276.601601 −0.275557 0.15747 3.960 3.842

Fig. 1. Variation of the formation energy of a vacancy during its transition from
an equilibrium position to a nearest neighbour equilibrium position. A small
difference can be observed between the cases studied with and without applying
the elastic correction.

account for the band splitting and shape modification of the 5d
bands [33–35]. The plane wave energy cut-off was 450 eV for
the 11 valence electrons included in the calculation. Different
sizes of simulation cells were used for different defects. The
corresponding box sizes and k-point meshes are given in Table 1.
All the simulation boxes were relaxed to the stress-free condition,
with residual forces lower than 0.01 eV/Å. Formation energies
were calculated using Eq. (18) with respect to a perfect crystal,
using a similar cell size and the same k-point mesh.

Elastic constants are also required for calculating Eapp and Ecorr
el .

They were calculated using the Le Page and Saxe method [36],
using a 4-atom cubic cell. From ab initio calculations, we obtained
C11 = 210.55 GPa, C12 = 168.11 GPa and C44 = 49.96 GPa. These
values are compatible with the low temperature experimental
values, which are C11 = 201.63 GPa, C12 = 169.67 GPa and
C44 = 45.44 GPa [37]. The calculated lattice constant is 4.075 Å,
whereas the experimental value is 4.07833 Å [38].



P.-W. Ma and S.L. Dudarev / Computer Physics Communications 252 (2020) 107130 7

Table 3
Elastic dipole tensor Pij , in eV units, computed for a vacancy, a ⟨100⟩ dumbbell,
an octahedral site interstitial, an ⟨110⟩ crowdion, and a ⟨110⟩ dumbbell in FCC
gold.

P11 P22 P33 P12 P23 P31
Vac −6.760 −6.760 −6.760 0.000 0.000 0.000
⟨100⟩d 36.667 39.612 39.612 0.000 0.000 0.000
Octa 39.529 39.529 39.529 0.000 0.000 0.000
⟨110⟩c 38.856 38.856 41.084 11.199 0.000 0.000
⟨110⟩d 38.742 38.742 41.332 11.155 0.000 0.000

The corrected defect formation energies EF
def , applied strain

energies Eapp, elastic correction energies Ecorr
el , and the formation

energy of defects with no correction applied, that is ignoring
Eapp and Ecorr

el , are given in Table 2. The data given in the Table
show that a ⟨100⟩ dumbbell has the lowest formation energy,
whereas a ⟨110⟩ crowdion has the lowest formation energy if
the elastic correction is not included. However, we should note
that the energy difference between a ⟨100⟩ dumbbell, a ⟨110⟩
crowdion and a ⟨110⟩ dumbbell is very small. Since the accuracy
of a DFT calculation is in the meV range, it is hard to draw a
definitive conclusion about the structure of the most stable SIA
defect configuration in gold.

Elements of elastic dipole tensors Pij, in eV units, are given in
Table 3, whereas the elements of the relaxation volume tensor
Ωij and the total relaxation volume Ωrel, in atomic volume units,
are given in Table 4. We note that their values are correlated
with the symmetry of a particular defect. Indeed, the calculated
values of Pij and Ωij might be more significant than the calculated

Table 4
Relaxation volume tensor Ωij and relaxation volume Ωrel , in atomic volume units,
computed for a vacancy, a ⟨100⟩ dumbbell, an octahedral site interstitial, a ⟨110⟩
crowdion, and a ⟨110⟩ dumbbell in FCC gold.

Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

Vac −0.117 −0.117 −0.117 0.000 0.000 0.000 −0.351
⟨100⟩d 0.231 0.888 0.888 0.000 0.000 0.000 2.008
Octa 0.685 0.685 0.685 0.000 0.000 0.000 2.068
⟨110⟩c 0.520 0.520 1.018 1.062 0.000 0.000 2.058
⟨110⟩d 0.494 0.494 1.072 1.057 0.000 0.000 2.059

values of the elastic correction terms. One can readily use them
to evaluate the strength of defect–defect interactions through
linear elasticity theory [5–9], and even apply it to examine the
stress profile of an irradiated component on a macroscopic scale,
if the distribution of defects is computed starting from a neutron
transport calculation [17].

Elastic correction can also be applied to non-equilibrium con-
figurations. For example, it can be applied to the atomic con-
figurations describing the migration pathway of a defect. We
performed a nudged elastic band calculation [39,40] of vacancy
migration in gold, where seven NEB images were used. A va-
cancy hops from an equilibrium position to the nearest neighbour
equilibrium position in the y–z plane. Fig. 1 shows the change
in the formation energy with and without the elastic energy
correction. The computed migration energy agrees well with the
experimental value of 0.71± 0.05 eV [38]. The effect of applying
the elastic correction is not prominent in this case, as the stress
field induced in the lattice by a vacancy is relatively weak.

On the other hand, we observe a change in Pij during the
transition, illustrated in Fig. 2, which can give rise to effects of

Fig. 2. Elastic dipole tensor of a vacancy moving along a migration pathway in the y–z plane. Owing to the symmetry of the defect, P22 = P33 and P12 = P31 = 0.

Fig. 3. Atomic configuration of (left) a circular 1
2 ⟨111⟩ and (right) a square ⟨100⟩ self-interstitial atom loop. Both loops contain 61 self-interstitial atoms. Bulk atoms

were filtered out according to the central symmetry parameter criterion.
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Fig. 4. Elastic dipole tensors of 1
2 ⟨111⟩ self-interstitial atom loops containing 7, 13, 19, 37, 55, and 61 atoms as functions of the simulation cell size. Pαα are the

diagonal terms, whereas Pαβ are the off-diagonal terms. Elements of the elastic dipole tensor are computed using the condition that the simulation cell shape was
fixed to match the perfect lattice case, or allowed to relax to a stress-free condition.

anisotropic diffusion under applied external stress, or the stress
induced by other defects, for example dislocations [22]. The
anisotropic diffusion tensor in the linear approximation in the
spatially slow varying external strain field ϵij(R) can be written
following the analysis by Dederichs and Schroeder [41]
as

Dij(R) =
1
2

∑
h

λhrhi r
h
j exp

(
ϵkl(R)(P sd,h

kl − Peq
kl )

kBT

)
, (32)

where summation is performed over all the possible hopping
sites h, λh = ν0 exp(−EM,h

D /kBT ) is the atomic jump frequency,

ν0 is the attempt frequency, EM,h
D is the migration barrier in the

corresponding hopping direction, rhi is a Cartesian component of
the hopping direction vector, P sd,h

kl and Peq
kl are the elastic dipole

tensors at the saddle point and at an equilibrium position. The

value of Dij for a given value of strain can be evaluated using

the data given here. Anisotropic diffusion of point defects under

applied stress induced by a screw dislocation has been explored

by Sivak and Sivak [42] in fcc copper using kinetic Monte Carlo

simulations.
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Fig. 5. Formation energy EF
def of 1

2 ⟨111⟩ self-interstitial atom loops containing 7, 13, 19, 37, 55, and 61 atoms shown as a function of the simulation cell size. The
EF
def is calculated with elastic correction applied, i.e. using Eq. (18), or without the correction, i.e. ignoring the Eapp and Ecorr

el . Both are calculated under the condition
that the simulation cell shape was fixed to match the perfect lattice case, or was allowed to relax to a stress-free condition.

6.2. Molecular statics: Dislocation loop in tungsten

Elastic field of a mesoscopic defect is much stronger than that
of a point defect. Elastic correction is also larger for a defect
of larger size in a small simulation box. For example, an ab
initio calculation is usually limited to a few hundred atoms. The
formalism developed in this paper can be applied to any localized
defect irrespective to its structure. If the elastic dipole tensor Pij
of the defect is known, one can use it to compute the corrected
defect formation energy EF

def using Eq. (18), provided that the
strain field at the surface of a simulation box is well approximated
by linear elasticity. We would like to examine the convergence

of the Pij and EF
def of mesoscopic scale defects as a function of

simulation cell size and simulation conditions.
We have investigated this issue using molecular statics. Molec-

ular static allows us to do highly accurate calculations using very
large simulation cells within a reasonable amount of computation
time. We used the Mason–Nguyen–Manh–Becquart (MNB) [43]
potential for tungsten. The calculated elastic constants for this
potential are C11 = 526.83 GPa, C12 = 205.28 GPa, and C44 =

160.63 GPa. All the calculations were performed using LAMMPS
[44]. Atomic relaxations were performed using the conjugate
gradient method. We have investigated circular 1

2 ⟨111⟩ self-
interstitial atom (SIA) loops containing 7, 13, 19, 37, 55 and 61
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Fig. 6. Elements of elastic dipole tensors of ⟨100⟩ self-interstitial atom loops containing 5, 13, 25, 41, and 61 atoms plotted as a function of the simulation cell size.
The off-diagonal terms of the dipole tensor vanish because of symmetry. The elastic dipole tensor is calculated under the condition that the simulation box shape
was fixed to match the perfect lattice case, or was allowed to relax to a stress-free condition.

atoms, and square ⟨100⟩ SIA loops containing 5, 13, 25, 41 and 61
atoms, using simulation cells of varying size involving from 2000
to 1 million atoms. Two sets of calculations were performed. In
one set, the shape and volume of the simulation cell remained
fixed as the same as in the perfect lattice case. In the other set,
the cell was allowed to relax to a stress-free condition. The loop
structure of a circular 1

2 ⟨111⟩ and square ⟨100⟩ loop with 61
atoms are shown in Fig. 3. They were generated using AtomEye
software [45], where bulk atoms were filtered using the central
symmetry parameter criterion.

Fig. 4 shows elements of the elastic dipole tensor of 1
2 ⟨111⟩

SIA loops plotted as functions of the simulation cell size. Due to

the symmetry of the defect, values of diagonal terms are all the
same and labelled Pαα , whereas the off-diagonal terms also have
the same values and are labelled Pαβ . We see that both the fixed
cell and stress-free condition calculations converge to the same
value if the simulation box is large enough. Under the stress-
free condition, when the simulation cell size is in the range of
10 × 10 × 10 and 11 × 11 × 11 unit cells, the cells containing 55
and 61 atoms loops deform significantly. The calculated values of
Pij do not reflect the correct symmetry of a 1

2 ⟨111⟩ SIA loop type,
so we have discarded these data.

Fig. 5 shows the corrected formation energy calculated using
the data shown in Fig. 4. We note that the elastic correction
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Fig. 7. Formation energy EF
def of ⟨100⟩ self-interstitial atom loops containing 5, 13, 25, 41, and 61 atoms shown as a function of the simulation cell size. Values of

EF
def were calculated with elastic correction applied, i.e. using Eq. (18), or with no correction, i.e. ignoring Eapp and Ecorr

el . Both were calculated under the condition
that the simulation box shape was fixed to match the perfect lattice case, or was allowed to relax to a stress-free condition.

converges well in the limit of large simulation box. At the same
time, we see that although the fixed cell and stress-free condition
calculations suggest different values prior to the application of
elastic correction, their values become comparable when this
correction is applied. For mesoscopic scale loops, e.g. a 61 atom
loop, the difference can be fairly large if the correction is not
applied.

Figs. 6 and 7 show the elements of the dipole tensor and
formation energy of ⟨100⟩ loops as functions of the cell size. Due
to the symmetry, we know that the elements of dipole tensor
P11 = P22, P33 ̸= 0, and that the off-diagonal elements all vanish.

We observe a similar pattern for the ⟨100⟩ loops as for the 1
2 ⟨111⟩

loops. The error in Pij becomes larger when the size of the defect
becomes comparable to the size of the simulation box. This is a
consequence of the fact that the derivation of the dipole tensor
formalism is based on the linear elasticity approximation.

When the size of the simulation cell is small, the deformation
of the lattice near the surface of the cell due to a defect may
become very large and hence non-linear. This makes the values
of Pij computed in the linear elasticity approximation inaccurate.
Nevertheless, it still helps correct the formation energy for vari-
ous simulation cell conditions, such as in the two limiting cases of
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the fixed box and stress-free conditions. This even enables calcu-
lating the formation energy of a relatively large size defect using
a relatively small simulation cell with higher confidence, which
is important especially in the context of an ab initio calculation
where the cost of computation is high.

7. Conclusion

In this study, we presented a summary of the fundamental
theory, algorithms and numerical implementation of computer
program CALANIE, intended for the evaluation of anisotropic elas-
tic interaction energy correction associated with the use of peri-
odic boundary conditions (PBCs). The theory is based on the linear
elasticity approximation. The elastic interaction of a defect with
its periodic images is approximated and evaluated using the elas-
tic dipole and elastic Green’s function formalism. The elements
of the elastic dipole tensor of a defect can be computed in same
electronic or atomic scale simulation as the formation energy of
the defect. Elastic Green’s function and its first and second deriva-
tives can also be calculated numerically if the elastic constants
of the material are known. Working examples together with the
relevant input files are provided. Compilation of CALANIE can be
performed using any modern C++ compiler.

Applications of the program are illustrated using two case
studies as examples. One example involves ab initio calculations
of point defects in FCC gold. We show that elastic correction can
be applied not only to equilibrium, but also to non-equilibrium
configurations, for example to the treatment of diffusion of va-
cancies in applied external elastic field. Other applications involve
relatively large, mesoscopic scale defects. We investigate the
convergence of calculations of elements of dipole tensors and
formation energies in the large simulation cell limit. We show
that the treatment of elastic correction can improve the quality
of evaluation of the formation energy even in the limit where the
size of the defect is comparable with the size of the simulation
cell.
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