
Computer Physics Communications 300 (2024) 109195

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

ReMKiT1D - A framework for building reactive multi-fluid models of the

tokamak scrape-off layer with coupled electron kinetics in 1D ✩,✩✩

Stefan Mijin a,∗, Dominic Power b, Ryan Holden a,c, William Hornsby a, David Moulton a,
Fulvio Militello a

a United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, Oxfordshire, OX14 3DB, UK
b Blackett Lab., Plasma Physics Group, Imperial College London, London, SW7 2AZ, UK
c School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

Framework

Fluid

Kinetic

Electrons

Tokamak

SOL

Multi-fluid

Collisional-radiative

In this manuscript we present the recently developed flexible framework for building both fluid and electron
kinetic models of the tokamak Scrape-Off Layer in 1D - ReMKiT1D (Reactive Multi-fluid and Kinetic Transport
in 1D). The framework can handle systems of non-linear ODEs, various 1D PDEs arising in fluid modelling, as
well as PDEs arising from the treatment of the electron kinetic equation. As such, the framework allows for
flexibility in fluid models of the Scrape-Off Layer while allowing the easy addition of kinetic electron effects.
We focus on presenting both the high-level design decisions that allow for model flexibility, as well as the most
important implementation aspects. A significant number of verification and performance tests are presented, as
well as a step-by-step walkthrough of a simple example for setting up models using the Python interface.

Program summary

Program title: ReMKiT1D

CPC Library link to program files: https://doi .org /10 .17632 /j47ym66xzj .1
Developer’s repository link: https://github .com /ukaea /ReMKiT1D and https://github .com /ukaea /ReMKiT1D -
Python

Licensing provisions: GPLv3

Programming language: Fortran, Python

Supplementary material: https://doi .org /10 .14468 /fdq7 -z869

Nature of problem: The flexible generation and modification of 1D models pertaining to multi-fluid simulations
of the tokamak Scrape-Off Layer (SOL) with electron kinetics and reaction support. This would then allow both
for rapid iteration on reduced models as well as the evaluation of kinetic electron effects in equilibria and
during transients, following the formalism previously developed for SOL-KiT [1]. The framework was not only
envisioned as the successor to SOL-KiT, but a tool that would allow users to construct their own models coupled
with electron kinetics capabilities.

Solution method: The framework is written heavily utilizing Object-Oriented design principles, in particular
using an extended version of the puppeteer pattern as presented by Rouson et al. [2], as well as the heavy use
of the strategy pattern/dependency injection. The Fortran code is MPI parallel and utilizes the PETSc library for
implicit time-stepping. MPI parallelization is extended to distribution function Legendre harmonics, allowing for
improved strong scaling. Initialization of the Fortran framework is done using JSON configuration files generated
by an accompanying Python interface, and data analysis is standardized using widely used data formats such as
HDF5.

Additional comments including restrictions and unusual features: The present manuscript focuses on the design
and high-level implementation of the framework, as well as the demonstration of the workflow and various
verification and performance benchmarking tests. Some details are avoided for the sake of brevity at various

✩ The review of this paper was arranged by Prof. David W. Walker.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding author.
Available online 5 April 2024
0010-4655/Crown Copyright © 2024 Published by Elsevier B.V. This is an open access

E-mail address: stefan.mijin@ukaea.uk (S. Mijin).

https://doi.org/10.1016/j.cpc.2024.109195

Received 28 July 2023; Received in revised form 22 February 2024; Accepted 2 Apr
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

il 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/j47ym66xzj.1
https://github.com/ukaea/ReMKiT1D
https://github.com/ukaea/ReMKiT1D-Python
https://github.com/ukaea/ReMKiT1D-Python
https://doi.org/10.14468/fdq7-z869
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:stefan.mijin@ukaea.uk
https://doi.org/10.1016/j.cpc.2024.109195
https://doi.org/10.1016/j.cpc.2024.109195
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109195&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

points, and these are meant to be available as part of the general code documentation or tutorials offered on the
main repositories.

References

[1] S. Mijin, A. Antony, F. Militello, SOL-KiT-Fully implicit code for kinetic simulation of parallel electron
transport in the tokamak Scrape-Off Layer, Comp. Phys. Comm. 258 (2021).

[2] D. Rouson, J. Xia, X. Xu, Scientific Software Design: The Object-Oriented Way, Cambridge University Press,
2011.
1. Introduction

The Scrape-Off Layer (SOL) denotes the region of open magnetic
field lines just outside of the core of magnetically confined fusion (MCF)
devices, such as the tokamak. These open field lines impinge on mate-

rial surfaces (walls, limiters, or divertor targets) in the device, leading
to plasma-surface interactions, which can inject impurity species into
the plasma. Furthermore, the region outside the core, often referred to
as the edge, is cold enough for atomic, or even molecular, neutrals to
persist and interact with the plasma in a non-trivial way. As such, this
region of the device is particularly rich in multi-species plasma physics,
with many reactions occurring between the species.

Furthermore, due to the scale separation of parallel (to the open
magnetic field lines) and perpendicular transport, 1D analytical and nu-

merical models of the SOL have been a mainstay since the early days
of SOL simulations. The reduced geometrical/dimensional complexity
allows for the treatment of more involved physics, while keeping run
times short compared to 2D or 3D simulations. As such, a range of 1D
codes geared towards exploring one or more aspects of the SOL have
been in use over the last several decades, ranging from PIC codes [1,2],
to continuum fluid [3–5] and kinetic [6–9] codes. These have been used
for a variety of problems, and some of them will be reviewed here to
provide context for the code to be presented in the bulk of this text.

One of the most common problems tackled by 1D codes is that
of simulating equilibrium divertor regimes, with a particular focus on
detachment [10,11,3] - the regime in which the plasma recombines
significantly in front of the target, effectively producing a cloud of neu-

trals which shields it from exposure to the hot upstream conditions.
Tying into this is the study of how target conditions are affected by
transient phenomena upstream [12,13], when particles and energy are
transiently injected far away from the targets and allowed to propa-

gate towards them and interact with any of the background plasma and
neutral species present in the equilibrium conditions.

Another field of research is that of parallel transport in the SOL.
While fluid models tend to use classical values of transport coefficients
(e.g. heat conductivity or viscosity) that rely on local values of plasma
parameters, due to the strong parallel gradients formed in the SOL, ki-

netic effects can come into play [14], modifying the classical values in
both equilibrium and transient conditions. Examples of kinetic effects
include heat flux suppression and enhancement [15–17], as well as the
modification of the target plasma sheath properties [18,19], which fluid
codes struggle to include consistently, often resorting to measures such
as heat flux limiting.

Finally, with the presence of many species, and atomic and molec-

ular physics coming into play, the need arises to couple the various
species through reaction rates, leading naturally towards collisional-

radiative models (CRMs), which attempt to solve and reduce a set of
coupled ODEs [20–25]. Most often, however, these models are 0D,
neglecting transport effects and taking reaction rates based on an un-

derlying Maxwellian distribution for the plasma species. 1D models, es-

pecially kinetic models, when including collisional-radiative processes,
can be used to study transport effects on the particle and energy balance
governed by these complicated reactions [26].

The goal of the framework to be presented is to provide a relatively
2

easy way to build models that can tackle most of the above issues,
combining multi-fluid, collisional-radiative, and kinetic physics, partic-

ularly in the context of SOL plasmas. However, the presented frame-

work could also be relevant to other fields where 1D fluid equations
might need to be solved.

The ReMKiT1D (Reactive Multi-fluid and Kinetic Transport in 1D)
framework consists of a core code written in Modern Fortran and con-

trolled through JSON configuration files constructed using a Python
package, allowing for rapid model iteration and flexibility. While the
numerical approach is extremely customizable, with many features ex-

posed to the user at the Python level, a significant number of numerical
procedures and approaches are adapted from work previously done on
the hydrogenic hybrid fluid-kinetic code SOL-KiT [27], which has been
used to tackle some of the problems detailed above, namely the quan-

tification of kinetic electron effects on parallel transport and reaction
rates in equilibrium and transient conditions. However, while SOL-KiT
is a purpose-built code, ReMKiT1D has been designed as a framework
such that models, like the one implemented in SOL-KiT, can be easily
built, used, and modified by a variety of users. Furthermore, it allows
for improvements in performance by introducing a second paralleliz-

able dimension in the electron distribution function harmonics (see
Sections 4.2.1 and 5).

A brief overview of problem types and equations ReMKiT1D is
designed to tackle will be given in Section 2, after which the basic
concepts required to set up ReMKiT1D simulations are discussed in
Section 3. Once the basic concepts are introduced, a concrete exam-

ple of a simple ReMKiT1D workflow will be presented in Section 3.2,
showcasing the basic idea behind coupling Python and Fortran code-

bases through JSON configuration files. For readers interested in the
software design and implementation details behind ReMKiT1D, these
are covered in Section 4. In order to build confidence in the software
package, an extensive list of verification and benchmarking problems is
presented in Section 5, including parallel performance scaling tests with
the novel parallelization in distribution function harmonics. Planned
and potential use cases and extensions of the framework are discussed
in Section 6.

2. Target problem classes

With a focus on mathematical models arising in the research of
transport along magnetic field lines in the SOL, ReMKiT1D has been
designed to handle systems of nonlinear ODEs and PDEs arising from
coupled fluid and kinetic models. These will be laid out in this section,
without focusing on any individual model or implementation.

2.1. Systems of nonlinear ODEs

Nonlinear ODEs arise both from the spatial and velocity discretiza-

tion of fluid and kinetic models of interest, as well as naturally in the
context of collisional-radiative modelling. In general, given a vector of
variables 𝑣, the system of interest can be written as

𝑑𝑣

𝑑𝑡
=𝐌(𝑣) ⋅ 𝑣+ Γ⃗, (1)

where 𝐌(𝑣) is the matrix of (nonlinear) coupling coefficients and Γ⃗

some constant vector. It is convenient to write the system in this way

S. Mijin, D. Power, R. Holden et al.

both for the purposes of defining the default implicit integration scheme
used, and to draw parallels with the form of general collisional-radiative
models [25]. In general, the systems of ODEs that occur in problems of
interest are stiff, and implicit integration schemes together with poten-

tially flexible operator splitting might be required (see Sections 3.1.3

and 4.1.1).

2.2. 1D PDEs

Systems of hyperbolic conservation laws of the form

𝜕𝑋
(
�⃗�
)

𝜕𝑡
+∇ ⋅ Γ⃗𝑋

(
�⃗�
)
= 𝑆𝑋, (2)

where 𝑋 is a conserved quantity, Γ⃗𝑋 the flux of that quantity, and 𝑆𝑋

the source/sink of 𝑋, arise naturally in the modelling of multi-species
fluids. Many well-known methods of solving such equations exist, re-

ducing the system through discretization to a system of, in general,
nonlinear ODEs. The complexity of the conservation laws comes from
the forms of the fluxes and sources, which can be complex nonlinear
functions of conserved quantities. Furthermore, cases where evolving
the primitive (instead of conserved) quantities is simpler also arise. This
can lead to parabolic equations, such as those that arise in heat conduc-

tion problems, as well as combined advection-diffusion problems.

Finally, equations without an explicit time derivative term can arise,
as is the case with the elliptic problem of Poisson’s equation

Δ𝜑 = 𝑓. (3)

Further complications arise with the addition of complicated bound-

ary conditions due to the interaction of the SOL plasma with the wall,
such as the sheath boundary condition and recycling. These are men-

tioned in Appendix A, and for more details the reader is encouraged
to consult previous work [27,6,2], particularly in the context of kinetic
boundary conditions.

As such, it is of interest to at least attempt to cover as many of
these cases as possible, which is simplified somewhat due to the 1D
nature of the problems considered in this manuscript. Implementation
details behind the 1D differential operators available in ReMKiT1D will
be presented in Section 4.3.

2.3. 1D electron kinetic equation

Electron kinetic effects such as heat flux suppression, sheath bound-

ary effects, as well as potential modification of reaction rates due to
non-Maxwellian distributions, are of interest both in equilibrium and
transient conditions. Following the approach in SOL-KiT [27], these ef-

fects are included as emergent physics through the option to solve the
1D electron kinetic equation,

𝜕𝑓

𝜕𝑡
+ 𝑣𝑥

𝜕𝑓

𝜕𝑥
− 𝑒𝐸

𝑚𝑒

𝜕𝑓

𝜕𝑣𝑥
=
(
𝛿𝑓

𝛿𝑡

)
𝑐

. (4)

In principle, the electron distribution function is naturally represented
in a spherical harmonic basis, which accounts well for collision sym-

metries with heavy particles. Assuming that the distribution function
is azimuthally symmetric (around the 𝑣𝑥 direction), it can instead be
expanded more simply into Legendre harmonics 𝑓𝑙 , resulting in an
equation of the form

𝜕𝑓𝑙

𝜕𝑡
=𝐴𝑙 +𝐸𝑙 +𝐶𝑙 (5)

where 𝐴𝑙 , 𝐸𝑙 , and 𝐶𝑙 represent spatial advection, velocity space advec-

tion due to the electric field, as well as collision operators, respectively.
This enables fine control over the fidelity of the kinetic effects included,
through both choosing the number of resolved distribution function har-

monics, as well as controlling the individual operators evolving each
harmonic. Fluid moments are obtained directly from moments of the
3

individual harmonics, such that scalar moments are given by
Computer Physics Communications 300 (2024) 109195

< 𝜙 >= ∫ 𝜙(𝑣)𝑓 (𝑣)𝑑𝑣 = 4𝜋

∞

∫
0

𝜙(𝑣)𝑓0(𝑣)𝑣2𝑑𝑣,

and vector moments by

< 𝑎 >= ∫ 𝑎(𝑣)𝑓 (𝑣)𝑑𝑣 = 4𝜋
3

∞

∫
0

𝑎(𝑣)𝑓1(𝑣)𝑣2𝑑𝑣

For more details on the expansion, the reader is directed towards the
SOL-KiT model and other similar models in the literature [28–31]. Here
it will only be mentioned that the capability for including the Coulomb
collision operator outside of the Lorentz approximation and the proper
treatment of inelastic electron-neutral collisions is desirable and has
been implemented in ReMKiT1D following the techniques established
in SOL-KiT [27].

Given the broad range of problems and the aim for flexibility,
the need for separating high-level concepts and implementation arises.
ReMKiT1D endeavours to exploit low-cost abstraction and the concept
of scalable design to produce a framework that is both fit for purpose
in terms of adequately addressing the target problem classes above, as
well as providing the user with low level control, high level quality-of-

life features, flexibility in the models and numerics, and rapid iteration.
This requires at least a conceptual separation of high-level concepts and
those directly tied to the implementation of operators and solvers in 1D,
and an attempt has been made to separate these concepts with the de-

sign of the source code as well. These high-level concepts and the 1D
implementation will be presented in the following two sections.

3. Basic concepts

In this section we cover the basic and the highest-level concepts
necessary to build simulations using ReMKiT1D. We go over the four
surface-level concepts used to specify simulation parameters. The sec-

tion is designed to both offer a pedagogical introduction to the topic as
well as act as a standalone high-level explanation of the codebase.

In order to quickly demonstrate these concepts, an example setup in
Python will be presented in Section 3.2, where the coupling between
the Python and Modern Fortran codebases will be explained.

Software design details, as well as general implementation details
will be deferred to Section 4, and only the details necessary for under-

standing the four concepts and how they factor into the Python example
at the end of the section will be covered in this section.

3.1. The four surface-level concepts

We start by naively considering the building blocks of our differen-

tial equations. Firstly, we wish to solve the equations for some variables
of interest. In order to do so, we need a way to represent individual
terms of the equations, as well as a way to perform integration in time.
Finally, our variables live on some grid, which should encode coordi-

nate/geometrical data.

Following the above reasoning, we need to represent 4 concepts:

1. Variables - values of quantities we are calculating or evolving using
our equations

2. Terms - objects specifying how to evolve variables

3. Time integration - a way to evolve our variables in time

4. Grid - information about the coordinates/geometry for the vari-

ables to live on and for some terms to use

A breakdown of equation (2) along the above lines is shown in Fig. 1.
We will now look into each of these concepts in more details, examining
requirements and basic implementation details so we can use them to

build a simple simulation.

S. Mijin, D. Power, R. Holden et al.

Fig. 1. The four surface-level concepts highlighted on the 1D hyperbolic PDE
from Section 2. a) dashed blue circles: The quantities we store, evolve/calcu-

late, and output - variables. b) dashed red boxes: calculated quantities/objects
used to evolve variables - terms. c) dotted purple circle: an algorithm to evolve
the variables - time integration. d) dotted green boxes: information about the
coordinate system - the grid. (For interpretation of the colours in the figure(s),
the reader is referred to the web version of this article.)

3.1.1. Variables

As noted above variables represent discretized data. Based on our
target problem classes and the strive for flexibility we have the follow-

ing three requirements on the variable data structure:

1. Variables of different dimensionalities should be treatable. This
includes scalar, fluid (1D), and distribution function (1D2V) vari-

ables.

2. The representation of variables needs to be compatible with im-

plicit methods so that we can safely treat stiff systems of equations.

3. We might be interested in calculating some variables from non-

integration rules. For example we might be evolving a particle flux,
but need a flow speed. It should be possible to derive the flow speed
from the two variables - particle flux and particle density.

The first requirement above dictates a categorisation of variables
based on their dimensionality, which is simple enough. It is the other
two requirements that produce the non-trivial categorisation into im-

plicit and derived variables.

Since implicit methods tend to involve matrix inversions/solutions
of linear systems we need to be able to represent implicit variables in a
way where we can use a solver library, such as PETSc [32]. This simply
means that an implicit variable needs to know how to index its values
into some global vector used by the solver. If this is satisfied we can
construct terms with matrix representations that can be used directly
with the matrix solver (see the following subsection).

The final requirement above translates into the concept of deriva-

tions, which is extensively used in ReMKiT1D to wrap functional de-

pendence of some variables on others. A variable in ReMKiT1D which
is not implicit can have a derivation associated with it, alongside an
argument list (containing variables) for that derivation. Based on the
argument list, ReMKiT1D will make sure that all MPI communication is
done so that any required variables are calculated before they are used
as an input to some derivation.

An example of a derivation is the calculation tree derivation. This
is essentially an expression tree, enabling the translation of Python-like
expressions into objects that the Fortran codebase can use.

In the example at the end of this section, we will add both implicit
and derived variables, as well as showcase how calculation tree deriva-

tions can be used to quickly convert Python expressions into functions
that are executed during the Fortran runtime.

For more details on how variables are implemented in ReMKiT1D,
how they are communicated, and how tree derivations work see Sec-

tion 4.2.

3.1.2. Terms and models

As noted at the start of this section, we need a way to represent
the various terms in our equations. These equations are of the form
𝑑𝑛∕𝑑𝑡 =

∑
𝑖 𝑆𝑖 or

∑
𝑖 𝑆𝑖 = 0, where 𝑆𝑖 are the additive terms we seek to

represent.

In ReMKiT1D, terms are always associated with a variable, which
we refer to as the evolved variable. For example, in 𝑑𝑛∕𝑑𝑡 =

∑
𝑖 𝑆𝑖, it is

straightforward to see that 𝑛 would be the evolved variable. For equa-∑

4

tions of the form 𝑖 𝑆𝑖 = 0, we still need to associate all the terms with
Computer Physics Communications 300 (2024) 109195

Fig. 2. A toy term showcasing all of the components of an arbitrary matrix term
(equation (7)). Left: 𝑐 = 5; 𝐹𝑖 = 𝑥2

𝑖
, where 𝑥𝑖 is the value of the 𝑥 coordinate

associated with row index 𝑖; 𝑇 (𝑡) = sin(𝑡); 𝑅𝑖 =𝑤𝑖 , where 𝑤 is some variable in
the ReMKiT1D context; 𝐶𝑗 = 𝑛𝑗 because the ∇ operator acts on both 𝑛 and 𝑢.
Right: A sketch of a potential stencil for the ∇ operator, perhaps using central
differencing. Here the three different shades of blue are meant to represent
different values.

a single ‘evolved’ variable, for example 𝜑 in equation (3). Variables cal-

culated using such equations are referred to as stationary in ReMKiT1D.

All terms in ReMKiT1D can be evaluated, i.e. their values can be
calculated for a given set of input variable values, and can in turn be
stored in variables. As of the writing of this manuscript (and v1.0.x of
the framework), while there are many facilities implemented to treat
general matrix-free terms in the future, ReMKiT1D focuses on matrix
terms, since these can easily be used in the implemented implicit time
integration method.

Let both 𝑛 and 𝑢 be implicit variables, i.e. variables which have a
mapping to the global solver (PETSc) vector. Then a matrix term de-

scribing the evolution of 𝑛 represents the RHS of

𝑑𝑛𝑖

𝑑𝑡
=𝑀𝑖𝑗𝑢𝑗 , (6)

where summation on repeated indices is assumed. The indices 𝑖 and
𝑗 can be thought of as linearly indexing into the global solver vector
and containing coordinate information (see Appendix B for a formal
description of the global solver vector as well as the default implicit
integration scheme). The matrix 𝑀𝑖𝑗 , whose functional dependence on
various variables, coordinates, and time is dropped here for readability,
is then composed of multiplicative components and a stencil 𝑆𝑖𝑗 so that

𝑀𝑖𝑗 = 𝑐𝑇 (𝑡)𝐹𝑖𝑅𝑖𝐶𝑗𝑆𝑖𝑗 , (7)

where 𝑐 is a constant scalar (usually associated with the normalization
- see example at the end of this section). 𝐹𝑖 is a constant array that de-

pends only on the index 𝑖 (and not on any variables), and thus only
includes explicit multiplicative dependence on any coordinates (spatial
or velocity). 𝑇 (𝑡) is a time dependant scalar used to encode any explicit
time dependence of the matrix term. Finally, 𝑅𝑖 and 𝐶𝑗 are vectors,
which are functions of some variables in general, and which dimen-

sionally conform to the evolved and implicit variable, respectively. In
practice, these are set to products of variables raised to some power, i.e.

𝑅𝑖 =
∏
𝑛

𝑣
𝑝𝑛
𝑛,𝑖
,

where 𝑣𝑛,𝑖 is variable 𝑣𝑛 evaluated at the coordinate set (spatial, veloc-

ity) corresponding to the index 𝑖. Together with stencils, these fully
define a matrix term. Stencils come in different forms, representing
the discretization of different operators. Some will be presented in Sec-

tion 4.3, but a good example is a diagonal stencil, i.e. a Kronecker delta.

To better illustrate the structure of a matrix term, Fig. 2 shows a toy
term and how it is mapped onto different components of 𝑀𝑖𝑗 .

In practice, terms dealing with related physics often require the
same data. An extreme example would be a collisional-radiative model,
where the densities of many states might be evolved based on many
different reactions and rates. Each of these rates needs to be computed,
and it becomes impractical to define variables for each rate. Because of

cases like these, ReMKiT1D always groups terms within model objects,

S. Mijin, D. Power, R. Holden et al.

Fig. 3. Left: a schematic of a model, representing groups of terms and any
associated data. Right: An example contrasting variables passed to the model
and data bound to the model. Here 𝑛 and 𝑢 are passed to the model in order
to be used in one of its terms, while 𝑤 lives within the model. 𝑤 can then be
calculated using mechanisms such as derivations. This way 𝑤 is encapsulated
in the model object.

allowing data to be bound to the model instead of it being passed to it in
the form of variables. A schematic of a general model as well as an ex-

ample contrasting model-bound data and variables passed to the model
is shown in Fig. 3. Models are the building blocks of ReMKiT1D simu-

lations, and their relationships with other components will be explored
in depth in Section 4.

3.1.3. Time integration

With the concepts of variables and models/terms introduced, the
next step is to define how to treat integration in time. ReMKiT1D al-

lows a flexible definition of integration algorithms based on built-in
integrator types. Currently supported integrators are a Backwards Euler
implicit integrator (see Appendix B) and explicit Runge-Kutta integra-

tors up to fourth order.1

ReMKiT1D allows the definition of integration steps, which can be
associated with an integrator object, and can be instructed to integrate
a subset of the terms/models. This can be useful in operator splitting
methods, such as those for kinetic equations where the advection is
done explicitly and collisions are treated using an implicit step [31].
Further control can be achieved through specifying more detailed in-

structions for integration steps. As such, a single integration call/time
step in ReMKiT1D will step through the defined integration steps. Time-

stepping is performed until some termination condition is reached (for
example running a certain number of time steps). A sketch of how an
integration call flows in ReMKiT1D is shown in Fig. 4. While some of
the software design details behind integrators and integration steps will
be presented in the next section (see Section 4.1.1), it is useful here to
introduce these concepts loosely as they are used in the example at the
end of the section.

3.1.4. The grid

Finally, we need to represent the grid on which variables live and
which is used to define self-consistent differential operators. While
ReMKiT1D offers the flexibility to its users to define custom operators
and grids, a convenient default is offered. This consists of a staggered
spatial grid, together with a harmonic and velocity grids used when
working with distribution function variables, and will be presented in
this section.

The default spatial grid in ReMKiT1D consists of a 1D array of cells
𝑖. These indices can be thought of as labelling cell centres of stacked
truncated cones, such that their base areas are given by cell face Ja-

cobians 𝐽𝑖. Explicitly including variable face Jacobians allows for the

1 Arbitrary Butcher tableau support has been implemented, but not available
5

in the Python interface as of v1.0.x.
Computer Physics Communications 300 (2024) 109195

representation of flux tubes of varying cross-sections in the SOL. To-

gether with the cell widths 𝑑𝑥𝑖 (heights of our truncated cones), these
Jacobians determine cell volumes 𝑉𝑖 = 𝑑𝑥𝑖(𝐽𝑖 + 𝐽𝑖−1)∕2. Alongside the
grid of cells 𝑖, a dual/staggered grid of cells 𝑖 + 1∕2 is defined, index-

ing the cell edges/faces along the x-direction. The volumes and face
Jacobians of these cells are calculated so that they fit into the regular
grid. Thus the right face Jacobian of cell 𝑖 + 1∕2 is the cell centre Jaco-

bian/area of cell 𝑖 + 1, 𝐽𝑖+1∕2 = (𝐽𝑖 + 𝐽𝑖+1)∕2, and the volume is given
by 𝑉𝑖+1∕2 = 𝑑𝑥𝑖(𝐽𝑖−1∕2 + 𝐽𝑖)∕4 + 𝑑𝑥𝑖+1(𝐽𝑖+1∕2 + 𝐽𝑖)∕4. Near boundaries,
dual grid cells can be extended so that the total volume of the dual
grid represents the same volume as the regular grid. This is useful for
applying boundary conditions to variables defined on the dual grid. A
schematic of the default ReMKiT1D spatial cells is shown in Fig. 5.

Fluid variables thus live either on the regular or the dual grid, with
the possibility of linear interpolation between them. As a rule of thumb,
and as is common in staggered finite volume methods, scalar fields
(such as the density or pressure) live in cell centres and vector fields
(e.g. fluxes) live on cell edges/the dual grid. Distribution variables, on
the other hand, either live entirely on the regular grid, or their even
𝑙 harmonics live on the regular and their odd harmonics on the dual
grid, or vice-versa. This is because moments of even harmonics include
densities and energies, while the odd harmonics produce moments that
determine various fluxes.

When the spatial grid is periodic, the regular and dual grids have the
same number of cells. Otherwise the dual grid has one fewer cell, as the
outer boundaries of the domain are always assumed to be on regular
cell boundaries. In terms of the actual array indexing, a variable that
lives on the staggered grid with index 𝑖 corresponds to the right cell
face of regular cell 𝑖, or 𝑖 + 1∕2 in Fig. 5.

The different harmonics in equation (5) are functions of both the
spatial coordinate 𝑥, as well as of the velocity magnitude 𝑣 and the har-

monic index 𝑙. The velocity magnitude 𝑣 is discretized similarly to the
regular spatial grid - as a 1D array of cells with specified cell centres and
widths. However, unlike the spatial grid, the 𝑣 grid does not include ex-

plicit face Jacobians, and is instead treated more as a finite difference
grid. As for the harmonic index, in general it can refer to a combina-

tion of spherical harmonic indices 𝑙 and 𝑚, even though the current
implementation of ReMKiT1D uses only 𝑙 under the assumption of az-

imuthal symmetry.2 For this reason the dimension associated with the
harmonics is referred to more generally as ℎ. The ℎ dimension tends to
have relatively few points, reflecting the fact that usually a small num-

ber of harmonics is sufficient to resolve angular dependencies of the
distribution function in many cases. Parallelization in this dimension is
explained in Section 4.2.

3.2. Python-JSON-Fortran interface and example workflow

In order to demonstrate the four concepts and provide an example
of how ReMKiT1D can be configured, we will cover the high-level in-

terface of the codebase, as well as go over a simple example workflow
that exercises the concepts introduced in the above sections.

ReMKiT1D’s core is written in Fortran, and the code is initialized
through a JSON configuration file using the json-fortran library [33].
The motivation behind this approach is the combination of human
readability and established IO libraries for JSON in both Fortran and
Python. This section will cover IO both with JSON and HDF5 files be-

fore presenting an example of how a simple advection simulation with
two equations can be generated in the Python interface.

3.2.1. IO with JSON and HDF5 through Python interface

As noted above, ReMKiT1D is fully initializable using just a JSON
configuration file. The JSON keys are defined in the Fortran code, and
a Python interface that generates the corresponding JSON entries is
2 Support is built in for an eventual inclusion of the 𝑚 numbers as well.

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 4. A simplified schematic of an integration call in ReMKiT1D. The integration call starts at the top-level composite integrator object, which steps through a
series of integration steps. Each step is associated with a particular integrator (integration strategy) and instructions (e.g. relating to which models/terms the step is
responsible for).

1

2

3

4

5

6

7

8

9

10

11

12

13

4

5

Fig. 5. The default ReMKiT1D spatial grids. Black cells are cells on the regular
grid, with their cell centres labelled by whole numbers 𝑖 and marked by black
stars, and their right cell face Jacobians given by 𝐽𝑖 . The dual/staggered grid
points are marked with red stars and the corresponding cells with dashed red
lines. Dot-dashed blue lines mark an example of an extended boundary dual
cell, in this case assuming that the left face of cell 𝑖 in the schematic is an outer
boundary face.

provided. The main object in this Python interface is the RKWrapper,
which is responsible for generating the configuration file and provides a
convenient interface for creating ReMKiT1D runs without directly ma-

nipulating JSON keys. To illustrate the config.json file format, a snippet
of the file produced for the advection vecrification example is provided
below. The snippet contains settings for HDF5 output as well as MPI
communication (more on how MPI communication is implemented in
ReMKiT1D will be presented in the next section).

"HDF5": {
"filepath": "./RMKOutput/RMK_advection_test

/",
"outputVars": ["n", "n_dual", "T", "T_dual",

"u", "u_dual", "time", "W"]
},

"MPI": {
"commData": {

"haloExchangeVars": ["n", "n_dual", "
u_dual", "u"],

"scalarBroadcastRoots": [],
"scalarVarsToBroadcast": [],
"varsToBroadcast": []

},
"numProcsH": 1,

1

1

6

"numProcsX": 4,
"xHaloWidth": 1
}

Data output in ReMKiT1D is performed using the HDF5 library,
with HDF5 datasets generated for each variable selected for output
(see above snippet for example). Each .h5 file produced this way corre-

sponds to one time step, and the Python interface provides routines for
reading these files into xarray datasets, allowing for easy data process-

ing, including limited plotting capabilities.

HDF5 files can also be used to initialize variable values, instead of
using the initial conditions in the config.json file. Furthermore, the code
can be instructed to have each processor dump a restart HDF5 file,
which can then be used to restart runs from defined checkpoints.

3.2.2. Simple advection workflow example

In order to illustrate the Python-level workflow involved with pro-

ducing a ReMKiT1D config.json file, a simulation setup solving the
following equations will be explored

𝜕𝑛

𝜕𝑡
= − 𝜕𝑢

𝜕𝑥
, (8)

𝑚𝑖
𝜕𝑢

𝜕𝑡
= − 𝜕(𝑛𝑘𝑇)

𝜕𝑥
, (9)

where 𝑚𝑖 is here taken to be the hydrogen mass, and the flux is some-

what unconventionally written as 𝑢. Before moving on to the details
of the workflow example, it is useful to note the default normalization
scheme used in ReMKiT1D. While the users are free to set their own
normalization constants for each term, the code comes with the fol-

lowing default normalization, used in most pre-built models, borrowing
heavily from SOL-KiT [27].

The three independent normalization quantities are the reference
density 𝑛0 (in m−3), temperature 𝑇0 (in eV), and ion charge 𝑍𝑟𝑒𝑓 . These
are usually set to 1019 m−3, 10 eV, and 1, respectively. From these all
derived normalization quantities are obtained:

• Velocity (both for the velocity grid and flow speeds) is normalized
to 𝑣𝑡ℎ = (2𝑒𝑇0∕𝑚𝑒)1∕2

• Time is normalized to the reference ion-electron collision time
𝑡0 = 𝑣3

𝑡ℎ
∕(Γ0

𝑒𝑖
𝑛0 lnΛ𝑒𝑖(𝑇0, 𝑛0)∕𝑍𝑟𝑒𝑓 , where Γ0

𝑒𝑖
= 𝑍2

𝑟𝑒𝑓
𝑒4∕(4𝜋𝑚2

𝑒𝜖
2
0)

and the Coulomb logarithm is taken from the NRL Plasma Formu-

lary [34]

• Length is normalized to 𝑥0 = 𝑣𝑡ℎ𝑡0
• The distribution function units are in 𝑛0∕𝑣3𝑡ℎ
• The electric field is normalized to 𝑚𝑒𝑣𝑡ℎ∕(𝑒𝑡0)
• Transition energies are normalized to 𝑇0

• Heat flux is normalized to 𝑚𝑒𝑛0𝑣

3
𝑡ℎ
∕2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

1

1

2

3

4

5

6

7

1

2

3

4

5

6

7

S. Mijin, D. Power, R. Holden et al.

• Cross-sections are normalized to 1∕(𝑥0𝑛0)

In normalized units, the above equations become

𝜕𝑛

𝜕𝑡
= − 𝜕𝑢

𝜕𝑥
, (10)

𝜕𝑢

𝜕𝑡
= −

𝑚𝑒

2𝑚𝑖

𝜕(𝑛𝑇)
𝜕𝑥

, (11)

which is what will be implemented in the example that follows. The
following code snippet initializes the wrapper and sets up IO and MPI
settings:

from RMK_support import RKWrapper, Grid, Node, treeDerivation

import RMK_support.simple_containers as sc

import RMK_support.IO_support as io

#initialize wrapper object

rk = RKWrapper()

#set IO paths

rk.jsonFilepath = "./config.json" # Default value

hdf5Filepath = "./RMKOutput/RMK_advection_test/"

rk.setHDF5Path(hdf5Filepath) # The input and output location of

any HDF5 files used/generated by the code

#set MPI properties

numProcsX = 4 # Number of processes in x direction

numProcsH = 1 # Number of processes in harmonic direction

haloWidth = 1 # Halo width in cells

numProcs = numProcsH * numProcsX

rk.setMPIData(numProcsX,numProcsH,haloWidth)

The run being generated will be run on 4 MPI processes, all of which are
in the spatial direction, as there are no distribution variable to be par-

allelized in the harmonic direction. The halo width used is the default
one, as no operator requires a halo wider than one cell.

The grid is initialized using the following code

xGridWidths = 0.025*np.ones(512) # widths of each spatial cell

#no velocity grid necessary - default values for the grids

vGrid = np.ones(1)

lMax = 0

gridObj = Grid(xGridWidths, vGrid, lMax, interpretXGridAsWidths=

True)

rk.grid = gridObj

which initializes a grid of length 𝐿 = 12.8𝑥0.

Basic variables are added in the following way

n = 1 + np.exp(-(gridObj.xGrid-np.mean(gridObj.xGrid))**2) # A

Gaussian perturbation

T = np.ones(len(gridObj.xGrid)) # Constant temperature

These will add both the variable ’v’ and ’v_dual’

rk.addVarAndDual(’n’,n,isCommunicated=True)

rk.addVar(’T’,T,isDerived=True) # isDerived removes the variable

from the implicit vector

rk.addVarAndDual(’u’,isCommunicated=True,primaryOnDualGrid=True)

primaryOnDualGrid denotes that the main variable is u_dual

, and u is interpolated

rk.addVar(’time’,isDerived=True,isScalar=True)

After the above code, the wrapper will have the following variables
registered:

• ‘n’ - lives on the regular grid and is an implicit fluid variable (the
default) - initialized as 𝑛 = 1 + exp(−(𝑥 −𝐿∕2)2)

• ‘n_dual’ - lives on the dual/staggered grid and is derived by linearly
interpolating ‘n’ from cell centres onto cell edges

• ‘T’ - a derived fluid variable with no derivation rule associated with
it, effectively making it constant - initialized to 1

• ‘u_dual’ - represents the flux, lives on the dual/staggered grid, and
7

is an implicit fluid variable - initialized to 0
Computer Physics Communications 300 (2024) 109195

• ‘u’ - lives on the regular grid and is derived by interpolating ‘u_dual’
from cell boundaries onto cell centres

• ‘time’ - an explicit scalar variable that the code will recognise as
the time variable and use it in that way

To demonstrate how derivations are added, the following snippet
creates a calculation tree from a Python equation (see Section 4.2.2 for
more details) for the normalized total energy 𝑊 and adds the corre-

sponding derivation to the wrapper

#add individual variables as nodes

nNode = Node(’n’)

uNode = Node(’u’)

TNode = Node(’T’)

massRatio = 1/1836 # approximate electron-proton mass ratio

#tree representation of normalized total energy calculation

wNode = 1.5*nNode*TNode + uNode**2/(nNode*massRatio) # assuming

normalization to n_0*e*T_0

Registering the derivation in the wrapper with the name "wDeriv

"

rk.addCustomDerivation("wDeriv",treeDerivation(wNode))

Then one can add the variable to be calculated with this derivation with

rk.addVar("W",isDerived=True,derivationRule=sc.derivationRule("

wDeriv",[’n’,’u’,’T’]))

where the new variable ‘W’ is associated with the derivation rule
“wDeriv” and requires the three variables that act as leaf nodes in the
calculation tree. In general, the list of required variables depends on the
type of derivation as well as the use case.

At this point we can start adding the models and terms, beginning
with the continuity equation and the corresponding flux divergence
term

declare a new Model object

newModel = sc.CustomModel(modelTag="nAdvection")

#create a new general matrix term

divFluxTerm = sc.GeneralMatrixTerm(evolvedVar=’n’,implicitVar=’

u_dual’,customNormConst=-1.0,stencilData=sc.

staggeredDivStencil())

newModel.addTerm("divFlux",divFluxTerm) # add a new term with tag

"divFlux"

rk.addModel(newModel.dict())

where the implicit variable is ‘u_dual’ since it is the implicit flux vari-

able, and the stencil is staggered as ‘n’ and ‘u_dual’ live on different
grids (for detailed definitions of spatial 1D stencils see Section 4.3).
Similarly, the pressure gradient term is added as

newModel = sc.CustomModel(modelTag=’pGrad’)

#Required variable data for pressure

vData = sc.VarData(reqColVars=[’T’])

gradTerm = sc.GeneralMatrixTerm(evolvedVar=’u_dual’,implicitVar=’

n’,customNormConst=-massRatio/2,stencilData=sc.

staggeredGradStencil(),varData=vData)

newModel.addTerm("gradTerm",gradTerm)

rk.addModel(newModel.dict())

where now the 𝐶 array in equation (7) is set to the ‘T’ variable on line
3, making the staggered gradient stencil act on both ‘n’ and ‘T’, with the
temperature value being lagged in time by the non-linear solver (has no
effect in this example since it is a constant). Note that neither of the
terms added has a boundary condition term. Since the grid is staggered,
the main boundary conditions are on the divergence of the flux, and
with no boundary condition term specified, these default to reflective
boundary conditions (0 flux on boundaries). The only remaining setup
concerns the time integration, starting with the definition of the implicit

integrator and its addition to the composite integrator object

1

2

3

4

1

2

3

4

5

1

2

3

4

5

6

7

1

2

1

S. Mijin, D. Power, R. Holden et al.

the implicit BDE integrator that checks convergence based on

the variables ’n’ and ’u_dual’

integrator = sc.picardBDEIntegrator(nonlinTol=1e-12,absTol=10.0,

convergenceVars=[’n’,’u_dual’])

rk.addIntegrator("BE",integrator)

where the absolute solver tolerance is in units of machine precision,3

and the global integrator properties

fixed timestep in this example

initialTimestep=0.1 # in normalized time units

rk.setIntegratorGlobalData(1, # number of allowed implicit term

groups - grouping everything into one group per model

1, # number of allowed general term

groups

initialTimestep)

where no time step control is specified (see Appendix B for example
of time step length control), making the time step constant - Δ𝑡 = 0.1.
All models are also set to allow only a single term group, as there are
no diagnostic variables that would require evaluating individual terms
or term groups, and there is no operator splitting in the integration of
individual models. In this simple example, a single integration step in
the composite integrator is used, set in the following way

a single integration step evolving all models

bdeStep = sc.IntegrationStep("BE")

for tag in rk.modelTags():

bdeStep.addModel(tag)

rk.addIntegrationStep("StepBDE",bdeStep.dict())

Finally the number of time steps is set,4 as well as how often the code
should output variable data

rk.setFixedNumTimesteps(10000)

rk.setFixedStepOutput(200)

The configuration file is then written by simply calling

rk.writeConfigFile()

The configuration file is then ready for use. Once the output files are
generated they can be loaded into an xarray Dataset object using a pro-

vided Python routine. The output of this advection test will be analysed

in Section 5, and the Jupyter notebook with the test and analysis is
available in the ReMKiT1D-Python repository.

4. Software design and implementation

In this section we go deeper into the software design aspects behind
ReMKiT1D, as well as into the concrete implementation details behind
features such as calculation trees, MPI communication, as well as some
specific stencils.

We begin with a descriptive presentation of the high-level concepts
behind the design of ReMKiT1D. Some of these concepts overlap with
the four surface-level concepts introduced in the previous section. To
make it clear that we are now talking about classes and objects in an
object-oriented design, both classes and objects are written in Pascal-

CaseBold.

Where appropriate, Section 3.2 and the example workflow there will
be referenced to provide additional concrete examples of concepts dis-

cussed in this section.

3 More precisely, in the units of the Fortran intrinsic function epsilon() ap-

plied to the default ReMKiT1D real variable kind.
4 It is possible to set different time-stepping modes and output modes such as
8

running until a certain elapsed normalized time is reached.
Computer Physics Communications 300 (2024) 109195

4.1. The modeller-model-manipulator pattern

ReMKiT1D’s high-level algorithm is built on the extension of the
puppeteer pattern as presented by Rouson et al. [35]. In the original
puppeteer pattern, it is the puppeteer’s responsibility to manage the
interaction between models on a global level. In our pattern, this re-

sponsibility is, in principle, extended to a third object, to which the
additional responsibility of performing non-trivial transformations of
various variables is also delegated. This third object follows the strat-

egy pattern [35], enabling further flexibility through what is effectively
dependency injection. Fig. 6 shows a simplified UML diagram of this
pattern, as implemented in ReMKiT1D.

The fundamental object in the pattern is a central Modeller object,
containing the variables that should be accessible to multiple compo-

nents, as well as any supporting library wrapper routines (such as MPI
or PETSc).

The relationships between the Modeller and the Models and Ma-

nipulators will be discussed in more detail in the next two subsections,
but the following short summary should illustrate the responsibilities of
the different pattern members:

• The Modeller provides an interface for central execution of calls
such as integration (in time) and communication. The variables
live in the Modeller and it provides access to them both to its
own components as well as its users. This way, the Modeller can
be fitted into an external loop over time, as shown in Fig. 7. It
contains the Models and Manipulators, the interactions of which
it is responsible for coordinating.

• The Manipulator modifies the variables in the Modeller (or lo-

cal copies of those variables - see Fig. 7 and description in the text
below) based on calling various Modeller routines. This can be
anything from performing an integration step while obeying com-

munication rules to evaluating and storing individual terms into
diagnostic variables. The main concept behind the Manipulator

class is the enabling of high-level dependency injection.

• As presented in Section 3.1.2, Models can be thought of as
collections of Term objects as well as potentially some data
(ModelboundData) accessible by default only to those Terms. We
recap the general definition of Terms here for convenience: At a
high level, Terms represent additive terms in the various equations
of Section 2. For example, the divergence of the flux Γ⃗𝑋 in equa-

tion (2) is an additive term acting to evolve the variable 𝑋. In this
way, each term is associated with an evolved variable, and these
variables are the same ones that live in the Modeller. Note that
each individual Term only provides part of the contribution go-

ing towards the evolution of its associated variable, and it is only
the Manipulators (and in particular Integrators) that can use this
information to update variables in the Modeller.

Fig. 7 shows an example call sequence representing a single time
step utilizing the pattern presented here. The steps in it can be summa-

rized as:

1. The external object (the Timeloop in this case) sets some initial
values for the variables if needed

2. The Timeloop requests an integration step from the Modeller, and
this request is forwarded to the Integrator component of the Mod-

eller

3. Based on its configuration, the Integrator requests some actions or
data from the Models via the Modeller.

4. The Models perform any necessary action (this might be anything
from updating their ModelboundData to evaluating the Terms
contained in the Models)

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 6. A simplified UML diagram of the high-level structure of ReMKiT1D, showcasing the Modeller-Model-Manipulator pattern, with those three components in
bold edged boxes. A Modeller has one or more Models and is coupled with its Manipulator component so that the Manipulator can call Modeller functions and
modify the variables. A special case of the Manipulator is the Integrator, which uses the Modeller-Model interface to evolve variables in time.

Fig. 7. A simplified UML sequence showing an example time step and the associated communication between the main components of the Modeller-Model-

Manipulator pattern. The external loop over time is represented here as a Timeloop object sending messages to the Modeller. Here the time step begins with setting
some initial values in the Modeller before requesting an integration step. The integration request is forwarded to the Integrators which request some actions from
the Models via the Modeller. For example, these might be evaluations of Term objects. The integration scheme might also require calling other Manipulators via
the Modeller and will likely require MPI communication call requests from the Modeller. Disclaimer: This UML sequence is not an exact representation of the
9

code, and is used primarily for illustrating the use of the high-level pattern. The names of calls/messages do not necessarily correspond to those in the code.

S. Mijin, D. Power, R. Holden et al.

5. Once control is returned to the Integrator it might request actions
from the Modeller such as MPI communication or Manipulator

calls.5

6. When Manipulator calls are requested, variables passed to it are
updated based on the nature of the Manipulator. This can involve
further calls to Modeller routines from within the Manipulator

7. Given that Integrators are special cases of Manipulators, at the
end of the integration call the variable values in the Modeller are
updated and can be requested by the user of the Modeller. In this
case it would be the Timeloop

The above steps are not necessarily representative of the actual con-

trol flow in ReMKiT1D, and do not include the setup of the Modeller

or other components. Instead, they are meant to illustrate how the
Modeller-Model-Manipulator pattern can be used. The following subsec-

tions will now go further into detail of the components of this pattern,
with the exception of Models and Terms, which have been introduced
in sufficient detail in the previous section.

4.1.1. Manipulators and integrators

The fundamental idea behind Manipulators is formalizing high-

level dependency injection through enabling callbacks to the Mod-

eller.6 Manipulators then allow for the direct manipulation of variable
data in the Modeller (or local copies of that data in other objects). This
is then the only way variables are allowed to change from within the

Modeller. They can, however, still be set from outside, which is used
in initialization.

Manipulators are stored in a CompositeManipulator object, which
the Modeller calls directly, and each Manipulator is also associated
with a priority (0 being the highest). This way, one can control when
certain Manipulators are called. For example, one might want to call a
Manipulator as often as possible as it modifies a variable that is used in
some internal iteration of an integrator. On the other end of the spec-

trum, one might want to just call the Manipulator before outputting
data, if the Manipulator’s task is extracting diagnostic variables such
as term evaluation.

Several important data access Manipulators are implemented at the
moment. They include term evaluation Manipulators, that store the
evaluation value of a Term in one variable, useful for analysis, as well
as debugging. Similarly, an extraction Manipulator is available for ac-

cessing ModelboundData values that can fit into regular variables.

Finally, the most important Manipulators are the Integrators,
which have their own specialized container in the CompositeIntegra-

tor. The essentials of Integrators were covered in Section 3.1.3, where
the concepts of integrators and integration steps are introduced. In the
following few paragraphs some of these concepts will be discussed in
slightly more detail. The CompositeIntegrator controls any single in-

tegration call in two ways:

1. By applying any global time step control

2. By calling individual Integrator components in accordance with
precisely defined integration steps

The application of the global time step control is done by re-scaling the
initial time step in accordance with some rule (see Appendix B for an
example).

Integration steps are defined by the following:

• The associated Integrator object

5 The Manipulator calls from within Integrator objects usually modify a
copy of the variables from the Modeller local to the Integrator.

6 As mentioned above, one can also think of this as an implementation of the
10

well-known strategy pattern.
Computer Physics Communications 300 (2024) 109195

• The fraction of the global time step (the total time step requested
in the integration call) associated with the step

• Evolution and update rules (e.g. which Models and Term groups
should be evaluated or how often to update non-linear terms)

We note here that in ReMKiT1D Terms within Models can be fur-

ther grouped into subgroups, which is what “Term groups” refers to
in the above text. In combination with the grouping of Terms, in-

tegration steps give the user full control over any potential operator
splitting through simply defining each step in sequence, and associat-

ing the Models (and optionally even individual Term groups) to be
used in the evolution. Furthermore, the control over update frequency
of both individual non-linear Terms as well as ModelboundData opens
up performance optimization opportunities at the expense of accuracy,
all accessible at the highest level of the interface. However, sensible
defaults are supplied so users interested only in the high-level use of
the framework do not get bogged down in details. For example, in the
Python workflow presented above no Term sub-grouping is done, and
the default behaviour of updating non-linear terms as often as necessary
is adopted, simplifying the setup of the integration.

4.2. Variable containers, derivations, and communication

Variables are stored in VariableContainer objects, with the main
one living within the Modeller. The actual data structure used to store
variables is an array of arrays, with multidimensional variables (distri-

butions) flattened. A VariableContainer is equipped with routines to
generate local (in the MPI sense) flattened vectors of all implicit vari-

ables for use in PETSc routines.

As noted in Section 3.1.1, ReMKiT1D supports the definition of
function wrappers, referred to as Derivations, which take in a list of
variables as arguments and produce new variable values.7 A derivation
rule is then a combination of a Derivation and a list of required vari-

ables.

In general, Derivations wrap impure functions, allowing for
changes to the internal state of the Derivation object. However, most
derivations available in ReMKiT1D are written avoiding side-effects,
with some tree-based calculation derivations, covered below, written
explicitly with pure functions to enable compiler optimization.

While the list of available Derivation classes is too long to cover
here, it is worth noting that they can be combined both additively and
multiplicatively through corresponding composite Derivation objects.
More involved examples include derivations that take moments of dis-

tribution function variables, or specialized derivations for polynomial
functions of multiple variables (see Appendix A for an example of where
this is useful).

4.2.1. MPI communication and communication-safe derivations

ReMKiT1D utilizes MPI parallelism, with each rank responsible for
evolving/calculating its own local variable data in the following way.
The spatial domain is simply decomposed, with halo exchange coupling
the different spatial partitions. However, in order to obtain speedup
when multiple distribution harmonics are included, ReMKiT1D also al-

lows partitioning in the harmonic domain, though in a less efficient
manner due to some fundamental constraints. Thus, the domain decom-

position when evolving distribution variables is inherently 2D. Each col-

umn represents a spatial partition and each row represents a harmonic
partition. Hence, spatial(harmonic) information is exchanged between
columns(rows). This is shown in Fig. 8.

The following rules for local variable data are observed:

7 The implementation of the interface is a little different, with Derivations

taking in data and indices associated with the variables that are required in the

array of arrays data structure stored in the VariableContainer.

S. Mijin, D. Power, R. Holden et al.

Fig. 8. Schematic of a spatial-harmonic domain decomposition. Each cell rep-

resents one MPI process, and each column (shown in different colours) corre-

sponds to a single set of spatial coordinates. Within a column fluid variables
live in the first process, while harmonics are distributed across the column pro-

cesses. Three of the four types of communication in ReMKiT1D are shown: halo
exchange - exchanging spatial information along rows; fluid variable broadcasts
- broadcasting from each column’s root process to other processes in the column;
distribution variable broadcast - broadcasting data from all column processes to
all other processes in the same column.

• Fluid variables live in the first row of each column, where they
are evolved/calculated and broadcast to other processes in their
respective column. However, derived variables need only be com-

municated if necessary (as deemed by the user and set by the
problem), and are calculated on each process independently fol-

lowing the communication-safe algorithm as presented at the end
of this subsection.

• Distribution variables are spread across all processes, with their
harmonics partitioned within processor columns. Due to how some
operators might require the entirety of the distribution function at
a single spatial location, harmonics within a column are broadcast
to all processors in that column.

• Scalar variables are assigned a host processes, such that they are
broadcast from that process to all others. An example is extracting
the value of a variable in the last spatial cell and passing it to all
other processors, which is useful in practice when some boundary
condition needs to be known by the entire spatial domain.

Based on the above rules for variables, four types of variable com-

munication exist in ReMKiT1D, with three shown in Fig. 8. These are

• Halo exchange - where both fluid and distribution variables are
exchanged within their respective processor rows

• Fluid variable broadcast - where fluid variables are broadcast from
each processor column’s root to the other column processes

• Distribution variable broadcast - where distribution variable har-

monics are broadcast from the process that evolves them to all
other processes in the same column

• Scalar variable broadcast - broadcast from single host process to all
others (not shown in Fig. 8)

Other minor communication routines exist, primarily to check inte-

grator convergence criteria by performing a logical reduction operation
over all processes.

The two domain decomposition dimensions are not equivalent, as
might be expected from a standard 2D domain decomposition. In partic-

ular, harmonic decomposition is more communication-heavy. However,
due to the large number of practically dense matrix operators, such as
collision operators, speedup can be gained even with this increased cost
of communication, as will be shown in Section 5.

It is worth noting here that some Derivations might require knowl-

edge of data calculated or evolved by MPI processes other than the
local one. An example would be a central difference operator derivation,
which will require knowledge of spatial halo values before being able to
correctly calculate the difference. Thus, there is danger of out-of-order
11

communication and derivations. This is true in particular with scalar
Computer Physics Communications 300 (2024) 109195

variables, which are always associated with a primary host process, and
are broadcast to all others. If a Derivation on one process requires a
scalar variable living on another process, the broadcast MUST happen
before the derivation call in order for the correct value to be used. In
ReMKiT1D, this is ensured by associating a derivation depth with ev-

ery variable, and always using a communication-safe derivation call, as
follows:

• Implicit variables are given a derivation depth of -1; they are al-

ways safe to communicate and are the first to be communicated.

• Derived variables that only require implicit variables (or don’t have
any required variables) are given a depth of 0; they can be calcu-

lated once implicit variables have been communicated.

• All other derived variables are given depth equal to 𝑑 + 1, where
𝑑 is the highest depth among variables required by the derivation
rule of the derived variable in question. Thus, variables of depth 𝑑
are calculated only after variables of depth 𝑑 − 1 have been com-

municated.

The above algorithm ensures safe calls to all Derivation routines, un-

der the condition that there are no cyclical dependencies. This can be
represented by a directed acyclic graph, as shown in Fig. 9. It is the re-

sponsibility of the Modeller to centralize both the communication and
derivation calls through the application of this algorithm.

Finally, it is worth noting that a variable-like ModelboundData ob-

ject is available, which stores derived variables only. Those variables,
unlike in the VariableContainer can also represent single harmon-

ics (variables depending only on the 𝑥 and 𝑣 coordinates), making
them useful for some kinetic algorithms (see Appendix A). However,
the above communication-safe derivation call is not available, so care
should be taken that any derived variables in such a ModelboundData

object are added in the correct order. In practice this is rarely an issue,
since most derived variables in ModelboundData tend to be calculated
using variables in the VariableContainer, while only a minority re-

quire variables that only live in the ModelboundData.

4.2.2. Tree-based calculation derivations

As was presented in the example workflow in the previous section,
ReMKiT1D allows for the translation of some Python expressions into

Derivation objects directly. This is done by leveraging a tree repre-

sentation of the Python expression. The expression tree is composed of
nodes, where each node (represented in the Fortran code by the Calcu-

lationNode class) can have a particular set of properties:

• Whether the node is additive or multiplicative with respect to the
results of its children

• A single constant to add to/multiply the results of the children,
depending on whether the node is additive or multiplicative

• An associated variable name from the VariableContainer - only
relevant for leaf nodes, where it is treated as the result of the node’s
non-existent children

• A unary transformation, to be applied to the result of the node

By default, nodes are multiplicative, with a constant of unity, and no
unary transformation. Most basic functions, such as 𝑒𝑥𝑝 and 𝑙𝑜𝑔, are
implemented as unary transformations. Unary transformations can also
have associated parameters, allowing for added flexibility. An example
is raising variables to integer- or real-valued powers, which are trans-

formations where the power is a transformation parameter. Another
useful parameterized transform is the shift transform, which cyclically
shifts the flattened array representation of a variable/node evaluation
result some number of entries. This allows for representation of finite
difference/volume operators through appropriate combinations of shift

transforms. Transforms are also supplied that can be used for the con-

traction of distribution variables into variables that are only defined on

the spatial grid, and vice-versa. In this way, preparation work has been

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 9. An example of how ReMKiT1D handles the calculation and communication of derived variables. Left: A graph representation of variable dependencies in
this example. Here a and b are implicit variables and can be safely communicated first. c is derived using only implicit variables a and b and is thus given depth 0;
d is not an implicit variable, but does not have a derivation rule associated with it (perhaps being evolved explicitly or filled in by a Manipulator call), and is also
given depth 0. e and f depend on depth 0 and 1 derived variables, and thus have depths 1 and 2, respectively. Right: The derivation-safe communication algorithm
- derivations are called on each depth only once the depth before it has been communicated, ensuring no out-of-order operations. Example: If c requires taking the
central difference derivative of a, the halo of variable a must first be communicated.
done for general non-matrix Terms to be implemented with a simple
Python level interface in the future.

The result of a node evaluation is given by

𝑅𝑖 = 𝑓𝑖(𝑐𝑖 +
∑
𝑗∈𝐶𝑖

𝑅𝑗), (12)

for an additive node and

𝑅𝑖 = 𝑓𝑖(𝑐𝑖
∏
𝑗∈𝐶𝑖

𝑅𝑗), (13)

for a multiplicative node, where 𝑓𝑖 is the unary transformation, 𝑐𝑖 is the
constant, and 𝐶𝑖 is the list of the children of node 𝑖. The expression tree
is represented in the Fortran code using a left-child right-sibling tree
structure, where each child node also has a reference to its parent. The
two above expressions then become

𝑅𝑖 = 𝑓𝑖(𝑐𝑖 ⋅𝑖 𝑅𝐿𝑖
⋅𝑃𝑖 𝑅𝑆𝑖

), (14)

with ⋅𝑖 now representing the binary operation (addition or multiplica-

tion) associated with node 𝑖, 𝐿𝑖 the left child of 𝑖, 𝑆𝑖 the right sibling
of 𝑖, and 𝑃𝑖 the parent node of 𝑖. Both representations of the tree struc-

ture, as well as the UML element for the CalculationNode class, and
an example Python expression generating an expression tree are given
in Fig. 10.

A few notes on the implementation details of this particular type
of Derivation are in order, as there are a number of Fortran pecu-

liarities that need to be addressed. Firstly, copying derived types with
pointer components is error prone, as the copy’s pointers will not point
to the same object as the original’s pointers, but to the pointers them-

selves. This can lead to surprises when objects go out of scope, causing
all copies of them to have their pointer components dangling. This
can be avoided using Fortran’s allocatable components. However, since
the unary transformations are procedure pointer components, it is im-

possible to completely avoid this issue of dangling pointers. The way
ReMKiT1D’s implementation gets around these behaviours is through
flattening the expression tree, and unpacking it only once evaluations
are required. One can argue that the procedure pointer issue can be
avoided by checking association at each evaluateNode call, and associ-

ating the pointer with the correct procedure if it became un-associated.
12

Unfortunately, this is technically a side-effect, and would disallow the
use of pure evaluateNode functions, which was one of the aims when
designing this particular expression tree representation.

4.3. Operators in 1D

In this section, a number of operators will be reviewed in order to
provide further implementation details, with the aim to provide con-

crete examples of stencils used in the codebase. However, this will not
be an exhaustive list, in particular when it comes to various collision
operator stencils and kinetic boundary conditions, the implementation
of which is adopted from SOL-KiT [27].

The simplest stencil is the diagonal stencil 𝑆𝑖𝑗 = 𝛿𝑖𝑗 . It does, how-

ever, allow for the specification of evolved spatial cells/harmonics/ve-

locity cells, effectively including only the relevant diagonal terms in
the matrix. The diagonal stencil also automatically determines whether
interpolation/extrapolation is necessary. This is important when stag-

gered grids are used and the evolved and implicit variable are not
defined on the same grid. In this case the diagonal stencil will auto-

matically linearly interpolate from the implicit variable’s grid onto the
evolved variable’s grid.

The second most important stencil group are the various spatial dif-

ference stencils, starting with the central difference stencils. Here both
the implicit and the evolved variable must be defined on the same
grid (regular or dual), and the implicit variable is interpolated onto
the corresponding cell boundaries. An example is the central difference
divergence stencil, where 𝑖 and 𝑗 here are spatial cell indices

𝑆𝑖𝑗𝑢𝑗 =
𝐽𝑖𝑢𝑖+1∕2 − 𝐽𝑖−1𝑢𝑖−1∕2

𝑉𝑖
, (15)

where 𝑢𝑖+1∕2 is the variable 𝑢 interpolated on the right boundary of cell
𝑖. For variables defined on the dual/staggered grid, the interpolation
is performed accordingly, and the above expression can be used with
𝑖 → 𝑖 + 1∕2. For a gradient operator, the Jacobians are ignored, and the
stencil becomes simply

𝑆𝑖𝑗𝑢𝑗 =
𝑢𝑖+1∕2 − 𝑢𝑖−1∕2

𝑑𝑥𝑖
. (16)

In the case of differences on a staggered grid, where the implicit and
evolved variable live on different grids, the expressions look the same,
but now 𝑢𝑖+1∕2 is not interpolated, since it is the actual value of the

implicit variable, considering it lives on the boundaries of cell 𝑖. In

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 10. Example of a calculation tree. a) General expression tree diagram we are looking to represent. Each node should add/multiply the results of its children and
potentially apply some unary transformation to that result. b) Left-child right-sibling representation of the calculation tree. Blue arrows connect the parents with
their leftmost child, red connect nodes with their sibling to the right, and black arrows point back to the parent. c) UML representation of the CalculationNode

class. See text for more details. d) Example of a Python expression that would generate the example tree for ReMKiT1D to use. Leaf nodes are pointed out using
solid line arrows and boxes, and the composite nodes with dashed line arrows/boxes. The root node and nodes N1,N4, and N5 are two additive nodes, a node with
an applied function, and a multiplicative node with a constant, respectively. Note that, in this case, all three variables participating in leaf nodes must conform, i.e.
be of the same size (e.g. all must be fluid variables or distribution variables, but not a mix).
practice, this amounts to forward/backward difference, depending on
whether the implicit variable lives on the dual/regular grid, respec-

tively.

Note that the above stencils do not include the contribution from the
domain boundaries, which can be dealt with a corresponding boundary
condition stencil for both divergence and gradient operators. For a di-

vergence boundary condition, the following form is assumed

𝑆𝑖𝑗𝑢𝑗 = ±𝛿𝑖𝑖𝑏
𝐽𝑖𝑏𝐹𝑏𝑢𝑏

𝑉𝑖𝑏
, (17)

where 𝑖𝑏 is the spatial index of the boundary cell (with 𝐽𝑖𝑏 denoting ei-

ther the left or right face Jacobian in this case), and the sign depends
on whether the boundary is the left(+) or right(-) domain boundary.
𝐹𝑏 is the flux Jacobian variable, and both it and 𝑢 are linearly extrap-

olated onto the boundary. This form assumes that the flux through the
boundary is given as 𝐹𝑏𝑢𝑏, with the flux Jacobian variable living on the
regular grid. The boundary condition operator written in this form al-

lows for the application of a lower bound to the flux Jacobian, which
is useful, for example, in setting the Bohm condition at the divertor tar-

get (see Appendix A). For a gradient operator both the flux and face
Jacobians are ignored, and the stencil becomes simply

𝑢𝑏
13

𝑆𝑖𝑗𝑢𝑗 = ±𝛿𝑖𝑖𝑏 𝑑𝑥𝑖𝑏
. (18)
Note that the above divergence boundary term is non-linear, due to both
𝐹 and 𝑢 being variables. More involved stencils might have derivation
rules associated with them, or might require access to model-bound
variables. An example is the spatial diffusion stencil, which requires
both the evolved and the implicit variable to live on the regular grid,
and takes in a derivation rule in order to calculate the diffusion coeffi-

cient 𝐷

𝑆𝑖𝑗𝑢𝑗 =
1
𝑉𝑖

(
𝐽𝑖𝐷𝑖+1∕2

𝑢𝑖+1 − 𝑢𝑖

𝑑𝑥𝑖+1∕2
− 𝐽𝑖−1𝐷𝑖−1∕2

𝑢𝑖 − 𝑢𝑖−1
𝑑𝑥𝑖−1∕2

)
. (19)

Kinetic/distribution variable stencils tend to be even more involved,
and will not be covered in detail in this manuscript. An example of this
complexity is the velocity space derivative operator, representing the
term

𝜕𝑓𝑙

𝜕𝑡
= 𝜕

𝜕𝑣
(𝐶(𝑣)𝑓𝑙′), (20)

where the function 𝐶(𝑣) can be specified in the code as either a fixed
velocity space vector, or a model-bound single harmonic variable. Sim-

ilarly, 𝑓𝑙′ can be interpolated onto the velocity space cell boundaries,
and the linear interpolation coefficients can be specified in a similar
way to 𝐶(𝑣), defaulting to interpolating directly onto the cell bound-

aries. An example where both custom interpolation and 𝐶(𝑣) are useful
is for the Chang-Cooper-Langdon scheme [36] for the Coulomb collision

operator (used in the model in Appendix A).

S. Mijin, D. Power, R. Holden et al.

Other kinetic stencils include

• A moment stencil - represents taking the 𝑛-th moment of a har-

monic 4𝜋 ∫ ∞
0 𝑓𝑙𝑣

𝑛+2𝑑𝑣.

• Velocity space diffusion - with the ability to specify single harmonic
model-bound data diffusion coefficients.

• Logical boundary condition - a stencil representing the logical
boundary condition, as derived for SOL-KiT [27].

• Spatial difference stencil - 𝜕∕𝜕𝑥 operator for harmonics, behaving
either as a central difference or a staggered (forward/backward)
difference stencil, depending on where the individual harmonics
are defined.

• Boltzmann collision operator stencil - based on the SOL-KiT Boltz-

mann collision integral implementation and using the collisional-

radiative model-bound data (see next section)

• Other niche stencils - such as a stencil taking the moment of a
kinetic term, or stencils designed for particular Coulomb collision
operator terms.

A particularly convenient stencil from a user’s perspective is the
custom 1D fluid stencil, which gives the high-level user effectively low-

level access with a very flexible interface. This stencil is defined as

𝑆𝑖𝑗 =
∑
𝑘

𝛿𝑖,𝑗+𝑠𝑘𝑋𝑘,𝑖𝑣𝑘,𝑖𝑤𝑘,𝑖, (21)

where 𝑠𝑘 defines the 𝑘-th relative stencil entry position. 𝑋𝑘,𝑖 is the 𝑖-th
entry of the fixed stencil component for the 𝑘-th relative stencil entry,
while 𝑣𝑘 and 𝑤𝑘 represent VariableContainer and ModelboundData

fluid variables that can be included as individual stencil columns. In this
way, combined with various Derivations, the user can represent most
fluid stencils. An example would be a three point stencil, where 𝑠 =
[−1 0 1], meaning that each spatial location requires information
from its left neighbour, itself, and its right neighbour. This three point
stencil can then be used, for example, to represent the diffusion stencil
in equation (19) by setting

𝑋1,𝑖 =
𝐽𝑖−1∕2

𝑉𝑖𝑑𝑥𝑖−1∕2
, 𝑋3,𝑖 =

𝐽𝑖+1∕2

𝑉𝑖𝑑𝑥𝑖+1∕2
, 𝑋2,𝑖 = −𝑋1,𝑖 −𝑋3,𝑖,

where the diffusion coefficient was assumed to be 1, for simplicity.8

One could then add complexity by accounting for boundary conditions,
for example by setting 𝑋1,𝑖 to 0 at the left boundary and 𝑋3,𝑖 to 0 at the
right boundary.

More details on the available stencils and their options can be found
in the code documentation.

4.4. Collisional-radiative model-bound data

While one could write a collisional-radiative model (in the ODE
sense from Section 2) purely using derived variables and diagonal sten-

cils, these models tend to contain many transitions and terms, so the
cognitive load on a user implementing them term-by-term would be
high. When one factors in the special treatment needed for Boltzmann
collisions, it becomes natural to group collisional-radiative data to allow
for efficient Term generation. The ModelboundCRMData class serves
this purpose, unifying Transition objects and inelastic collision map-

ping, and enabling a simple interface for Term generation.

It is also worth noting here that species data in ReMKiT1D can be
grouped into species objects, each being associated with a species name
and integer ID, and containing data on the species charge and mass.
Most importantly, it also allows for the association of certain variable
names to a species, which further facilitates the automatic generation of

8 Otherwise there would be a need to define three derived variables to use as
14

𝑣𝑘 or 𝑤𝑘 in equation (21), for which one could use calculation trees.
Computer Physics Communications 300 (2024) 109195

Terms. The abstract Transition class assumes that each species is asso-

ciated with an integer ID when defining the ingoing and outgoing states.
For example, the integer ID 0 is always associated with electrons, and
negative IDs are generally used for ion species, while positive IDs tend
to denote neutrals species. As such, one could represent the ionization
reaction

𝑒− +𝐻 → 𝑒− + 𝑒− +𝐻+,

as a Transition from ingoing to outgoing states/species9 [0 1] →
[0 0 − 1], assuming that the hydrogen atom is given the ID 1 and
𝐻+ the ID −1. Then, depending on the concrete Transition class, the
following quantities are accessible through the abstract interface:

• The reaction rate as a function of position

• The momentum loss rate as a function of position - usually avail-

able only for a small subset of electron induced transitions

• The energy loss rate as a function of position - generally associated
with the energy loss of electrons

• Cross-section - electron impact cross section associated with the
transition and used when constructing Boltzmann collision opera-

tors (can be a function of position in the general case, see below
for detailed balance transition)

• Transition energy - either a fixed value or a value for each spatial
cell based on the ratio of energy loss and reaction rates

Different Transition classes are available to the user, allowing for con-

trol over how the above quantities are calculated and used. The follow-

ing are available and widely used as of v1.0.x:

• SimpleTransition - the simplest possible transition with a fixed
transition energy and rate

• DerivedTransition - a transition with the reaction rate calculated
using a Derivation. Uses a fixed transition energy by default, but
can also associate Derivations with the momentum and energy loss
rates

• FixedECSTransition - a transition with a fixed transition energy
and cross-section (which can be specified for any number of elec-

tron distribution harmonics). The rates are calculated using the
cross-section, together with inelastic grid mappings (see below)

• DBTransition - a transition obtained using detailed balance (see
SOL-KiT paper [27]) with another transition which has a cross-

section associated with it. The resulting cross-section held by this

Transition object is thus also a function of position.

In order to use Boltzmann collision operators or any of the transi-

tions with associated cross-sections, inelastic transition grid data must
be generated, in the same way as in SOL-KiT, by specifying a set of
transition energies. Then transitions such as the FixedECSTransition

and stencils such as the Boltzmann collision operator stencil can cal-

culate rates and operators that obey particle and energy conservation.
Term generator objects can be created in ReMKiT1D that can scan the

ModelboundCRMData object. They then can generate all terms corre-

sponding to the particle and/or energy loss/gain rates due to collisions,
as well as any Boltzmann collision operators. For example, particle
sources can be generated using the reaction rate data of each transi-

tion, multiplying them with the ingoing state densities corresponding
to the transition10 and by the population change due to the transition.
In the above electron impact ionization example the population change

9 In the context of the CRM model-bound data these two terms are used in-

terchangeably. It is assumed that each tracked state is represented by a species
in the model.
10 Some transition rates that use cross-sections already include one electron

density factor, so these are automatically dropped by generators.

S. Mijin, D. Power, R. Holden et al.

Table 1

Script names associated with each reported benchmarking and scaling test.
All .py and those .ipynb files starting with ReMKiT1D are part of the
RMK_support Python package’s examples. All other .ipynb files are part of
the supplemental material for this manuscript.

Name and Section Scripts

Fluid advection test

5.1.1.

ReMKiT1D_advection_test.ipynb

MMS test

5.1.2.

ReMKiT1D_MMS.ipynb

Kinetic advection test

5.2.1.

ReMKiT1D_kin_adv_test.ipynb

Coulomb collision operators

5.2.2.

ReMKiT1D_ee_coll_test.ipynb

ReMKiT1D_ee_coll_test.ipynb

ReMKiT1D_cold_ion_test.ipynb

Epperlein-Short test

5.2.3.

ReMKiT1D_ES_test.ipynb

es_test.py

es_verif.ipynb

Collisional-Radiative tests

5.3.

ReMKiT1D_crm_example.ipynb

ReMKiT1D_kin_crm_test.ipynb

Epperlein-Short scaling tests

5.4.1.

es_test_weak_scaling.ipynb

es_test_strong_scaling.ipynb

SOL-KiT-like scaling tests

5.4.2.

sk_comp_thesis.py

sk_comp_thesis_kin.py

ReMKiT1D_SK_comp_staggered_kin_thesis.ipynb

ReMKiT1D_SK_comp_staggered_thesis.ipynb

sk_comp_thesis_strong_fluid.ipynb

sk_comp_thesis_strong_kinetic.ipynb

for electrons and ions is +1, while it is −1 for the atoms. In general,
these produce terms of the form(
𝜕𝑛𝑏

𝜕𝑡

)
𝑇

= 𝑃𝑇
𝑏
𝐾𝑇

∏
𝑏′∈𝐼𝑇

𝑛𝑏′ , (22)

where 𝑏 is the species index (and can be associated with any species
in either the ingoing or outgoing state lists), 𝐼𝑇 is the ingoing state list
for transition 𝑇 , 𝐾𝑇 is the reaction rate of the transition, and 𝑃𝑇

𝑏
is the

population change of species 𝑏 in transition 𝑇 . These sorts of generated
terms are diagonal stencil terms using model-bound rate data and are
implicit in the final ingoing state density (given as the first associated
variable for that species). Other term generators can be found in the
code documentation and examples.

5. Verification and benchmarking

In order to build confidence in the implementation of various opera-

tors both in the Fortran and the Python interfaces of ReMKiT1D a large
number of tests have been performed. Some of those will be presented
here, aiming to cover a wide range of use cases.

It should also be noted that the Fortran code for ReMKiT1D comes
with its own unit test suite, built using the testing framework pFU-

nit [37], with those test integrated into the GitHub repository, while
the Python package is tested using the pytest package. In general, the
lowest level operators in Fortran, such as individual Derivations and
stencils are subjected to unit tests within the Fortran codebase, while
higher level I/O routines are mostly covered by integration tests such
as the verification tests presented in this section.11 Furthermore, sev-

eral integration tests of common models are included in the unit test
suite of the Fortran codebase. For more details on these tests see the
corresponding repositories.

11 In the future, mocking of JSON configuration files could be used to produce
15

unit tests for the Fortran I/O routines for each feature.
Computer Physics Communications 300 (2024) 109195

Beyond benchmarking, a number of parallel performance/scaling
tests have been conducted, and those will also be covered in this sec-

tion.

Table 1 lists all of the tests performed in upcoming sections, as well
as the scripts associated with them, which are available either as parts
of the Python package’s examples or as supplemental materials for this
manuscript.

5.1. Verification of fluid operators

A number of fluid operators are implemented in the code, as noted
in Section 4.3. These are primarily divergence and gradient operators
used to represent terms such as advective and pressure gradient terms,
as shown in the Python example in the previous section.

5.1.1. Simple advection

Fig. 11 shows the result of running the advection test from Sec-

tion 3.2 for 1000 normalized times and comparing to the analytical
result. Agreement is generally good, with the relative error during the
simulation shown in Fig. 11b. The relative error is defined here as

𝛿𝑛 =max(|𝑛𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑛𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 |∕𝑛𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐),
where the maximum is taken along the spatial domain. Note that the
two oscillatory features in the relative error in the figure come from the
reflection of the wave at the boundaries.

Note that the above implementation of the advection operators does
not include any flux limiting or artificial viscosity. ReMKiT1D v1.0.x
does allow for the inclusion of artificial viscosity using the calculation
tree approach. Future implementations of non-matrix terms will address
more complex flux-limiter schemes used for shock capturing.

5.1.2. MMS test of isothermal 2-fluid model

In order to test a slightly more involved problem, the following equa-

tions were implemented:

𝜕𝑛𝑠

𝜕𝑡
+

𝜕Γ𝑠

𝜕𝑥
= 0, (23)

𝑚𝑠

𝜕Γ𝑠

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝑛𝑠𝑘𝑇𝑠 +𝑚𝑠Γ𝑠𝑢𝑠

)
−𝑍𝑠𝑒𝑛𝑠𝐸 = 0, (24)

𝜕𝐸

𝜕𝑡
= − 𝑗

𝜖0
, (25)

where 𝑠 is a species index, here either for electrons or deuterium ions,
and 𝑗 =

∑
𝑠 𝑍𝑠𝑒Γ𝑠 is the total current, making the electric field equa-

tion, when solved implicitly, act as a current constraint (see SOL-KiT
implementation). Γ𝑠 = 𝑛𝑠𝑢𝑠 is the particle flux, and 𝑍𝑠 is the species
charge. The species temperatures 𝑇𝑠 are left as constants. These equa-

tions can be suitably normalized to be

𝜕𝑛𝑠

𝜕𝑡
+

𝜕Γ𝑠

𝜕𝑥
= 0, (26)

𝜕Γ𝑠

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝑚𝑒

2𝑚𝑠

𝑛𝑠𝑇𝑠 + Γ𝑠𝑢𝑠

)
−

𝑚𝑒

𝑚𝑠

𝑍𝑠𝑛𝑠𝐸 = 0, (27)

𝜕𝐸

𝜕𝑡
= −𝑡20𝜔

2
𝑝𝑗, (28)

where 𝑡0 is the normalization/electron-ion collision time and 𝜔𝑝 is the
plasma oscillation frequency at the normalized density. The normalized
temperature 𝑇𝑠 is set to 0.5𝑇0. In order to test the above equations,
the following manufactured solution is used with reflective boundary
conditions:

𝑛𝑠 = 1 + 0.1𝑥−𝐿

𝐿
, (29)

𝑢𝑠 = −0.01𝑥𝑥−𝐿

𝐿2 , (30)

1 1 𝜕𝑛𝑒 1 𝜕 2
𝐸 = −
4 𝑛𝑒 𝜕𝑥

−
𝑛𝑒 𝜕𝑥

(𝑛𝑢), (31)

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 11. Advection test results compared with analytical solution.

Fig. 12. Convergence of MMS test on simple isothermal 2-fluid model with 𝑁𝑥 = 64 − 1024. The plotted quantity is the maximum relative error of the respective
variables compared to the manufactured solution after 𝑡 ≈ 3𝐿∕𝑐 .
𝑠

where the fact that the temperature is equal to 0.5𝑇0 is used explicitly
and the electric field is calculated from the electron momentum equa-

tion. 𝐿 is the length of the domain, and 𝑥 the spatial coordinate, either
on the regular or dual grid. Following the Method of Manufactured So-

lutions (MMS), the above solutions are inserted into the equations and
the resulting source terms are added in order to push the solution to-

wards the manufactured one. Note that the electric field equation is
unaffected, as the manufactured solution assumes 𝑗 = 0. Finally, the
densities 𝑛𝑠 are set to live on the regular grid, and the fluxes Γ𝑠 and
electric field 𝐸 are set to live on the dual/staggered grid. The simula-

tion was then run for several (≈ 3) sonic transition times 𝐿∕𝑐𝑠. 𝐿 here
is set to 10 m and the normalised sound speed is 𝑐𝑠 =

√
𝑚𝑒𝑇𝑒∕𝑚𝑖.

The errors are calculated as the maximum (within the domain) rela-

tive departure of the tracked quantities compared to the initial values at
the end of the simulation, and are shown in Fig. 12. When the manufac-

tured solution is computed directly, in particular the 𝜕(Γ𝑠𝑢𝑠)∕𝜕𝑥 terms,
the electric field converges poorly due to discrepancies at the system
boundaries, see Fig. 12a. This is because the default operators used in
this example assume that the boundary cells on the dual grid are ex-

tended, as shown in Section 3.1.4. Once this is taken into account and
those gradient terms are modified in the manufactured solution, much
16

better spatial convergence is obtained, see Fig. 12b.
5.2. Verification of kinetic operators

A number of kinetic operators are included in ReMKiT1D, with some
used to compose more complex operators, such as the Coulomb collision
operators (see Appendix A). A number of these operators will be sub-

jected to verification tests in this section.

5.2.1. Kinetic advection

As noted in Section 3.1.4, on staggered grids the even harmonics
live on the regular grid (cell centres) and the odd distribution harmon-

ics live on the dual/staggered grid, so it is possible to write a simple
advection test for the kinetic spatial advection operator that mimics the
fluid advection setup by writing the equations for 𝑓0 and 𝑓1 without
any fields or collisions

𝜕𝑓0
𝜕𝑡

+ 1
3
𝑣
𝜕𝑓1
𝜕𝑥

= 0, (32)

𝜕𝑓1
𝜕𝑡

+ 𝑣
𝜕𝑓0
𝜕𝑥

= 0, (33)

which gives a wave equation for 𝑓0 with wave speed 𝑣∕
√
3. By ini-

tializing 𝑓0 spatially as a Gaussian for all velocities 𝑣 one can then

test the numerical errors for each velocity grid. These are, as expected

S. Mijin, D. Power, R. Holden et al.

Fig. 13. Absolute error of 𝑓0 harmonic compared to analytical result due to
spatial advection.

from keeping the same time and space discretization, worse for larger
velocities, as shown in Fig. 13. Similar to the fluid advection test the
reflections from boundaries are seen as oscillations in the error. While
Fig. 13 shows a worryingly high error for high velocities, it should be
noted that the Gaussian initial condition is the same for all velocities, so
the distribution function is unphysically large at high velocities, where
it would be orders of magnitude smaller than in the bulk, so in practice
this error at high velocities contributes very little to the moments of the
distribution function.

For completeness, the grid parameters for this test are as follows.
The spatial grid has normalized length 𝐿 = 12.8𝑥0 with 128 cells, and
the simulation was run with time steps of Δ𝑡 = 0.01𝑡0, where we note
again that 𝑣𝑡ℎ = 𝑥0∕𝑡0. In this example 𝑣𝑚𝑎𝑥𝑑𝑡∕𝑑𝑥 = 1, resolving all of
the wave speeds in the system, albeit poorly for higher 𝑣 values, as
evident from Fig. 13. For more details the reader is directed to the
relevant example script.

5.2.2. Coulomb collision operators

Coulomb collision operators are an important part in accurately
modelling electron kinetic effects, and the implementation based on
ReMKiT1D velocity space operators will be tested in this section. For
more details on the functional form and numerical implementation, the
reader is directed to previous work in SOL-KiT, as well as Appendix A

and the relevant Python routines referenced in the scripts.

The first Coulomb collision operator to be tested is the isotropic
electron-electron operator, a non-linear operator acting on 𝑓0, con-

serving particles and energy and pushing the distribution towards a
Maxwellian. The conservative finite difference implementation of this
operator should conserve particles exactly and energy up to non-linear
tolerance. To test this, only the 𝑓0 harmonic is evolved, with the fol-

lowing bump-on-tail initial condition (in normalized quantities)

𝑓0(𝑡 = 0) = 𝑛

(𝑇𝜋)3∕2
𝑒−𝑣

2∕𝑇 + 0.1𝑛
(𝑇𝜋)3∕2

𝑒−(𝑣−𝑣𝑏𝑢𝑚𝑝)
2∕𝑇 ,

where 𝑛 = 1𝑛0, 𝑇 = 0.5𝑇0, and 𝑣𝑏𝑢𝑚𝑝 = 3𝑣𝑡ℎ, with standard normaliza-

tion. This leads to the relaxation of the bump towards a Maxwellian
with effective temperature 𝑇 ≈ 6.07𝑇0. This relaxation is plotted in
Fig. 14 on a log scale, with the x-axis being the energy grid (simply
𝑣2 with the standard normalization). The time step used is Δ𝑡 = 0.05𝑡0,
and the simulations were ran up to 𝑡 = 60𝑡0.

The velocity grid cell widths are given by Δ𝑣1 = 0.01535𝑣𝑡ℎ and
Δ𝑣𝑖 = 𝑐𝑣Δ𝑣𝑖−1, with a total of 120 cells. The test was performed with
two values of 𝑐𝑣, 1.025 and 1.03, which give total velocity grid lengths
of approximately 11.27𝑣𝑡ℎ and 17.25𝑣𝑡ℎ, respectively. As shown in
Fig. 14b, the shorter grid has a much worse energy conservation, given
by the relative error of the effective temperature. This is because the
temperature is considerably larger than the normalization temperature
𝑇0, leading to an under-resolved Maxwellian tail in the latter half of
the relaxation on the shorter grid. While this resolution effect is impor-

tant when there is a substantial evolution in the distribution tail during
the simulation, if the solution is already close to equilibrium the er-

ror is less pronounced. However, care should always be taken that high
17

energy electrons in kinetic runs are adequately resolved.
Computer Physics Communications 300 (2024) 109195

The second collision operator to test is the electron-ion collision op-

erator for 𝑓0, which leads to temperature equilibration with fluid ions.
To do this, both the collision operator and a term that takes its energy
moment are added to the equations, to which an ion energy equation is
now added, containing the moment term. For more information on the
electron-ion operator, see Appendix A or references [17,38]. To test the
relaxation in the collisional limit, electron temperature is initialized at
𝑇𝑒 = 8 eV and the ion temperature 𝑇𝑖 = 4 eV, with both densities set to
the normalization density 𝑛0 = 1019 m−3. In this case, the equilibrium
temperature is 𝑇𝐴 = 6 eV, and we expect both species to relax to that
temperature. Following Shkarofsky [38], we define

𝜉 =
𝑛𝑖
(
𝑇𝑒 − 𝑇𝑖

)
𝑛𝑒𝑇𝑒 + 𝑛𝑖𝑇𝑖

, (34)

𝑡′𝑒𝑖 =
8(𝑛𝑒 + 𝑛𝑖)

3
√
𝜋

Γ𝑒𝑖

𝑚𝑒

𝑚𝑖

(
𝑚𝑒

2𝑘𝑇𝐴

)3∕2
𝑡, (35)

where Γ𝑒𝑖 is the standard Coulomb collision constant. Taking the small
mass ratio assumption, the relaxation follows the simple differential
equation

𝜕𝜉

𝜕𝑡′
𝑒𝑖

= − 𝜉

(1 + 𝜉)3∕2
, (36)

to which an analytical solution is readily obtained. This solution is
compared to the numerical result obtained with ReMKiT1D in Fig. 15,
showing good agreement. The simulation was run on the short grid
from the previous electron-electron collision example and with time
steps Δ𝑡 = 0.1𝑡0. As can be seen from the absolute error of the solution
in Fig. 15b, the final electron temperature is not exactly the same as
the ion temperature, with the error well below 1%. This is likely due to
finite velocity grid effects.

To test the electron-ion operator for 𝑙 = 1, responsible for momen-

tum exchange, the following setup was used. The electron distribution
function was initialized as a Maxwellian at the standard normalization
density and temperature (𝑇0 = 10 eV, 𝑛0 = 1019 m−3), with the ions
initialized at the same density, and flowing at the speed 𝑢𝑖 = 10−4𝑣𝑡ℎ.
The only terms solved were the cold ion electron-ion collision operator
terms for 𝑙 = 1 (see Appendix A or SOL-KiT), as well as terms in the ion
momentum equations that represent the friction moments of the colli-

sion operator terms. In the slow ion limit, the distribution function has
the following solution for its 𝑙 = 1 harmonic

𝑓1 = −𝑢𝑖
𝜕𝑓0
𝜕𝑣

, (37)

which is readily computed for a Maxwellian 𝑓0 and is compared to the
numerical simulation in Fig. 16. The total momentum is conserved up
to solver tolerance, and the error in the equilibrium electron flow speed
(expecting it to equal 𝑢𝑖) is 0.36% on the same grid as the previous
electron-ion 𝑙 = 0 operator test.

Higher harmonic Coulomb collision operators are tested in the
Epperlein-Short test to follow.

5.2.3. Epperlein-short test
In order to fully test the electron-ion collision operators for higher

harmonics the well-known Epperlein-Short (ES) [15,39] test has been
conducted. This entails a small electron temperature perturbation decay
with electron-electron and electron-ion collisions enabled. Through the
decay of the perturbation, the ratio of electron heat conductivity to the
classical Braginskii [40] value can be inferred, either through a direct
comparison or through examining the decay rate. The initial conditions
are set to

𝑇 = 𝑇0 + 𝑇1 sin(2𝜋𝑥∕𝐿),

where the perturbation wavelength can be controlled by modifying
the domain length 𝐿. The used grid was periodic and contained

𝑁𝑥 = 128 spatial cells, 𝑁𝑣 = 120 velocity cells with widths given by

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 14. 𝑓0 relaxation test under electron-electron collisions.

Fig. 15. Temperature equilibration test under electron-ion collisions - due to finite grid effects.
Fig. 16. Comparison of numerical result of equilibrium 𝑓1 harmonics with
slowly drifting cold ions to analytical result.

Δ𝑣1 = 0.0307𝑣𝑡ℎ and Δ𝑣𝑖 = 1.025Δ𝑣𝑖−1. In this example, the normal-

ization temperature was set to 𝑇0 = 100 eV, while other normalization
quantities are set to the default values. Density is set to the normaliza-

tion value, 𝑇1 was set to 0.1 eV, and ion charge is left at 1. Following
the approach used to benchmark SOL-KiT [27], the ES test was per-
18

formed for 4 values of 𝑙𝑚𝑎𝑥, and the results are plotted against the
Fig. 17. Convergence of ES test with number of harmonics. The fit is based on
fit data from KIPP simulations published in [15] and previously used to test
SOL-KiT.

same fit based on KIPP [7,15] data in Fig. 17. Here 𝜆𝐵
𝑒𝑖

can be con-

verted to normalized length just as with SOL-KiT - 𝜆𝐵
𝑒𝑖
= 3

√
𝜋∕(4

√
2)𝑥0.

Generally good agreement is found with previous SOL-KiT benchmark-

ing, including the agreement with KIPP results, increasing confidence in
the default collision operator implementation in the ReMKiT1D frame-
work.

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 18. Fluid tests of Collisional-Radiative Model with hydrogen. Here 𝑛𝑖∕𝑔𝑖 is the population of state with principle quantum number 𝑖 weighted by the state
multiplicity (𝑔𝑖 ∝ 𝑖2 for hydrogen).
5.3. Collisional-radiative model tests

In order to test the CRM capabilities a number of tests have been
run for both fluid and kinetic electrons. The implementation of inelastic
Boltzmann collision operators is adapted from SOL-KiT, and the reader
is encouraged to refer to the original SOL-KiT paper for the explanation
of the particle and energy conserving discretization. For the tests shown
here, the atomic data is in-built Janev [41] hydrogen data,12 together
with NIST [42] spontaneous transmission rates.

Two fluid and one kinetic electron test have been performed. The
fluid tests were focused on detailed balance and the Saha-Boltzmann
equilibrium, as well as a qualitative comparison with existing kinetic
electron simulations performed by Colonna et al. [43]. All tests are done
in 0D (one spatial cell). The velocity space used to calculate Maxwellian
moments of the Janev cross-sections in the fluid case is composed of
𝑁𝑣 = 80 cells with grid widths going from Δ𝑣 = 10−2𝑣𝑡ℎ to 𝑣𝑡ℎ on a
logarithmic grid.

For all tests the following hydrogen reactions have been included:

• Electron impact excitation and de-excitation

• Electron impact ionization

• Three-body recombination

with the evolution test in Fig. 18b also including radiative de-excitation
and recombination.

For the two fluid tests the number of neutral states tracked was
set to 25, including the ground state, while the electron temperature
was set to 𝑇𝑒 = 1.72𝑇0 = 17.2 eV (which corresponds to approximately
20000 K). Default normalization was used in all tests. For the Saha-

Boltzmann test the total density was set to 𝑛 = 𝑛0 = 1019 m−3, with the
initial atomic state distribution set to a Saha-Boltzmann distribution at
half the electron temperature. The final atomic state distribution after a
large number of time steps is shown in Fig. 18a, showing equilibration
at the expected Saha-Boltzmann distribution with 𝑇 = 𝑇𝑒.

The second test was the qualitative replication of the 𝑡 = 10−8𝑠 curve
in Figure 8 of Colonna et al. For this purpose, the total density is ini-

tialized to 𝑛 = 733893.9𝑛0, loosely corresponding to 1 atmosphere of
pressure at 1000 K and with an initial ionization degree of 10−3. The
electron temperature and initial atomic state distribution are set to the
same as in the previous test. Finally, the electron distribution is clamped
to its initial value. The result, shown in Fig. 18b qualitatively agrees
well with the corresponding curve in Figure 8 in the original reference.

12 This data is hard-coded in the Fortran source code as an option, but the user
19

is free to define their own data as well.
Fig. 19. Conservation of heavy particles and total energy in kinetic electron
CRM simulation with 20 neutral states.

Finally, in order to test the conservation properties of the ReMKiT1D
implementation of the SOL-KiT Boltzmann collision integrals for inelas-

tic electron-neutral collisions, a long simulation was performed with 20
neutral states and with all non-radiative processes included. The veloc-

ity grid used had 𝑁𝑣 = 120 cells with widths given by Δ𝑣1 = 0.01𝑣𝑡ℎ
and Δ𝑣𝑖 = 1.025Δ𝑣𝑖−1. The electron temperature was normalized to
𝑇0 = 5 eV and its initial value was set to 𝑇0. The initial electron density
was set to 1019 m−3 and the initial neutral ground state density was set
to 1018 m−3, with no excited state populations. Only inelastic collision
integrals were included, allowing us to test the conservation properties
isolating only these quantities. In order to isolate discretization errors
from time integration errors, a low non-linear iteration relative toler-

ance of 10−14 was used. As shown in Fig. 19, both the energy and
density relative errors are on the order of the iteration tolerance, even
though the simulation was run for a macroscopically significant time
and even though the total number of collision operators solved was
above 400.

5.4. Parallel performance benchmarking

In order to test parallel performance scaling a number of tests have
been performed, mostly focusing on scaling in runs with kinetic elec-

trons, as those are both generally more expensive and conducive to

scaling, as well as allowing us to test the scaling behaviour of paral-

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 20. Strong and weak scaling for the ES test. The different colours/markers represent different numbers of processes in the harmonic direction.
lelization in the harmonic direction. All performance scaling tests have
been done on the ARCHER2 HPC machine.

5.4.1. Epperlein-short test - strong and weak scaling

A variant of the ES test used to verify collision operators has been
used to test both strong and weak scaling, as well as investigate basic
properties of harmonic parallelization available in ReMKiT1D.

For the strong scaling, the following parameters were used. The
maximum harmonic number was set to 𝑙𝑚𝑎𝑥 = 7, with 𝑁𝑥 = 128 spa-

tial cells with width Δ𝑥 = 0.1𝑥0, and the simulations were run for 𝑁𝑡

time steps with length Δ𝑡 = 0.05𝑡0. Other parameters were set to the
same in the verification test. Due to different behaviour of spatial and
harmonic parallelization, strong scaling was tested for 1,2, and 4 pro-

cesses in the harmonic direction. The results are shown in Fig. 20a,
where it can be seen that the runs with more harmonic direction pro-

cesses scale up to a higher number of cores. However, it should be noted
here that adding processors in the harmonic direction by default pro-

duces a more difficult matrix solve problem due to higher harmonics
having shorter timescales. This leads to sub-matrices belonging to pro-

cesses responsible for high harmonic numbers naturally being stiffer,
leading to the 4 harmonic direction processor run with 256 cores failing
due to the solver. While this could potentially be solved by introducing
more involved preconditioning, that is beyond the scope of the present
manuscript.

For the weak scaling test, the problem was modified in order to
avoid limitations due to the matrix solver. The total number of har-

monics remains 8, but the length of the domain has been increased to
𝐿 = 80𝑥0, the time step length reduced to 0.001𝑡0 and the number of
time steps increased to 𝑁𝑡 = 30000. This way the main cost in the code
was not the matrix solve, but the matrix construction. Scaling has been
tested up to 4 ARCHER2 nodes, totalling 512 cores. The number of spa-

tial cells was varied from 8 to 1024 in powers of 2, and the results are
shown in Fig. 20b for 1,2, and 4 processes in the harmonics direction.
What can be seen is that in this example, where the code spends more
resources on matrix construction instead of the solve, adding processors
in the harmonic direction always improves performance. The relative
speedup from adding harmonics is shown in Fig. 21, where it can be
seen it is close to the ideal speedup, particularly for higher numbers of
processes in the spatial direction.

5.4.2. SOL models - strong scaling

The final set of scaling tests is focused on testing more production-

relevant models of the Scrape-Off Layer. Details of the models are given
in Appendix A, and they will only briefly be summarized here. The mod-

els are loosely based on equations previously used in SOL-KiT, with the
major difference being the use of the AMJUEL [44] database for effec-

tive hydrogen ionization and recombination. The electrons are treated
either as a fluid or kinetically, and both options are tested here for
scaling. The domain is reflective at the left boundary and has a sheath
20

boundary condition at the right boundary, with a total domain length
Fig. 21. Relative speedup in the weak scaling set of runs from the ES test when
processors are added in the harmonic direction. The black dashed lines are ideal
speedups.

Fig. 22. Strong scaling with a fluid electron SOL model showing poor scaling
due to low number of degrees of freedom per processor.

of 𝐿 = 10 m, with the spatial grid being finer closer to the boundary.
An effective heat flux of 3 MW/m2 is injected over 𝐿ℎ = 3 m upstream,
while the ion temperature is assumed equal to the electron temperature.
Standard normalization is used. The initial condition is based on a Two-

Point Model solution [45], with the electron temperature upstream set
to 𝑇𝑢 = 20 eV and downstream to 𝑇𝑑 = 5 eV, and the upstream density
set to 𝑛𝑢 = 8 ⋅ 1018 m−3. Initial conditions assume no neutral particles,
which are injected through the recycling flux at the target. Neutrals are
diffusive, while the ion continuity and momentum equations are explic-

itly solved, including charge-exchange interactions with the neutrals.

The fluid runs are set up with 𝑁𝑥 = 512 spatial cells and run until
a time 𝑡 = 9000𝑡0, with time steps adaptively set to approximately 10%
of the shortest electron-ion collision time in the domain. Fig. 22 shows
the result of the scaling test up to 32 cores for this fluid problem. The
scaling falls off very quickly due to limitations in the solver, with the
simple explanation being that there are not enough degrees of freedom

per core for the matrix solver to scale properly.

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

Fig. 23. Strong scaling with a kinetic electron SOL model.
For the kinetic electron test, two sets of runs were performed, a small
scale set with 𝑁𝑥 = 256 and 𝑙𝑚𝑎𝑥 = 3 going from a single to 256 MPI
processes, and a larger scale set with 𝑁𝑥 = 512 and 𝑙𝑚𝑎𝑥 = 7 going from
32 to 1024 MPI processes. Both sets were run up to 𝑡 = 50𝑡0 with time
steps adaptively set to 5% of the shortest electron-ion collision time.
𝑁𝑣 = 80 velocity cells are used, with cell widths ranging from 0.05𝑣𝑡ℎ
to 0.4𝑣𝑡ℎ. The results of these scaling tests are shown in Fig. 23. Unlike
the Epperlein-Short test, adding processors in the harmonic direction for
both sets of runs improves the scaling. This is likely due to this example
having a more involved set of collision operators (due to the flowing
ions), which shifts the cost of one solver iteration towards matrix build-

ing and away from the actual PETSc solver call. While Fig. 23b seems
to suggest a better-than-ideal speedup at first glance, this is simply due
to the fact that that set of runs did not go down to serial due to the in-

creased computational cost with 8 harmonics and 512 spatial cells, and
the scaling seems to improve in the 64-512 core range compared to the
1-64 range.

The results presented above showcase the increased scalability of
kinetic models compared to fluid electron models, especially with
the novel harmonic dimension domain decomposition. In the example
above, moving from fluid to kinetic, the number of degrees of freedom
associated with implicit electron variables goes from 5 per spatial cell
to 320-640 per spatial cell (4-8 harmonics with 80 velocity space cells).

6. Discussion

In this section the present limitations of the framework as well as
potential use cases and future extensions will briefly be discussed. The
focus will both be on the software design and numerical aspects, as well
as on the achievable modelling with the current version of the software.

The main limitation in ReMKiT1D is its dimensionality, and the
1D aspect is baked into many parts of the framework. Another lim-

itation is the hard-coded assumption that the distribution function is
represented in a Legendre/Spherical Harmonic basis. However, basic
conceptualization work is planned to explore the applicability of the
Modeller-Model-Manipulator (3M) pattern in a way that is agnostic to
both numerical methods and problem dimension. This would allow for
solving the above two main limitations of the framework.

Even in 1D, the framework’s main strength is its flexibility, allow-

ing for rapid iteration on models in the SOL. Examples of planned or
ongoing applications include:

• Equilibrium and transient simulations of the SOL, akin to those
previously performed using SOL-KiT [18], but with flexible neutral
and plasma models, as well as with multiple ion species, focusing
on impurity transport and electron kinetic effects

• Exploration of different effective collisional operators that could
be used in conjunction with both external and internal Collisional-
21

Radiative Models to include impurity collisional effects on the
electron distribution function in runs with kinetic electrons - this
includes both simplified and high fidelity molecular deuterium ef-

fects

• The calibration of reduced models of SOL equilibria and transients
against higher fidelity models both within ReMKiT1D and in other
codes

• Training data production for machine-learning applications in the
SOL

In order to properly handle some of the above applications, extensions
to the framework might be required. Some of the extensions being
planned or considered as options are:

• Full support for explicit Term objects, as well as improved options
for explicit time-stepping

• Adaptive Boltzmann collision operator stencils that can handle re-

actions with varying energy costs, such as those arising from CRMs

• Full support of Python level custom stencils for kinetic operators,
allowing users to generate their own stencils in velocity space (the
architecture behind the custom fluid stencil can be adapted for this)

• Multi-linear interpolation support for atomic data for use in the
in-built CRM model-bound data

While flexibility and design scalability are the main priorities
in ReMKiT1D development, performance represents an increasingly
important aspect, particularly since multi-node scalability has been
demonstrated for kinetic electron simulations. In order to improve per-

formance, the coupling with PETSc should be explored in more detail,
particularly in terms of preconditioners, while PETSc’s GPU support
might also be an option for more demanding kinetic runs in the fu-

ture. Other improvements in performance could be bundled with the
generalization of the 3M pattern, with a future version of the code us-

ing more efficient data structures in terms of memory access.

Finally, the framework’s Python interface is under active develop-

ment with the aim to improve user-friendliness and introduce various
quality-of-life features.

7. Conclusion

We have presented the new ReMKiT1D framework for the construc-

tion of 1D models of the tokamak Scrape-Off Layer(SOL). ReMKiT1D
allows for the solution of a wide range of differential equations, partic-

ularly relevant to SOL modelling. In particular, ReMKiT1D enables the
construction of coupled multi-fluid plasma models with a kinetic treat-

ment of electrons, as well as a built-in capability to handle complex
collisional-radiative models. While the emphasis in this manuscript has
been on SOL modelling, there are no conceptual barriers to applying
the capabilities demonstrated here to wider problems that fit within the

classes of differential equations supported by ReMKiT1D. It should be

S. Mijin, D. Power, R. Holden et al.

noted, however, that there are likely many more optimization opportu-

nities that should be exploited should the ReMKiT1D design start being
used outside of the SOL modelling context. There are also potentially
missing features, albeit some of them might be planned additions, such
as shock-capturing methods.

One of the goals of the ReMKiT1D framework is a combination of
flexibility and user-friendliness. On the path to that goal, we have used a
combination of Object-Oriented Modern Fortran and high-level Python
interfaces. The former enables reusable and performant abstractions, as
well as coupling to established libraries such as PETSc, while the latter
enables efficient high-level control of the framework in a widely used
modern language. A human-readable JSON configuration file acts as
a glue between the Fortran and Python parts of the framework. The
Python library offers not only tools for the specification of runs, but
also for the processing of the output data, which is in HDF5 format.
A complete setup workflow using the Python library is presented after
the basic concepts are introduced. This example, as well as the many
scripts available on the Python repository, are meant to serve partly as
an introductory tutorial.

We lay out the design philosophy of ReMKiT1D, which is embod-

ied in the Modeller-Model-Manipulator (3M) pattern. The central part
of the 3M pattern is the Modeller object, responsible for the central-

ization of integration calls and for storing variable data. It contains
Models and Manipulators, to which it delegates the responsibilities of
the representation of terms in the equations being solved, and the mod-

ification of variable data based on those representations, respectively.
The strategy and composite patterns are widely used within the code-

base. Manipulators represent composable strategies for modifying data,
particularly in the context of time integration. Likewise, the concept of
derivations, which encapsulate generalized function wrappers, enables
flexible calculation of variables outside of the context of time integra-

tion. In particular, ReMKiT1D offers a way of transforming basic Python
mathematical expressions into objects that can be injected into Fortran
through the use of expression tree derivations.

In terms of numerical algorithms, ReMKiT1D currently offers im-

plicit time integration, which is essential in many stiff problems arising
in reactive plasma physics, as well as an explicit Runge-Kutta solver.
The flexible design of the integrators allows for natural implementations
of operator-splitting methods at the Python level, as well as multistep
integration algorithms. In order to support the implicit solver natively,
ReMKiT1D currently offers only matrix represenations of terms in the
differential equations. Work is ongoing on supporting general terms, en-

abled by the flexibility behind the derivation system within the frame-

work.

Various verification tests are presented, together with parallel per-

formance tests, which are focused on the novel parallelization in dis-

tribution function harmonics. It is shown that this approach works and
provides a significant improvement in the scalability of the framework
when handling kinetic models. In particular, we show strong scaling of
kinetic simulations up to 1024 cores (8 nodes) on ARCHER2, enabled
by the partitioning in the harmonic dimension. As for the verification
tests, both individual operator tests as well as standard integrated tests
such as the method of manufactured solutions or the Epperlein-Short
test have been performed, showing expected agreement of the imple-

mented models.

Finally, ongoing and potential uses as well as future extensions of
the framework are discussed in detail, focusing both on the software
engineering aspects as well as model development using the framework.

CRediT authorship contribution statement

Stefan Mijin: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Software, Super-

vision, Validation, Visualization, Writing – original draft, Writing –
review & editing. Dominic Power: Conceptualization, Methodology,
22

Software, Validation. Ryan Holden: Data curation, Methodology, Soft-
Computer Physics Communications 300 (2024) 109195

ware. William Hornsby: Software, Supervision, Validation, Writing –
review & editing. David Moulton: Conceptualization, Supervision. Ful-

vio Militello: Conceptualization, Funding acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Link to data shared in the manuscript and replication scripts avail-

able in repositories. Further data available on request.

Acknowledgements

We would like to thank the anonymous reviewers for helping
us make improvements in the structure and presentation of this
manuscript.

This work was granted access to the HPC resources of ARCHER2 by
the Plasma HEC Consortium [grant number EP/X035336/1]. This work
has been part-funded by the EPSRC Energy Programme [grant number
EP/W006839/1]. To obtain further information on the data and models
underlying this paper please contact PublicationsManager@ukaea.uk.

For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence (where permitted by UKRI, ‘Open
Government Licence’ or ‘Creative Commons Attribution No-derivatives
(CC BY-ND) licence’ may be stated instead) to any Author Accepted
Manuscript version arising.

Appendix A. The SOL-KiT-like SOL models

Some modifications have been performed on the previously reported
standard SOL-KiT model [27,18] for the purpose of testing the imple-

mentation in ReMKiT1D, with one major modification being the use of
AMJUEL [44] rates instead of the SOL-KiT-style embedded CRM in or-

der to reduce computational costs significantly. The equations for both
the fluid models and the kinetic electron model will be presented in
this appendix for completeness, while the reader is directed to previous
SOL-KiT publications for more details.

A.1. Fluid equations

A minor difference between the SOL-KiT equations in previous pub-

lications and the equations implemented in the ReMKiT1D SOL-KiT-like
models is that the fluid equations in ReMKiT1D’s implementation are in
conservative form, utilizing the capability to implicitly calculate vari-

ables with no explicit time derivative in their equations to extract the
temperatures and heat fluxes in a way that keeps implicit stability.

The electron fluid equations are given by:

𝜕𝑛𝑒

𝜕𝑡
+

𝜕Γ𝑒

𝜕𝑥
= 𝑆, (A.1)

𝑚𝑒

𝜕Γ𝑒

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝑛𝑒𝑘𝑇𝑒 +𝑚𝑒Γ𝑒𝑢𝑒

)
+ 𝑛𝑒𝑒𝐸 =𝑅𝑒𝑖, (A.2)

𝜕𝑊𝑒

𝜕𝑡
+ 𝜕

𝜕𝑥

[(
𝑊𝑒 + 𝑛𝑒𝑘𝑇𝑒

)
𝑢𝑒 + 𝑞𝑒

]
+ Γ𝑒𝑒𝐸 =𝑄𝑒, (A.3)

where Γ𝑒 = 𝑛𝑒𝑢𝑒 and 𝑊𝑒 = 3𝑛𝑒𝑘𝑇𝑒∕2 + 𝑛𝑒𝑚𝑒𝑢
2
𝑒∕2. In order to facilitate

future inclusions of multiple ion species the parallel transport coeffi-

cients for 𝑞𝑒 = 𝜅𝑒∇𝑘𝑇𝑒 and 𝑅𝑒𝑖 = −0.71𝑛𝑒∇𝑘𝑇𝑒 are calculated taking
the Braginskii limit [40] (𝑚𝑒∕𝑚𝑖 → 0 and 𝑍 = 1) using expressions from
Makarov et al. [46]. The particle source 𝑆 results solely from ioniza-

tion and recombination, and 𝑄𝑒 =𝑄ℎ +𝑄𝑒𝑛, where 𝑄ℎ is the upstream
heating term, and 𝑄𝑒𝑛 is the effective electron energy loss/source as-

sociated with ionization and recombination collisions. These are im-
plemented using AMJUEL [44] rates H.4-2.1.5 and H.4-2.1.8 for the

S. Mijin, D. Power, R. Holden et al.

particle sources, and H.10-2.1.5 and H.10-2.1.8, together with the po-

tential energy accounting for recombination (H.4-2.1.8. with 13.6 eV),
are used for 𝑄𝑒𝑛. A specialized polynomial derivation is implemented
in the framework to handle fits such as those in the AMJUEL database.

Note that 𝑇𝑒 and 𝑞𝑒 are actually treated as implicit variables using
ReMKiT1D’s capability to include temporally stationary variables in the
implicit vector. This ensures stability due to the implicit nature of the
scheme being kept, even if the plasma equations are solved in conser-

vative form.

Ion equations are given as

𝜕𝑛𝑖

𝜕𝑡
+

𝜕Γ𝑖

𝜕𝑥
= 𝑆, (A.4)

𝑚𝑖

𝜕Γ𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝑛𝑖𝑘𝑇𝑒 +𝑚𝑒Γ𝑒𝑢𝑒

)
− 𝑛𝑖𝑒𝐸 = −𝑅𝑒𝑖 +𝑅𝐶𝑋, (A.5)

where the assumption 𝑇𝑖 = 𝑇𝑒 is taken as in the standard SOL-KiT model,
and 𝑅𝐶𝑋 = −Γ𝑖𝑛𝑛𝐾𝐶𝑋 is the charge-exchange friction, with 𝐾𝐶𝑋 using
AMJUEL rate H.2-3.1.8, scaling the temperature dependence by 1∕2 to
account for tracking deuterium instead of hydrogen.

The neutrals are diffusive with their density evolved according to

𝜕𝑛𝑛

𝜕𝑡
= 𝜕

𝜕𝑥

(
𝐷𝑛

𝜕𝑛𝑛

𝜕𝑥

)
− 𝑆, (A.6)

where the diffusion coefficient is set to 𝐷𝑛 = 𝑘
√
𝑇𝑛𝑇𝑒∕(𝑚𝑖𝐾𝐶𝑋𝑛𝑖), with

the neutrals assumed to have 𝑇𝑛 = 3 eV, corresponding to the Franck-

Condon dissociation energy. The
√
𝑇𝑒 factor comes from the ion thermal

velocity, leading to the neutrals effectively having a diffusive temper-

ature corresponding to a geometric mean between the Franck-Condon
and ion temperatures.

Boundary conditions are set to reflective upstream, and sheath
boundary conditions at the target, with 𝑢𝑒 = 𝑢𝑖 = 𝑐𝑠 =

√
2𝑘𝑇𝑒∕𝑚𝑖 set by

the Bohm condition and 𝑞𝑒 = 𝛾𝑒Γ𝑒𝑘𝑇𝑒, where the electron sheath heat
transmission coefficient is approximately 4.86. Ions and electrons leav-

ing the plasma are recombined on the surface and returned with 100%
recycling. Finally, the electric field is solved for by implicitly solving

𝜕𝐸

𝜕𝑡
= − 𝑗

𝜖0
, (A.7)

where 𝑗 = 𝑒(Γ𝑖 − Γ𝑒), which, together with the two momentum equa-

tions acts like a current constraint and ensures quasi-neutrality.

A.2. Electron kinetic equations

When electrons are treated kinetically the electron kinetic equations
are solved for the evolution of a set number of distribution function har-

monics instead of the three electron moment equations in the previous
section. The equations have been discussed in detail in the context of
SOL-KiT [27,18], and will not be repeated here for the sake of brevity.
A brief description of the terms that remain unchanged from the SOL-

KiT implementation will be given, with the effective cooling operators
for use with AMJUEL rates introduced in more detail.

The terms implemented from SOL-KiT are:

• Spatial and velocity space advection (Vlasov) terms

• Coulomb collision terms for electron-electron collisions for all har-

monics13

• Coulomb collision terms for electron-ion collisions for cold flowing
ions for harmonics with 𝑙 > 0

• The logical boundary condition [27,2] at the sheath using the pre-

viously developed harmonic formulation

• Diffusive heating terms upstream

• Secondary electron source/sink at low electron energy due to ion-

ization/recombination

13 Here the ability to define single harmonic variables in model-bound data
23

comes in handy to implement Chang-Cooper-Langdon terms [36].
Computer Physics Communications 300 (2024) 109195

• Terms coupling the kinetic operators with the ion fluid equation
through taking moments (e.g. 𝑅𝑒𝑖)

The only missing effect is the electron energy loss/gain terms due
to ionization/recombination. These would normally be included as part
of the Boltzmann collision operator for electron-neutral collisions, but
the implementation used here has instead used effective rates from
AMJUEL, so an effective cooling/heating operator needs to be imple-

mented. The simplest implementation is a drag-like operator on 𝑓0,
which, given an inelastic electron-neutral process with energy cost 𝜖
and rate 𝐾 , can be written as

(
𝜕𝑓0
𝜕𝑡

)
inel

= −
𝐾𝜖𝑛𝑛

𝑚𝑒𝑣
2

𝜕

𝜕𝑣

(
𝑣𝑓0

)
, (A.8)

which can be shown to reproduce the energy loss rate using partial
integration on taking the second moment. However, a simple imple-

mentation will not preserve this analytical property, so the following
velocity space discretization (in standard normalization) is used

(
𝜕𝑓0
𝜕𝑡

)
inel

= −
𝐾𝜖𝑛𝑛

𝑣2
𝑘

𝐶𝑘𝑓0,𝑘 −𝐶𝑘−1𝑓0,𝑘−1

Δ𝑣𝑘
, (A.9)

where now 𝐶𝑘 = 𝑣2
𝑘
Δ𝑣𝑘∕(𝑣2𝑘+1 − 𝑣2

𝑘
) with boundary conditions 𝐶0 = 0

and 𝐶𝑁𝑣
= Δ𝑣𝑁𝑣

. It is easy to show that this form gives the correct
energy source. However, the number of particles is not necessarily con-

served to machine precision due to the right boundary condition on
𝐶𝑁𝑣

, which can be ensured by setting 𝐶𝑁𝑣
= 0, instead moving the er-

ror to the energy source. In the tests presented here this was not done
since the spurious density source is proportional to the value of the dis-

tribution function in the last cell, which is essentially 0. Either way, if
the distribution function tail is well resolved this error will never play
a role.

Appendix B. Implicit BDE integrator with fixed-point iterations

While the general approach for the Backward Difference Euler (BDE)
integrator in ReMKiT1D borrows heavily from SOL-KiT [27], in the in-

terest of clarity, it is useful to have a summary of the method here, as
well as how time step length is controlled and how the variable data is
stored in the implicit vector passed to PETSc matrix solvers.

Firstly, the variable placement in the implicit variable vector is done
in the following way. Given a list of implicit variables 𝑣𝑛, which are
either fluid (depend only on the spatial index) or distribution (depend
on spatial, harmonic, and velocity space indices) variables, they are
flattened and ordered in the implicit vector 𝐹 as follows

𝐹 =

⎡⎢⎢⎢⎢⎣

𝐹1
𝐹2
⋮

𝐹𝑁𝑥

⎤⎥⎥⎥⎥⎦
, (B.1)

where 𝐹𝑖 is the sub-vector corresponding to spatial index 𝑖 and is given
by, for example,

𝐹𝑖 =
⎡⎢⎢⎢⎣

𝑣1,𝑖
𝑣2,𝑖(ℎ,𝑣)

⋮
𝑣𝑁,𝑖

⎤⎥⎥⎥⎦
, (B.2)

𝑁 is the total number of implicit variables, and where 𝑣2,𝑖 is a distribu-

tion variable vector at spatial index 𝑖, which is further flattened first in

the harmonic index ℎ and the velocity space index 𝑣

S. Mijin, D. Power, R. Holden et al.

𝑣2,𝑖(ℎ,𝑣) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑣2,𝑖,1,1
𝑣2,𝑖,1,2
⋮

𝑣2,𝑖,1,𝑁𝑣

𝑣2,𝑖,2,1
⋮

𝑣2,𝑖,𝑁ℎ,𝑁𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B.3)

where 𝑁ℎ and 𝑁𝑣 are the total number of distribution function har-

monics and the number of velocity space cells.

Collating all individual term matrices one arrives at the global ma-

trix equation

𝑑𝐹

𝑑𝑡
=𝑀(𝐹) ⋅ 𝐹 , (B.4)

where now 𝑀(𝐹) is in general a non-linear global PETSc matrix. The
implicit BDE method with fixed-point iterations then discretizes the so-

lution in time as

𝐹 𝑖+1 − 𝐹 𝑖+1

Δ𝑡𝑖
=𝑀(𝐹 𝑖∗) ⋅ 𝐹 𝑖+1, (B.5)

where now 𝑖∗ represents the value at the previous non-linear iteration
of the solver. The integrator converges based on a set of convergence
variables and a relative or absolute non-linear iteration error.14 Finally,
the global (at the CompositeIntegrator level) time step length Δ𝑡𝑖 can
be controlled through the application of a TimestepController, which
scales the time step based on some spatially global criterion. An exam-

ple is scaling an initial time step based on collisionality by multiplying
it by the smallest value of (normalized) 𝑇 3∕2∕𝑛, making sure that the
shortest collisional times in the domain are always resolved. This is used
in the SOL-KiT-like models in Appendix A.

Finally, the BDE integrator in ReMKiT1D is capable of recovering
from failed matrix solves and cases where non-linear iterations fail by
subdividing its time-step into smaller steps when a failure is detected.
While crude, this method enables convergence when transient effects
might momentarily make the matrix stiffer than expected. This integra-

tor recovery is in addition to any time-step control defined at the global
level.

References

[1] D. Tskhakaya, On recent massively parallelized PIC simulations of the SOL, Contrib.
Plasma Phys. 52 (2012) 490–499.

[2] R.J. Procassini, D.A. Knoll, Kinetically motivated boundary conditions for fluid mod-

els of scrape-off layer transport, J. Nucl. Mater. 196–198 (1992) 363–368.

[3] B.D. Dudson, J. Allen, T. Body, B. Chapman, C. Lau, L. Townley, D. Moulton, J.
Harrison, B. Lipschultz, The role of particle, energy and momentum losses in 1D
simulations of divertor detachment, Plasma Phys. Control. Fusion 61 (2019).

[4] G.L. Derks, J.P.K.W. Frankemölle, J.T.W. Koenders, M. van Berkel, H. Reimerdes, M.
Wensing, E. Westerhof, Benchmark of a self-consistent dynamic 1D divertor model
DIV1D using the 2D SOLPS-ITER code, Plasma Phys. Control. Fusion 64 (2022)
125013.

[5] E. Havlíčková, W. Fundamenski, F. Subba, D. Coster, M. Wischmeier, G. Fishpool,
Benchmarking of a 1D scrape-off layer code SOLF1D with SOLPS and its use in
modelling long-legged divertors, Plasma Phys. Control. Fusion 55 (2013).

[6] O. Batishchev, M.M. Shoucri, A.A. Batishcheva, I.P. Shkarofsky, Fully kinetic simu-

lation of coupled plasma and neutral particles in scrape-off layer plasmas of fusion
devices, J. Plasma Phys. 61 (1999) 347–364.

[7] A.V. Chankin, D.P. Coster, Benchmarks of KIPP: Vlasov-Fokker-Planck code for par-

allel plasma transport in the SOL and divertor, Contrib. Plasma Phys. 54 (2014)
493–497, https://doi .org /10 .1002 /ctpp .201410047.

[8] M. Zhao, A. Chankin, D. Coster, An iterative algorithm of coupling the kinetic
code for plasma periphery (KIPP) with SOLPS, Comput. Phys. Commun. 235 (2019)
133–152, https://doi .org /10 .1016 /j .cpc .2018 .09 .012.

[9] K. Kupfer, R.W. Harvey, O. Sauter, M.J. Schaffer, G.M. Staebler, Kinetic modeling
of scrape-off layer plasmas, Phys. Plasmas 3 (1996) 3644–3652, https://doi .org /10 .
1063 /1 .871957.

[10] S.I. Krasheninnikov, A.S. Kukushkin, Physics of ultimate detachment of a tokamak
divertor plasma, J. Plasma Phys. 83 (2017) 155830501.
24

14 Usually based on 𝐿2 norm of MPI-local values or 𝐿∞ norm.
Computer Physics Communications 300 (2024) 109195

[11] P.C. Stangeby, Basic physical processes and reduced models for plasma detachment,
Plasma Phys. Control. Fusion 60 (2018).

[12] D. Tskhakaya, F. Subba, X. Bonnin, D.P. Coster, W. Fundamenski, R.A. Pitts, On
kinetic effects during parallel transport in the sol, Contrib. Plasma Phys. 48 (2008)
89–93.

[13] I. Vasileska, X. Bonnin, L. Kos, Kinetic-fluid coupling simulations of ITER type I
ELM, Fusion Eng. Des. 168 (2021) 112407, https://doi .org /10 .1016 /j .fusengdes .
2021 .112407.

[14] W. Fundamenski, Parallel heat flux limits in the tokamak scrape-off layer, Plasma
Phys. Control. Fusion 47 (2005).

[15] J.P. Brodrick, R.J. Kingham, M.M. Marinak, M.V. Patel, A.V. Chankin, J.T. Omotani,
M.V. Umansky, D.D. Sorbo, B. Dudson, J.T. Parker, G.D. Kerbel, M. Sherlock, C.P.
Ridgers, Testing nonlocal models of electron thermal conduction for magnetic and
inertial confinement fusion applications, Phys. Plasmas 24 (2017) 092309.

[16] A.V. Chankin, G. Corrigan, A.E. Jaervinen, Assessment of the strength of kinetic
effects of parallel electron transport in the SOL and divertor of JET high radiative H-

mode plasmas using EDGE2D-EIRENE and KIPP codes, Plasma Phys. Control. Fusion
60 (2018).

[17] D. Power, S. Mijin, F. Militello, R.J. Kingham, Ion–electron energy transfer in kinetic
and fluid modelling of the tokamak scrape-off layer, Eur. Phys. J. Plus 136 (11
2021).

[18] S. Mijin, F. Militello, S. Newton, J. Omotani, R.J. Kingham, Kinetic and fluid simula-

tions of parallel electron transport during equilibria and transients in the scrape-off
layer, Plasma Phys. Control. Fusion 62 (9) (2020) 095004.

[19] D. Power, S. Mijin, M. Wigram, F. Militello, R. Kingham, Scaling laws for elec-

tron kinetic effects in tokamak scrape-off layer plasmas, Nucl. Fusion 63 (8) (2023)
086013.

[20] D.R. Bates, A.E. Kingston, R.W.P. McWhirter, Recombination between electrons and
atomic ions, I. Optically thin plasmas, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
267 (1962) 297–312.

[21] D.R. Bates, A.E. Kingston, Collisional-radiative recombination at low temperatures
and densities, Proc. Phys. Soc. 83 (1964).

[22] K. Sawada, T. Fujimoto, Effective ionization and dissociation rate coefficients of
molecular hydrogen in plasma, J. Appl. Phys. 78 (1995) 2913–2924.

[23] H.P. Summers, W.J. Dickson, M.G. O’Mullane, N.R. Badnell, A.D. Whiteford, D.H.
Brooks, J. Lang, S.D. Loch, D.C. Griffin, Ionization state, excited populations
and emission of impurities in dynamic finite density plasmas: I. The generalized
collisional-radiative model for light elements, Plasma Phys. Control. Fusion 48
(2006) 263–293.

[24] D. Wünderlich, U. Fantz, Evaluation of state-resolved reaction probabilities and their
application in population models for He, H, and H2, Atoms 4 (12 2016).

[25] P.T. Greenland, Collisional – radiative models with molecules, Proc. R. Soc. Lond. A
457 (2001) 1821–1839.

[26] S. Mijin, F. Militello, S. Newton, J. Omotani, R.J. Kingham, Kinetic effects in parallel
electron energy transport channels in the scrape-off layer, Plasma Phys. Control.
Fusion 62 (10 2020).

[27] S. Mijin, A. Antony, F. Militello, SOL-KiT-fully implicit code for kinetic simulation
of parallel electron transport in the tokamak Scrape-Off Layer, Comput. Phys. Com-

mun. 258 (2021) 107600.

[28] R.J. Kingham, A.R. Bell, An implicit Vlasov-Fokker-Planck code to model non-local
electron transport in 2-D with magnetic fields, vol. 194, 2004.

[29] A.R. Bell, A.P. Robinson, M. Sherlock, R.J. Kingham, W. Rozmus, Fast electron
transport in laser-produced plasmas and the kalos code for solution of the Vlasov-

Fokker-Planck equation, Plasma Phys. Control. Fusion 48 (2006).

[30] W.A. Hornsby, A.R. Bell, R.J. Kingham, R.O. Dendy, A code to solve the Vlasov–

Fokker–Planck equation applied to particle transport in magnetic turbulence,
Plasma Phys. Control. Fusion 52 (7) (2010) 75011.

[31] M. Tzoufras, A.R. Bell, P.A. Norreys, F.S. Tsung, A Vlasov-Fokker-Planck code for
high energy density physics, J. Comput. Phys. 230 (2011) 6475–6494.

[32] S. Balay, W. Gropp, L.C. McInnes, B.F. Smith, Petsc, the portable, extensible toolkit
for scientific computation, Argonne National Laboratory 2 (17) (1998).

[33] J. Williams, JSON-Fortran, https://github .com /jacobwilliams /json -fortran. (Ac-

cessed 5 May 2023).

[34] J.D. Huba, Nrl plasma formulary 19 (2013).

[35] D. Rouson, J. Xia, X. Xu, Scientific Software Design: The Object-Oriented Way, Cam-

bridge University Press, 2011.

[36] E.M. Epperlein, Implicit and conservative difference scheme for the Fokker-Planck
equation, 1994.

[37] pFUnit, https://github .com /Goddard -Fortran -Ecosystem /pFUnit. (Accessed 5 May
2023).

[38] I. Shkarofsky, T. Johnston, M. Bachynski, The Particle Kinetics of the Plasmas,
Addison-Wesley Publishing Company, 1966.

[39] E.M. Epperlein, Kinetic theory of laser filamentation in plasmas, Phys. Rev. Lett. 65
(1990) 2145–2148.

[40] S.I. Braginskii, Transport processes in a plasma, 1965.

[41] R.K. Janev, U. Samm, D. Reiter, Collision processes in low-temperature hydrogen
plasmas, 2003.

[42] A. Kramida, Y. Ralchenko, J. Reader, N.A. Team, NIST Atomic Spectra Database,
National Institute of Standards and Technology, Gaithersburg, MD, 2021 (ver. 5.9),

[Online], https://physics .nist .gov /asd. (Accessed 13 May 2022).

http://refhub.elsevier.com/S0010-4655(24)00118-8/bibD49A8E68290E5C760E0E19F745E7E502s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibD49A8E68290E5C760E0E19F745E7E502s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib4CC8F4CA656C83DB7BD7EC417094AE75s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib4CC8F4CA656C83DB7BD7EC417094AE75s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCA66D5325FD9CB8AD9FDF7800B9C90A1s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCA66D5325FD9CB8AD9FDF7800B9C90A1s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCA66D5325FD9CB8AD9FDF7800B9C90A1s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib17B8A1E3ADF635149E1975DA8891E305s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib17B8A1E3ADF635149E1975DA8891E305s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib17B8A1E3ADF635149E1975DA8891E305s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib17B8A1E3ADF635149E1975DA8891E305s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF490FC146274C28E43CD98BE3C96C6A6s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF490FC146274C28E43CD98BE3C96C6A6s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF490FC146274C28E43CD98BE3C96C6A6s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib04266F810C17C9DE20F8CB07908877D7s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib04266F810C17C9DE20F8CB07908877D7s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib04266F810C17C9DE20F8CB07908877D7s1
https://doi.org/10.1002/ctpp.201410047
https://doi.org/10.1016/j.cpc.2018.09.012
https://doi.org/10.1063/1.871957
https://doi.org/10.1063/1.871957
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibAEFD63A5CF1EB92154DE77D5E1F3D0E5s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibAEFD63A5CF1EB92154DE77D5E1F3D0E5s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib76DFDE3346C619C75C264CD31D0DE02As1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib76DFDE3346C619C75C264CD31D0DE02As1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF7E94FF41DE3EF3BBDC1142F56FF08DEs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF7E94FF41DE3EF3BBDC1142F56FF08DEs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF7E94FF41DE3EF3BBDC1142F56FF08DEs1
https://doi.org/10.1016/j.fusengdes.2021.112407
https://doi.org/10.1016/j.fusengdes.2021.112407
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibB4CE4CF78356C598272645E9AA567702s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibB4CE4CF78356C598272645E9AA567702s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib6530B50A11F3FF71DBD50CFE8FCB31CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib6530B50A11F3FF71DBD50CFE8FCB31CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib6530B50A11F3FF71DBD50CFE8FCB31CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib6530B50A11F3FF71DBD50CFE8FCB31CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE89D66146539E8BA834C92CF4D863726s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE89D66146539E8BA834C92CF4D863726s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE89D66146539E8BA834C92CF4D863726s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE89D66146539E8BA834C92CF4D863726s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibFED4A56FE29E854612EBF99181A560D2s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibFED4A56FE29E854612EBF99181A560D2s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibFED4A56FE29E854612EBF99181A560D2s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib7FF884D235F95AB02364710B212A20A4s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib7FF884D235F95AB02364710B212A20A4s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib7FF884D235F95AB02364710B212A20A4s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibA8E4149792F415F0AADB09CD4EC7453Cs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibA8E4149792F415F0AADB09CD4EC7453Cs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibA8E4149792F415F0AADB09CD4EC7453Cs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibA1ADE014CD590E06EA9221AFC271D1A8s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibA1ADE014CD590E06EA9221AFC271D1A8s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibA1ADE014CD590E06EA9221AFC271D1A8s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib16470FED2A82C6F2E0DA4EFD640A2FC7s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib16470FED2A82C6F2E0DA4EFD640A2FC7s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCA3029872739B61E4DD9050B45FE303Fs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCA3029872739B61E4DD9050B45FE303Fs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib140FD911E35D977F8040921FC3AFB778s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib140FD911E35D977F8040921FC3AFB778s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib140FD911E35D977F8040921FC3AFB778s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib140FD911E35D977F8040921FC3AFB778s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib140FD911E35D977F8040921FC3AFB778s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib4A4CC579DE1AE63BC3620FA603AC21DAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib4A4CC579DE1AE63BC3620FA603AC21DAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib13D0962A00DAB11CCF0BD03894539D45s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib13D0962A00DAB11CCF0BD03894539D45s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF91075EF0D8102AE5A3B8845FB81818Cs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF91075EF0D8102AE5A3B8845FB81818Cs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibF91075EF0D8102AE5A3B8845FB81818Cs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib0AD651DF0A64B1C7DDF21E50D658E8A8s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib0AD651DF0A64B1C7DDF21E50D658E8A8s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib0AD651DF0A64B1C7DDF21E50D658E8A8s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib0015D9729003E4D27DA3E6B4295E8737s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib0015D9729003E4D27DA3E6B4295E8737s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibB22BC3566B50C177B4234F57EDEA0B6Fs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibB22BC3566B50C177B4234F57EDEA0B6Fs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibB22BC3566B50C177B4234F57EDEA0B6Fs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibEC8C65D45089D8B43475EE64A32964CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibEC8C65D45089D8B43475EE64A32964CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibEC8C65D45089D8B43475EE64A32964CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE960869320E775179DA5D5557BD9F0D1s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE960869320E775179DA5D5557BD9F0D1s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib67B012E9D4597DA17C68EF3E8475D880s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib67B012E9D4597DA17C68EF3E8475D880s1
https://github.com/jacobwilliams/json-fortran
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCA6C0BA4F3BB31225D55120E9BEC1BC4s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE2317A0802CBE0F149FCBC7ED0539892s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibE2317A0802CBE0F149FCBC7ED0539892s1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib7663BE2230B91B6CD59D2EA02F7A1F5As1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib7663BE2230B91B6CD59D2EA02F7A1F5As1
https://github.com/Goddard-Fortran-Ecosystem/pFUnit
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibB44DB956A8DE5015332177C6ACBEF24As1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibB44DB956A8DE5015332177C6ACBEF24As1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib81FEDC81DB716803D231D62A171FF3DFs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib81FEDC81DB716803D231D62A171FF3DFs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibFAFCB6205D5F5B3446A59F56AD8F06AFs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib71049768B26728F584CE0E5EF738F26Es1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bib71049768B26728F584CE0E5EF738F26Es1
https://physics.nist.gov/asd

Computer Physics Communications 300 (2024) 109195S. Mijin, D. Power, R. Holden et al.

[43] G. Colonna, L.D. Pietanza, M. Capitelli, Coupled solution of a time-dependent
collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas:
possible implications with libs plasmas, Spectrochim. Acta, Part B, At. Spectrosc. 56
(2001) 587–598, https://doi .org /10 .1016 /S0584 -8547(01)00223 -3.

[44] D. Reiter, The data file AMJUEL: additional atomic and molecular data for EIRENE,
https://www .eirene .de /Documentation /amjuel .pdf. (Accessed 5 May 2023), 2020.

[45] P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, vol. 43, 2000.

[46] S.O. Makarov, D.P. Coster, V.A. Rozhansky, A.A. Stepanenko, V.M. Zhdanov, E.G.
Kaveeva, I.Y. Senichenkov, X. Bonnin, Equations and improved coefficients for par-

allel transport in multicomponent collisional plasmas: method and application for
tokamak modeling, Phys. Plasmas 28 (2021).
25

https://doi.org/10.1016/S0584-8547(01)00223-3
https://www.eirene.de/Documentation/amjuel.pdf
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibA8F2A1F10500AEC819AC8DB0046EC2CAs1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCDD128E544A1636543703551B3BAB56Ds1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCDD128E544A1636543703551B3BAB56Ds1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCDD128E544A1636543703551B3BAB56Ds1
http://refhub.elsevier.com/S0010-4655(24)00118-8/bibCDD128E544A1636543703551B3BAB56Ds1

	ReMKiT1D - A framework for building reactive multi-fluid models of the tokamak scrape-off layer with coupled electron kinet...
	1 Introduction
	2 Target problem classes
	2.1 Systems of nonlinear ODEs
	2.2 1D PDEs
	2.3 1D electron kinetic equation

	3 Basic concepts
	3.1 The four surface-level concepts
	3.1.1 Variables
	3.1.2 Terms and models
	3.1.3 Time integration
	3.1.4 The grid

	3.2 Python-JSON-Fortran interface and example workflow
	3.2.1 IO with JSON and HDF5 through Python interface
	3.2.2 Simple advection workflow example

	4 Software design and implementation
	4.1 The modeller-model-manipulator pattern
	4.1.1 Manipulators and integrators

	4.2 Variable containers, derivations, and communication
	4.2.1 MPI communication and communication-safe derivations
	4.2.2 Tree-based calculation derivations

	4.3 Operators in 1D
	4.4 Collisional-radiative model-bound data

	5 Verification and benchmarking
	5.1 Verification of fluid operators
	5.1.1 Simple advection
	5.1.2 MMS test of isothermal 2-fluid model

	5.2 Verification of kinetic operators
	5.2.1 Kinetic advection
	5.2.2 Coulomb collision operators
	5.2.3 Epperlein-short test

	5.3 Collisional-radiative model tests
	5.4 Parallel performance benchmarking
	5.4.1 Epperlein-short test - strong and weak scaling
	5.4.2 SOL models - strong scaling

	6 Discussion
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A The SOL-KiT-like SOL models
	A.1 Fluid equations
	A.2 Electron kinetic equations

	Appendix B Implicit BDE integrator with fixed-point iterations
	References

