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A B S T R A C T   

This paper presents an experimental and numerical study of the effect of specimen thickness on the effective 
notch toughness Kρ

mat for cleavage fracture measured using Single Edge Notch Bend (SENB) specimens containing 
a U-notch instead of a fatigue pre-crack. These specimens are typically used to measure a material’s effective 
notch toughness Kρ

mat and to assess failure of a structure containing a non-sharp defect using the Notch Failure 
Assessment Diagram (NFAD). Both the experimental data and the Finite Element (FE) failure predictions show a 
significant influence of specimen thickness on Kρ

mat , over and above the microstructural weakest link effect 
arising from differences in the volume of the plastic zone. Kρ

mat is a function of not only the in-plane effect of the 
notch radius, but also an out-of-plane constraint loss which itself is enhanced by the presence of the notch radius. 
Significant out-of-plane constraint loss occurred for notched specimens with a ratio of thickness B to width W of 
0.5, a geometry that if pre-cracked would have met the minimum thickness requirement mandated by ASTM 
E1820. Doubling the thickness to B=W ¼ 1.0 was sufficient to eliminate the out-of-plane constraint loss. The use 
of experimentally measured Kρ

mat values in an NFAD assessment of a structure may therefore be non-conservative 
if B=W<1.0.   

1. Introduction 

The structural integrity of engineering structures is conventionally 
assessed using defect or flaw assessment procedures based on fracture 
mechanics approaches [e.g. [1–3]]. For a real or postulated defect, the 
crack driving force (e.g. the elastic-plastic energy release rate J or the 
elastic-plastic stress intensity factor KJ) under the loading conditions 
and temperature of interest is compared with the material fracture 
toughness. Such procedures assume flaws to be infinitely sharp. While 
this assumption may be appropriate for fatigue cracks, in other cases 
such as porosity, lack-of-fusion, corrosion damage, mechanical damage, 
or even design features such a crevices in tube-to-tubeplate assemblies, 
it can be an over-conservative assumption that can lead to a pessimistic 
assessment of the structure and a significant under-estimation of the 
safety margin against fracture. 

Structural integrity assessments undertaken in accordance with 
[1–3] are carried out using a Failure Assessment Diagram (FAD) in 
which the ordinate Kr indicates the proximity to fracture. For primary 

loading only, Kr is defined as KI/Kmat , where KI is the linear elastic stress 
intensity factor and Kmat is the material toughness typically derived from 
fatigue pre-cracked fracture toughness specimens tested according to 
well-defined standards, e.g. Refs. [4–6]. The abscissa Lr indicates the 
proximity to failure by plastic collapse and is defined as P/PL, where P is 
the applied load and PL is the elastic-perfectly plastic limit load. Kr and 
Lr are both proportional to P and a linear loading line can be plotted on 
the FAD. When all inputs are best-estimate values, failure is predicted at 
its intersection with the failure assessment curve which is represented by 
Kr ¼ fðLrÞ for Lr<LrðmaxÞ where fðLrÞ is the failure assessment curve, 
LrðmaxÞ is the ratio of the uniaxial flow stress σ to the uniaxial yield stress 
σy defined at 0.2% plastic strain, and σ is defined as the mean of σy and 
the ultimate tensile stress (UTS). 

Over the last 25 years or so, several engineering assessment meth
odologies have been published in the literature for assessing structures 
that contain non-sharp defects using a modified form of the FAD called 
the Notch Failure Assessment Diagram (NFAD) [e.g. [7–12]]. The exact 
form of the NFAD varies from approach to approach. Taking the 
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approach described in Refs. [7,12] as an example, proximity to the two 
failure limits of plastic collapse and fracture is quantified by the pa
rameters Lρ

r and Kρ
r . L

ρ
r is defined as P/Pρ

L, where Pρ
L is the elastic-perfectly 

plastic limit load for a component containing a notch of root radius ρ. Kρ
r 

is defined as Kρ
I /Kρ

mat , where Kρ
I is the linear-elastic notch stress intensity 

factor and Kρ
mat is the effective notch toughness. The condition that the 

component does not fail is indicated by Kρ
r < fðLρ

r Þ for Lρ
r<LrðmaxÞ. Several 

authors [7,12–14] have shown that when the NFAD axes are defined by 
Lρ

r and Kρ
r instead of Lr and Kr, failure assessment curves are broadly 

independent of ρ. This enables the same failure assessment curve to be 
used in the NFAD as for the FAD. 

Although the precise definitions of the parameters used in the 
various forms of NFAD vary between the different approaches, one 
similarity common to all NFAD approaches is the requirement to use an 
effective notch toughness Kρ

mat in place of the material toughness Kmat , to 
calculate Kρ

r . No testing standards are currently available to provide 
guidance on how Kρ

mat can be measured using fracture toughness speci
mens that contain notches instead of pre-cracks. In the absence of 
dedicated test standards for notched specimens, test standards originally 
designed for pre-cracked specimens such as [4–6] have been used widely 

in the literature [e.g. [7, 11, 17–22]] to obtain values of Kρ
mat for notched 

specimens. It has recently been shown [15,16] that in most cases, such 
testing standards can provide reasonably accurate values of Kρ

mat for 
notched specimens. 

More recent work [23] has shown that the values of Kρ
mat measured 

on laboratory specimens containing notches are not only dependent on 
the in-plane effect of the notch radius, but are also significantly affected 
by an out-of-plane constraint loss which is itself enhanced by the pres
ence of the notch radius. The effect of out-of-plane constraint loss is an 
active research topic for sharp cracks [24,25]. For notches this 
out-of-plane constraint loss can have a greater effect on toughness than 
that of the in-plane effect of the notch radius alone. The use of experi
mentally measured Kρ

mat values in an NFAD assessment of a notched 
structure may therefore be non-conservative if the out-of-plane 
constraint loss in the test specimen is more significant than that in the 
structure. The work in Ref. [23] was based solely on mechanistic 
modelling, and to the authors’ knowledge there are no experimental 
data available for notched specimens to confirm the conclusions where 
one thickness is compared with another. The objective of the work 
presented in this paper is to demonstrate experimentally whether Kρ

mat 
values for cleavage fracture are dependent on specimen thickness, and 

Nomenclature 

a Crack or notch depth (from the notch mouth to the tip of 
the notch) 

B Specimen thickness 
E Elastic modulus 
emax Strain at maximum load 
fðLrÞ Failure assessment curve on the FAD 
fðLρ

r Þ Failure assessment curve on the NFAD 
i ith toughness value in a dataset (out of a total of N values) 
J Elastic-plastic energy release rate 
Jρ J for a notch 
JESIS J obtained from load-displacement data using ESIS P2-92, 

Equation 7 
KI Linear elastic stress intensity factor 
Kρ

I Linear elastic stress intensity factor for a notch 
KJ J expressed in dimensions of K 
Kρ

J Jρ expressed in dimensions of K 
Kρ

JC Critical value of Kρ
J for an individual test specimen 

containing a notch 
Kmat KJC measured using pre-cracked specimens at a defined Pf 

Kρ
mat KJC measured using notched specimens at a defined Pf 

Kmin Minimum possible value of Kmat , defined as 20 MPa√m in 
ASTM E1921 

Kr Fracture ratio, plotted on ordinate axis of the FAD 
Kρ

r Fracture ratio for a notch, plotted on ordinate axis of the 
NFAD 

L Element size 
Lr Load ratio, plotted on the abscissa axis of the FAD 
Lρ

r Load ratio for a notch, plotted on abscissa axis of the NFAD 
LrðmaxÞ Maximum value of Lr defining vertical cut-off on the FAD 
l Material parameter describing sensitivity of Kρ

mat/ Kmat to 
σN/σy 

m Weibull modulus 
n Strain hardening exponent 
N Total number of toughness values in a dataset 
r Distance from the centre of curvature of the notch root 

radius 
P Applied load 
Pf Failure probability 

PL Limit load 
Pρ

L Limit load for a notch 
R Radius of boundary layer model 
RðmÞ Error function defined in Section 4.3.1 
T Temperature 
T0 Master Curve Reference Temperature 
u1u2 Displacements in the x1 andx2 directions respectively 
V Plastic zone 
V0 Reference volume taken as unity 
W Specimen width 
x1x2x3 Co-ordinate system 
Y Geometry factor used to define KI 

γ Material parameter describing sensitivity of Kρ
mat/ Kmat to 

σN/σy 

η Proportionality constant to evaluate J from load vs. 
displacement 

ν Poisson’s ratio 
ξA;B Estimate of the SSY scale factor 
ρ Notch root radius 
θ Angle subtended at the centre of curvature of the notch 

root radius 
σ Applied tensile stress 
σ Flow stress, defined as the mean of σy and UTS 
σ1 Maximum principal stress 
σN Elastic notch tip opening stress 
σ0 Stress at the limit of proportionality 
σw Weibull stress 
σu Weibull parameter, defined as σw at Pf ¼ 0.632 
σw;min Minimum value of Weibull stress in SSY corresponding to 

Kmin ¼ 20 MPa√m 
σy Yield stress defined at 0.2% plastic strain 
CMOD Crack Mouth Opening Displacement 
CT Compact Tension 
FAD Failure Assessment Diagram 
FE Finite Element 
LLD Load-Line Displacement 
NFAD Notch Failure Assessment Diagram 
SSY Small Scale Yielding 
SSYN Small Scale Yielding for a notch 
UTS Ultimate Tensile Stress  
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whether the effect can be successfully described using mechanistic 
modelling. 

2. Background 

The NFAD approaches in Refs. [7–12] describe the increase in 
effective notch toughness either as a function of ρ, or another parameter 
that characterises the notch radius. The approach described in Ref. [12] 
relates Kρ

mat to the component of the elastic notch tip stress σN acting in a 
direction perpendicular to the plane of the notch. σN scales with load: a 
given value of σN could correspond to an acute notch under low load, or 
a blunter notch subject to a higher load. An expression for σN was 
derived by Shin [27] based on the Creager-Paris elastic stress distribu
tion ahead of a slender notch in a uniform stress field [28]: 

σN ¼ σ
�

1þ 2Y
ffiffiffi
a
ρ

r �

(1)  

where σ is the applied tensile stress remote from the notch and Y is a 
geometry factor used to define KI via KI ¼ Yσ

ffiffiffiffiffiffi
πa
p

. 
The following empirical power law expression was found to describe 

the increase in effective cleavage toughness with increasing notch radius 
in Ref. [12], and preliminary work in Ref. [29] indicated that the same 
expression may be used to describe the increase in ductile tearing 
initiation toughness with notch radius: 

Kρ
mat

Kmat
¼ 1þ γ

�
σN

σ0

�� l

(2)  

where γ and l are non-dimensional material parameters that describe the 
sensitivity of material toughness to the notch root radius. σN can be 
normalised using any convenient parameter, in Equation (2) it is nor
malised by σ0, the yield stress defined as the stress at the limit of pro
portionality. Equation (2) defines the failure locus shown in Fig. 1. A 
loading line may be plotted on the diagram for a notched component of 
interest, with failure being predicted by its intersection with the failure 
locus. For the loading lines, the vertical axis is defined as Kρ

J= Kmat where 
Kρ

J is J for a notch, Jρ, expressed in dimensions of K.Kρ
J Can be obtained 

from either the J-integral, or the area under the load vs. displacement 
curve, using the methods described in Section 4.1. For blunt notches the 

loading curve rises steeply and failure is predicted at high Kρ
mat values, 

and for acute notches the loading curve is less steep and failure is pre
dicted at lower Kρ

mat values. As ρ → 0, the gradient of the failure locus at 
its intersection with the loading line approaches the horizontal and 
Kρ

mat→ Kmat . 
Depending on failure mechanism, values of γ and l that define the 

failure locus in Fig. 1 can be obtained using one of several methods:  

(a) For initiation by cleavage and ductile tearing, curve fitting to test 
data plotted in the form of Kρ

JC=Kmat vs. σN=σ0 can be performed, 
where Kρ

JC is the value of Kρ
J at failure for an individual test 

specimen containing a notch. This is straightforward for cleavage 
fracture, but is less so for ductile tearing initiation due to the lack 
of test guidance and the practical challenges of measuring and 
defining tearing initiation from a notch tip.  

(b) For initiation by cleavage only, the lookup table presented in 
Ref. [12] can be used based on a knowledge of Weibull modulus 
m and strain hardening exponent n.  

(c) For initiation by cleavage only, a combination of (a) and (b) can 
be used, useful for when m is unknown but n is known.  

(d) For initiation by cleavage and ductile tearing, micromechanical 
modelling using an appropriate local approach failure criterion 
can be used. 

The lookup table for use in option (b) requires a knowledge of the 
Weibull modulus m, a parameter used in the Beremin model [30] which 
describes the proximity to cleavage fracture by use of the scalar Weibull 
stress, σw. In its simplest form the probability of fracture Pf is described 
by a two-parameter Weibull distribution: 

Pf ¼ 1 � exp
�

�

�
σw

σu

�m�

(3)  

where σu and m are the Weibull parameters. m is the shape parameter 
describing the scatter, and σu is the scale parameter, defined as the value 
of σw at Pf ¼ 0.632. The Weibull stress is calculated by integrating a 
weighted value of the maximum principal stress σ1 over the plastic zone 
V ahead of the stress concentration: 

Fig. 1. Loading lines and failure locus in toughness-σN space.  
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σw¼

2

4 1
V0

Z

V

σm
1 dV

3

5

1=m

(4) 

The constant V0 is a reference volume required to ensure dimensional 
consistency and in the current work is taken as unity. The Weibull pa
rameters m and σu are determined by matching values calculated from 
the Beremin model to experimental values of cleavage fracture tough
ness. Reliable estimation of the Weibull parameters is only possible 
using experimental data of sufficient quantity that cover two different 
constraint levels. The method proposed by Gao et al. [31] is suitable. A 
detailed description of the method and its application to the current 
work is described later in Section 4.3.1 of this paper. 

One of the useful aspects of this approach, as shown in Ref. [12], is 
that for a given value of σN/σ0, the ratio Kρ

mat/Kmat remains independent 
of load, independent of J, independent of σw, and independent of 
cleavage fracture probability Pf . The cleavage fracture probability is 
introduced into the approach when a value is assigned to Kmat . For 
example, a Kmat value corresponding to a 5% cleavage fracture proba
bility would enable Kρ

mat at that same cleavage fracture probability to be 
defined. 

3. Material 

The material selected for the experimental programme was a 15 mm 
thick structural steel plate of grade S460 M [32] which has been used 
previously for studying notch effects on fracture [33,34]. Table 1 sum
marises the chemical composition of the material, performed by means 
of chemical emission spectroscopy, and Fig. 2 shows the microstructure, 
which comprises alternate bands of pearlite and ferrite. 

The elastic modulus E was defined using the following expression 
due to Ingham et al. [36]: 

E¼ 210000 ðMPaÞ � 54T (5)  

where T is the temperature in �C. The value of E at the test temperature 
of � 100 �C was therefore taken as 215400 MPa. Poisson’s ratio ν was 
assumed to be 0.3. 

Tensile properties were measured using cylindrical tensile specimens 
10 mm in diameter and machined from the centre of the plate thickness, 
parallel to the rolling direction (i.e. longitudinal). Four repeat tensile 
tests were performed at � 100 �C in accordance with ASTM E8 [35]. 
Tensile curves were found to be discontinuous, exhibiting yield plateaus 
prior to strain hardening. Table 2 summarises the tensile properties σy 
(defined at 0.2% plastic strain), Ultimate Tensile Strength (UTS), and the 
strain at maximum load emax. 

Fracture toughness properties of the same plate were determined in 
previous work [33,34] where the Master Curve Reference Temperature, 
T0 [37,38], was calculated as � 91.8 �C. The fracture toughness Kmat as 
defined using the Master Curve approach includes a crack front length 
correction to account for the microstructural weakest link effect in 
pre-cracked specimens. For a given T0, Kmat for any specimen thickness 
B, cleavage fracture probability Pf and temperature T within the tran
sition region is defined as follows: 

Kmat ¼ 20ðMPaÞ þ
�

ln
�

1
1 � Pf

��1=4

f11þ 77exp½0:019ðT � T0Þ�g

�
25
B

�1=4

(6) 

The experimental programme focused on two specimen thicknesses, 
the full plate thickness of B ¼ 15 mm, and B ¼ 9 mm. This latter 

thickness was selected as the thinnest possible specimen that, if pre- 
cracked, would still meet the minimum thickness criterion required to 
ensure plane strain conditions as defined in Ref. [39]. This is discussed 
further in Section 6 below. For this material’s T0 value of � 91.8 �C, the 
median fracture toughness Kmat at the chosen test temperature of T ¼
-100 �C is 110.6 MPa√m for B ¼ 9 mm and 99.7 MPa√m for B ¼ 15 mm. 
A median fracture toughness was used for convenience for comparing 
with test data. 

4. Methodology 

4.1. Experimental programme 

The experimental fracture programme reported in this paper com
prises 24 Single Edge Notch Bend (SENB) specimens containing notches 
instead of fatigue pre-cracks. This does not include the pre-cracked 
specimens used to determine T0, reported in Refs. [33,34], or the 
notched specimens from the same papers. All specimens were machined 
from the same 15 mm thick plate from which the tensile specimens were 
machined, oriented parallel to the rolling direction, and notched in the 
through-thickness direction. As for the tensile tests, the fracture tests 
were performed at � 100 �C, just below the T0 value of � 91.8 �C. 

Table 1 
Chemical composition of steel S460 M.   

C Si Mn P S Cr Mo Ni Al Cu Nb Ti V 

S460 M 0.12 0.45 1.49 0.012 0.001 0.062 0.001 0.016 0.048 0.011 0.036 0.003 0.066  

Fig. 2. Microstructure of steel S460 M, with ferritic-pearlic microstructure 
(sample polished and etched with Nital 2%). 

Table 2 
Tensile properties of steel S460 M at � 100 �C.   

Test No. σy (MPa)  UTS (MPa) emax (%)  

S460M 1 632.0 724.5 12.0 
2 590.1 719.7 14.2 
3 622.8 722.4 11.5 
4 618.2 710.8 14.2 
Average values 615.7 719.3 12.9  
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U-shaped notches were machined into the specimens using 
Electro-Discharge Machining (EDM) and the fracture tests were per
formed in accordance with ASTM E1820 [39]. In order to achieve the 
required test temperature, liquid nitrogen was used in combination with 
an insulating chamber. 

The work reported in Refs. [33,34] did not consider the effect of 
thickness B on effective notch toughness Kρ

mat . As the aim of the current 
work is to compare test results from specimens of two different thick
nesses B but with all other geometrical dimensions kept the same, 24 
new tests have been specifically performed for this work, with the 
geometrical dimensions summarised in Table 3. Six repeat tests were 
performed for each of the four geometries. The specimens with B ¼ 9 
mm were machined from the plate centreline. Fig. 3 shows the geometry 
of one type of specimen, D11-D16. 

Table 3 shows that the experimental program combines two different 
thicknesses B (9 mm and 15 mm) and notch radii ρ (0.15 mm and 1.2 
mm), but all other dimensions are kept constant. During the different 
tests, the applied load, the Crack Mouth Opening Displacement (CMOD) 
and the crosshead displacement were recorded. For some tests, the clip 
gauges measuring CMOD reached their maximum opening shortly 
before the end of the test, so in these cases CMOD for the final portion of 
the test was estimated. This was achieved by extrapolating the CMOD vs. 
time trend recorded during the mid-portion of the test. This trend was 
very close to being linear, but a 2nd order polynomial fit provided a 
more accurate fit, and this was used to extrapolate CMOD values up to 
the end of the test. 

Load Line Displacement (LLD) was not measured in the tests, but 
estimates of LLD were obtained using correlations between CMOD and 
LLD obtained from the Finite Element (FE) models reported in the next 
section below. Although the relationship between CMOD and LLD in 
each FE model was approximately linear and approximately the same for 
all four geometries shown in Table 3, a second order polynomial fitted to 
each individual geometry provided the most accurate relationship, and 
these polynomial expressions were used to estimate LLD from the CMOD 
measured in each test. 

Although the tests were performed in accordance with the ASTM 
procedure, ESIS P2-92 [40] was used to calculate J, denoted here as 
JESIS, from the area under the load vs. LLD curve using Equation (7): 

JESIS¼
ηU

BðW � aÞ
(7)  

where η ¼ 2 
U ¼ area under load vs. LLD curve. 
Although Equation (7) was derived for use with pre-cracked speci

mens, as is the case for similar expressions in other fracture toughness 
testing standards, it has been shown [12,15,16,29] that such expressions 
provide reasonable estimates of Jρ, typically to within 10% depending 
on notch radius and loading level. Of all these methods, JESIS generally 
provides the most accurate method for notched specimens, typically to 
within 5% [12,15]. 

Values of JESIS at failure were converted to dimensions of K using the 
following expression: 

Kρ
JC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJESIS=ð1 � ν2Þ

p
(8) 

To characterise the improvement in effective toughness due to the 
presence of the notch, it is convenient to normalise the Kρ

JC measured for 

each notched specimen by the fracture toughness Kmat, where Kmat is 
defined for a pre-cracked specimen of the same specimen thickness B as 
that of the notched specimen. A different absolute value of Kmat is 
therefore used for each specimen thickness as described in Section 3 of 
this paper. Defined in this way, the ratio Kρ

JC/Kmat compares the 
measured notch toughness with the equivalent fracture toughness of a 
pre-cracked specimen of the same thickness. 

4.2. Finite Element analysis 

4.2.1. SENB specimens 
Three-dimensional (3D) FE models of the four SENB test specimen 

geometries were constructed and validated against test data. In addition 
to the four test specimen geometries listed in Table 3, four additional 
geometries were modelled corresponding to specimen thicknesses of B 
¼ 18 mm and 27 mm, corresponding to B/W ratios of 1.0 and 1.5 
respectively. The complete FE model matrix is shown in Table 4. For 
each SENB specimen modelled, symmetry conditions were specified 
along the uncracked ligament (x2¼0) and the longitudinal mid-plane 
(x3¼B/2) thereby enabling one quarter of each SENB specimen to be 
modelled numerically. An example of the one-quarter model of the SENB 
specimen with B ¼ 15 mm and ρ ¼ 1.20 mm is shown in Fig. 4. Each 
model consisted of quadratic 20-noded reduced integration hexahedral 
elements (C3D20R) arranged into 14 variable thickness layers. The 
thickest element layer was defined at the longitudinal mid-plane with 
thinner elements defined near the free surface to accommodate the 
reduced constraint approaching plane stress conditions. Each model had 
a straight notch front. The FE analyses were performed using ABAQUS 
version 6.14-3 [41] using a finite strain formulation. 

Within each of the 14 variable thickness layers, rings of elements 
enclosed the notch tip as shown in Fig. 5. The notch tip elements had a 
dimension L in the x1 direction and a dimension approximately equal to 
L in the angular direction, θ ¼ tan � 1 ðx2=x1Þ. In the angular direction, 10 
equally sized elements were defined in the range 0 < θ < π=2 and L was 
constant with θ. In the x1 direction, L increased with increasing distance 
r from the centre of curvature of the notch tip, where L ¼ 2πr=40. The 
ratio ρ=L was therefore the same in all models and ensured a consistency 
of mesh structures between the models with notches of differing radii. 

The lower loading pin was modelled using a three-dimensional rigid 
analytical part in the shape of a cylinder positioned below the SENB 
specimen. Loading in three-point bending was simulated by applying a 
prescribed displacement in the x2 direction to a single reference point 
tied to a line of nodes on the top of the specimen. This enabled the re
action force to be evaluated through the single reference point. 

Plasticity was modelled using true-stress vs. true-strain data obtained 
from the tensile tests performed at � 100 �C, and hence included the 
yield plateau as measured in the tensile tests. To obtain strains higher 
than those measured in the tensile tests, a Ramberg-Osgood relationship 
was used to extrapolate the test data to high strains. The stress at the 
limit of proportionality σ0 was 597 MPa and the strain hardening 
exponent n used to extrapolate the stress-strain curve to high strains was 
12. 

4.2.2. Boundary layer models 
The method used for calibrating the Weibull parameters, described 

in Section 4.3.1 below, requires the use of a plane strain boundary layer 
FE model to simulate a crack in an infinite body [42]. The boundary 

Table 3 
Test matrix with geometrical dimensions.  

Codes Description Specimen Type B (mm) W (mm) a (mm) ρ (mm) B/W a/W ρ/a 

D11-D16 Thin Acute SENB 9 18 9 0.15 0.5 0.5 0.017 
D21-D26 Thin Blunt SENB 9 18 9 1.20 0.5 0.5 0.133 
E11-E16 Thick Acute SENB 15 18 9 0.15 0.833 0.5 0.017 
E21-E26 Thick Blunt SENB 15 18 9 1.20 0.833 0.5 0.133  
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layer model consisted of a semi-circular mesh of initial radius R con
taining a radial crack modelled with a crack tip radius ρ ¼ 2.5 μm. The 
ratio R/ρ was set at 105 to ensure that the crack tip plastic zone did not 
approach the boundary of the model thereby ensuring small-scale 
yielding conditions were preserved. Symmetry conditions were speci
fied along the uncracked ligament (x2¼0). Plane strain boundary con
ditions were applied to both faces in the x3 direction, so the model was 
essentially 2D despite the same 3D elements being used as for the SENB 
specimens, i.e. quadratic 20-noded reduced integration elements. 
Although the boundary layer model is essentially a plane strain analysis, 
the thickness of the model affects the volume of the crack tip plastic zone 
and hence the Weibull stress as defined by Equation (4). Four boundary 

layer models were analysed, each model having a thickness equal to that 
of each SENB model. 

Displacement boundary conditions were applied incrementally to 
the nodes on the outer edge of the model. These displacements were 
consistent with the leading, KI-dominated term of the Williams expan
sion [43] for the displacement field at the crack tip, as follows: 

u1¼KI
1þ ν

E

ffiffiffiffiffi
R
2π

r

cos
�θ

2

�
ð3 � 4ν � cosθÞ (9)  

Fig. 3. SENB fracture specimens D11 to D16 (see Table 3). Dimensions in mm.  

Table 4 
FE matrix.  

Description Specimen 
Type 

B (mm) W 
(mm) 

a (mm) ρ (mm) B/W a/ 
W 

ρ/a 

Geometry matched to test data. SENB 9 18 9 0.15 0.5 0.5 0.017 
SENB 9 18 9 1.20 0.5 0.5 0.133 
SENB 15 18 9 0.15 0.833 0.5 0.017 
SENB 15 18 9 1.20 0.833 0.5 0.133 

No corresponding test data. Geometry modelled to investigate behaviour at higher 
thicknesses. 

SENB 18 18 9 0.15 1.0 0.5 0.017 
SENB 18 18 9 1.20 1.0 0.5 0.133 
SENB 27 18 9 0.15 1.5 0.5 0.017 
SENB 27 18 9 1.20 1.5 0.5 0.133  

Fig. 4. One-quarter FE model of SENB specimen E21-E26 (B ¼ 15 mm, ρ ¼
1.20 mm). 

Fig. 5. Notch tip mesh detail.  
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u2¼KI
1þ ν

E

ffiffiffiffiffi
R
2π

r

sin
�θ

2

�
ð3 � 4ν � cosθÞ (10)  

where u1 andu2 are the displacements in the x1 andx2 directions 
respectively, E is the elastic modulus, ν is Poisson’s ratio, and the polar 
co-ordinates R and θ define the position of the node with respect to the 
crack tip. Plasticity was modelled using the same stress-strain relation
ship used for the SENB models. 

4.3. Post-processing 

4.3.1. Calibration of weibull parameter, m 
The approach proposed by Gao et al. [31] provides a suitable 

methodology for determining m and σu and can be summarised in the 
following steps:  

1. Test two sets of fracture toughness specimens, one set corresponding 
to high constraint conditions (geometry A) and the other to low 
constraint conditions (geometry B).  

2. Perform 3D elastic-plastic FE analyses of both specimen geometries 
tested (A and B). The models should have sufficient mesh refinement 
to allow accurate calculation of the Weibull stress σw and the crack 
driving force J.  

3. Perform 2D plane strain elastic-plastic FE analysis of a defect in an 
infinite body under SSY conditions using a boundary layer model.  

4. Calibrate m as follows:  
a. Assume an m value (or several trial values of m) and calculate the 

σw vs. J history for the A and B specimen geometries and for the 
SSY analysis  

b. Constraint correct each measured J value from the A and B 
specimen geometries to its equivalent SSY equivalent value. This 
is defined as the value of J under small scale yielding which has 
the same scalar Weibull stress (and therefore failure probability) 
as the measured values of J. 

c. Calculate two estimates of the SSY scale factor for the two dis
tributions of constraint-corrected J values. For N toughness 
values, a simple estimate is given by: 

ξA;B ¼

�
1
N

�XN

i¼1
J2
ðiÞ� SSY

��1=2

(11)  

d. Repeat steps (a-c) with different values of m until ξA ¼ ξB within a 
small tolerance, thereby minimising the error function RðmÞ ¼ ðξA �

ξBÞ=ξB.  
5. For the calibrated value of m, the value of σu is the value of σw in the 

boundary layer model corresponding to a crack driving force of ξA ¼

ξB. 

The above method has previously been implemented for SENB 
specimens containing notches in Ref. [26] where it was noted that care is 
required during calibration to ensure that the constraint states of the 
high constraint geometry A and the low constraint geometry B span the 
defect of interest. This ensures that the model interpolates between the 
constraint states used for calibration, rather than extrapolating outside 
the range of applicability. For this reason, for Step 1, the thick specimen 
with an acute notch (E11-E16 in Table 3) was selected as the high 
constraint geometry A, and the thin specimen with a blunt notch 
(D21-D26) as the low constraint geometry B. This was to ensure the 
scaling model is applicable over the widest range of constraint states. 

The calibration approach adopted uses SENB specimens of two 
different thicknesses, and for this reason Step 3 involved boundary layer 
analysis of the same two thicknesses as the SENB test specimens used for 
calibration. The constraint correction procedure in Step 4b therefore 
corrected each specimen geometry to the equivalent SSY value for the 
boundary layer model of the same thickness, as shown schematically in 
Fig. 6. In Step 5, one value of σu was obtained for each thickness. 

Equation (3) describes the probability of cleavage initiation only and 
does not account for subsequent micro-crack arrest (i.e. it assumes that 
cleavage initiation corresponds to macroscopic cleavage fracture). The 
two-parameter Weibull distribution therefore tends to over-predict the 
observed scatter in fracture toughness test results. This limitation led to 
an alternative expression being proposed [44] based on a 
three-parameter distribution: 

Pf ¼ 1 � exp
�

�

�
σw � σw;min

σu � σw;min

�m�

(12)  

where σw;min is the minimum value of Weibull stress at which macro

Fig. 6. Toughness scaling diagram.  
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scopic cleavage fracture becomes possible. σw;min is conventionally 
defined as the σw value in SSY that corresponds to the lowest possible KJ 
value at fracture, Kmin, of 20 MPa√m as specified in ASTM E1921 [38]. 
For specimens with notches instead of fatigue pre-cracks, experimental 
data from steel specimens tested at very low temperatures (for example 
at � 196 �C in Ref. [18]) indicate that even on the lower shelf, the 
measured effective notch toughness is significantly higher than the 
fracture toughness, which suggests that Kmin may be larger than 20 
MPa/m for specimens with notches. In this work, values of σw;min cor
responding to a higher value of Kmin, arbitrarily set at 50 MPa√m, were 
considered in addition to the standard value of 20 MPa√m quoted for 
pre-cracked specimens in ASTM E1921. 

4.3.2. Weibull stress based toughness scaling model 
The toughness scaling model based on the Weibull stress [45] was 

originally developed for constraint correction between cracked speci
mens of differing constraint levels with different levels of applied J but 
identical cleavage fracture probabilities. The same approach was first 
applied to specimens containing cracks and notches of differing root 
radius in Ref. [26], and a similar approach has been adopted in this 
work. 

Toughness scaling diagrams, such as those shown in Fig. 6, were 
generated by post-processing numerical data (maximum principal 
stresses and integration point volumes) from each FE model to define the 
evolution of σw, calculated using Equation (4), with the value of J. For 
the SENB specimens, JESIS was calculated according to ESIS P2-92 using 
Equation (7), for consistency with the analysis of the test data. For the 
boundary layer models representing SSY, J cannot be obtained from 
Equation (7) so J was instead obtained using contour independent 
J-integrals. 

The probability of cleavage fracture is directly related to the Weibull 
stress via Equation (3). For specimens of the same thickness and there
fore the same value for σu, a horizontal line plotted in Fig. 6 defines a 
specific cleavage fracture probability. Fig. 6 can then be used to predict 
the value of J that corresponds to a given failure probability for any 
other geometry modelled of the same thickness. For specimens of 
different thickness and hence different values of σu, the toughness 
scaling model approach can still be used, but it is more convenient to 
plot Pf instead of σw on the ordinate axis to account for the different 
value of σu for each specimen thickness. 

5. Results 

5.1. Experimental data 

Fig. 7 plots the experimentally measured load vs. LLD curves for the 
SENB specimens together with the corresponding curves from the FE 
analyses. The FE analyses are discussed later in the paper. Most of the 
specimens failed in a brittle manner during a rising load. Examination of 
the fracture surfaces indicated failure occurred predominantly by 
cleavage fracture without significant ductile tearing, depicted by the 
circles in Fig. 7. As an example, the fracture surface for specimen D26 is 
shown in Fig. 8; despite extensive plastic deformation being apparent 
near the free surface, no significant pre-cleavage ductile tearing was 
visible on the fracture surface. In contrast, some of the other thinner 
specimens with B=W ¼ 0.5 did not fail by cleavage before maximum 
load was reached, and for these specimens the point of maximum load is 
represented by squares in Fig. 7. For two specimens, problems during the 
test led to the test being stopped before fracture or maximum load was 
reached, these are shown by diamonds in Fig. 7. 

From Fig. 7 it is evident that the thicker specimens exhibited much 
higher loads than the thinner specimens, as would be expected due to 
the larger cross sectional area and hence greater load bearing capacity, 
and they also exhibited lower displacement values at failure than the 
thinner specimens. In terms of fracture mechanics, it is more useful to 
discuss the results in terms of the measured effective toughness, and this 
was calculated from the area under load vs. displacement curve using 
JESIS (Equation (7)) and converting to Kρ

JC (Equation (8)). These values 
are summarised in Table 5 which tabulates the failure type, load at 
failure, and the values of JESIS and Kρ

JC at failure. 
Fig. 9(a) presents the experimental results in terms of Kρ

JC plotted 
against B=W. Kmat values obtained using the Master Curve (Equation (6)) 
for pre-cracked specimens are also plotted for comparison, with the 
points corresponding to the median value and the error bars denoting 
the 5th and 95th percentile values of Kmat . Fig. 9(a) clearly shows a 
significant reduction in toughness with increasing specimen thickness 
for both acute and blunt notches. These data provide clear experimental 
evidence of the thickness effect that occurs in steel specimens with 
notches. Fig. 9(b) presents the same results as Fig. 9(a) but plotted in the 
same form as Fig. 1 with Kρ

JC/Kmat on the ordinate axis and σN=σ0 on the 
abscissa axis, where σN is calculated using Equation. (1). As the thick
ness of the pre-cracked specimen used to define Kmat is equal to that of 
the notched specimen, the thickness effect in Fig. 9(b) can be attributed 
to the differences in the extents of out-of-plane constraint loss between 
the two specimens. 

Fig. 7. Load vs. displacement curves from the experimental programme showing specimens with (a) an acute notch and (b) a blunt notch.  
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Curves have also been fitted to the test data in Fig. 9(b) using 
Equation (2). These are best-fit curves through the middle of the test 
data, so the normalising toughness Kmat has also been defined at the 
median level. If curves were fitted as a lower-bound, for example 
through the lower 5th percentile of the test data, then the normalising 
toughness Kmat would also be defined at the lower 5th percentile for 
consistency. Although the individual Kρ

JC/Kmat data points would be 
higher in this case, the fitted Kρ

mat/Kmat curve would be unchanged. As 
discussed in Section 2, this is one of the useful aspects of the approach: 
for a given value of σN/σ0, the ratio Kρ

mat/Kmat remains independent of 
load, independent of J, independent of σw, and independent of cleavage 
fracture probability Pf . However, the same Pf must be used for the 
definition of both Kρ

mat and Kmat for consistency. 

5.2. Finite Element analysis 

Fig. 7 compares the load vs. LLD output from the FE analyses with the 
test data. The FE results correlate well with the test data, with the FE 
results lying within the scatter of the test data. For the acute notch with 
ρ=a ¼ 0.017, the FE results slightly over-predict the load at the yield 
point. A reduction in accuracy of FE models around the yield point has 
been observed previously [46] for acute notches when modelling ma
terials that exhibit discontinuous yielding with stress-strain curves that 
retain the Lüders band. The over-prediction of load at the yield point is 
relatively small in the current case, and as fracture of the test specimens 
occurs well beyond yield, this is not expected to have a significant 
impact on the modelling results at failure. 

5.2.1. Calibration of weibull parameter, m 
As discussed earlier, the thick SENB with acute notch was selected as 

Fig. 8. Fracture surface for specimen D26 showing extensive plastic deformation at the free surface but no visible ductile tearing preceding cleavage fracture.  

Table 5 
Experimental results.  

Specimen ID B (mm) W (mm) a (mm) ρ (mm) B/W ρ/a Failure JESIS (kJ/m2)  Kρ
JC(MPa√m)  

Type Load (kN) 

D11 9 18 9 0.15 0.5 0.017 Cleavage 10.80 561 364.2 
D12 9 18 9 0.15 0.5 0.017 Cleavage 11.55 1146 520.7 
D13 9 18 9 0.15 0.5 0.017 Max Load 11.13 898 461.1 
D14 9 18 9 0.15 0.5 0.017 Cleavage 10.38 859 450.9 
D15 9 18 9 0.15 0.5 0.017 Max Load 10.24 658 394.7 
D16 9 18 9 0.15 0.5 0.017 Cleavage 9.65 506 346.0 
D21 9 18 9 1.20 0.5 0.133 Stopped 12.84 2322 741.3 
D22 9 18 9 1.20 0.5 0.133 Cleavage 12.29 2196 721.0 
D23 9 18 9 1.20 0.5 0.133 Cleavage 12.08 2042 695.3 
D24 9 18 9 1.20 0.5 0.133 Max Load 12.10 2852 821.6 
D25 9 18 9 1.20 0.5 0.133 Max Load 11.90 1968 682.6 
D26 9 18 9 1.20 0.5 0.133 Cleavage 11.85 2009 689.5 
E11 15 18 9 0.15 0.833 0.017 Cleavage 17.04 380 299.8 
E12 15 18 9 0.15 0.833 0.017 Cleavage 17.23 382 300.8 
E13 15 18 9 0.15 0.833 0.017 Cleavage 17.56 412 312.1 
E14 15 18 9 0.15 0.833 0.017 Cleavage 16.31 217 226.7 
E15 15 18 9 0.15 0.833 0.017 Cleavage 17.76 421 315.6 
E16 15 18 9 0.15 0.833 0.017 Cleavage 16.49 278 256.6 
E21 15 18 9 1.20 0.833 0.133 Stopped 19.26 1135 518.3 
E22 15 18 9 1.20 0.833 0.133 Cleavage 21.24 1565 608.6 
E23 15 18 9 1.20 0.833 0.133 Cleavage 20.11 1032 494.2 
E24 15 18 9 1.20 0.833 0.133 Cleavage 21.02 1361 567.6 
E25 15 18 9 1.20 0.833 0.133 Cleavage 21.03 1528 601.4 
E26 15 18 9 1.20 0.833 0.133 Cleavage 20.96 1417 579.1  

A.J. Horn et al.                                                                                                                                                                                                                                  



International Journal of Pressure Vessels and Piping 180 (2020) 104025

10

the high constraint geometry A. All six of these specimens failed by 
cleavage without prior ductile tearing and are therefore suitable to use 
for calibration. The thin SENB with blunt notch was selected as the low 
constraint geometry B, but unfortunately only three of these specimens 
failed by cleavage without prior ductile tearing. Calibration of the 
Weibull parameters ideally requires larger datasets – typically ten re
peats at each condition – so the size of the available datasets is much 
smaller than would be preferred. Despite the small calibration datasets, 
an attempt was made to calibrate the parameters. 

To calibrate the Weibull modulus m, initial trial values of m ¼
10,11,12,…,19 were chosen. A plot of the error function RðmÞ vs. m 
indicated a zero value for the function would be achieved with m slightly 
below 10. A second iteration of steps 4a-4c from Section 4.3.1 of the 
paper was therefore carried out for m ¼ 9.0,9.1,9.2,…,9.9. A plot of 
RðmÞ vs. m showed the error function was close to zero at m ¼ 9.1. This 
was taken to be the ‘calibrated’ value of m. Applying step 5 of the pro
cedure resulted in different values of σu/σ0 for each specimen thickness 
modelled, and these values are summarised in Table 6. 

5.2.2. Failure predictions 
Fig. 10 compares the predicted values of Pf , calculated using Equa

tion (12), with the values of σw=σ0 at failure. Predictions for the thinner 
specimens with B=W ¼ 0.5 are shown in Fig. 10(a) and those for the 
thicker specimens with B=W ¼ 0.833 are shown in Fig. 10(b). The 
Weibull stress model tends to over-predict the scatter when using the 
standard Kmin value of 20 MPa√m specified for pre-cracked specimens 
in ASTM E1921. The use of a higher Kmin value reduces the spread of the 
predictions and brings them into closer alignment with the test data, 
however the use of a higher value also raises the question of the most 
appropriate value to select for Kmin when assessing notched specimens 
(the value of 50 MPa√m is an arbitrarily selected value to show the 
sensitivity of the approach to this value). It is therefore convenient to 
consider the results at Pf ¼ 0.632, where the predictions are insensitive 
to the value assumed for Kmin and hence insensitive to σw;min. 

The datasets used for calibration are shown as solid black circles, so 

the predictive capability of the method can be judged by comparing the 
prediction with the open circles. The predictions for the thin specimens 
match very well with the acute notch test data Fig. 10(a), however for 
the thicker specimens the model under-predicts failure of the blunt 
notch specimens Fig. 10(b). Given the relatively small datasets used for 
calibration of m, the close correlation between predictions and test data 
for the thin specimens in Fig. 10(a) is perhaps more surprising than the 
under-prediction of the blunt specimen in Fig. 10(b). 

Fig. 11(a) compares the predicted values of Kρ
JC with the test data, 

plotted against B=W. Kmat values obtained using the Master Curve 
(Equation (6)) for pre-cracked specimens are also plotted for comparison 
at Pf ¼ 0.632. The predictions, which were made at the two discrete B=
W values of 0.5 and 0.833, have been joined together with straight black 
lines for the purposes of clarity, although in reality the trend is unlikely 
to be linear. The predictions would be expected to pass close to the 
centre of the experimental data; although they are reasonable for the 
thinner specimens, there is a tendency to under-predict Kρ

JC for the 
thicker, blunter notch, which is consistent with Fig. 10(b). This same 
trend is also noticeable in Fig. 11(b), which shows the same test results 
and predictions but plotted in a form consistent with Fig. 1. Despite this 
under-prediction, the overall general trend of the variation of Kρ

JC with 
B=W appears broadly reasonable considering the reduction in accuracy 
expected due to the limited data that was available for calibration. 

5.2.3. Toughness scaling to other thicknesses 
Toughness scaling predictions for SENB specimens with thicknesses 

greater than those in the experimental programme are presented in 
Fig. 12. The toughness scaling diagram for the blunt notch radius with 
ρ/a ¼ 0.133 is shown in Fig. 12(a), plotted in terms of Pf on the ordinate 
axis calculated using Equation (12) with Kmin ¼ 20 MPa√m, and J on the 
abscissa axis calculated using Equation (7). Predicted values of effective 
notch toughness are plotted in Fig. 12(b) as a function of B=W, where the 
predictions correspond to Pf ¼ 0.632 for consistency with the results 
presented in Fig. 11(a). The FE predictions indicate that for both notch 
radii, the effective notch toughness becomes relatively insensitive to 
thickness above B=W ¼ 0.833. The test data are in agreement for the 
acute notch, but as the FE under-predicts Kρ

JC for the blunt notch, it could 
be argued that the insensitive region starts closer to B=W ¼ 1.0. 

6. Discussion 

The effect of thickness on effective notch toughness has previously 
been discussed in Ref. [47]. The magnitude of the effect was predicted 

Fig. 9. Experimentally measured Kρ
JC values plotted (a) against specimen thickness B,(b) normalised in the form Kρ

JC/Kmat vs. σN=σ0.  

Table 6 
Calibrated Weibull parameters for different thicknesses.  

B/W m  σu/σ0  

0.5 9.1 3.47 
0.833 3.67 
1.0 3.74 
1.5 3.91  
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Fig. 10. Failure predictions for (a) thin specimens with B/W ¼ 0.5,(b) thick specimens with B/W ¼ 0.833.  

Fig. 11. Failure predictions (a) plotted against B=W,(b) normalised in the form Kρ
JC/Kmat vs. σN=σ0  

Fig. 12. FE predictions for thicknesses up to B=W ¼ 1.5, (a) toughness scaling diagram for ρ=a ¼ 0.133, (b) predictions for both notch radii plotted against.B= W  
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using Weibull stress analysis in Ref. [23], and the test data in this paper 
provide clear experimental evidence of this effect. 

When values of Kρ
JC are plotted without being normalised by Kmat , 

such as in Figs. 9(a) and Figure 11(a), the observed thickness effect is 
due to a combination of two distinct components: primarily a mechan
ical out-of-plane constraint loss effect due to the loss of plane strain 
conditions that occurs with decreasing thickness; and to a lesser degree a 
microstructural weakest link effect which is relevant for cleavage frac
ture. The latter effect arises due a shorter crack front length and hence 
smaller plastic zone volume decreasing the probability of sampling a 
microstructural feature capable of triggering cleavage fracture, 
compared with a thick specimen. Normalising the values of Kρ

JC by the 
corresponding fracture toughness Kmat for a pre-cracked specimen of the 
same thickness, e.g. Figs. 9(b) and Figure 11(b), results in plots that 
show only the mechanical constraint loss effect. 

The overall toughness benefit defined by Kρ
mat/Kmat therefore arises 

due to a combination of the in-plane effect of the notch radius and the 
out-of-plane constraint loss which itself is enhanced by the presence of 
the notch radius. Both the test data and the FE predictions indicate that 
for the thin SENB specimens with B=W ¼ 0.5, the out-of-plane constraint 
loss is as significant as the in-plane effect of the notch radius alone. This 
is consistent with the numerical study of Compact Tension (CT) speci
mens in Ref. [23] which showed the out-of-plane constraint loss effect 
was as significant as the in-plane notch effect for CT specimens with B=
W ¼ 0.5. 

Fracture toughness testing standards such as [38,39] provide mini
mum thickness requirements to ensure that the out-of-plane constraint 
loss is minimised in pre-cracked test specimens, for example [39]: 

B �
100J

σy
(13)  

where J is defined for a pre-cracked specimen. Equation (13) was used to 
design the test programme in this paper, specifically to select the thin
nest possible specimen that would still meet this criterion if the spec
imen was pre-cracked instead of notched. Using the Master Curve to 
define median fracture toughness properties, Equations (6) and (13) 
were solved for a range of trial thickness values to find the lowest integer 
value of B that would satisfy Equation (13), and hence meet the standard 
criterion to ensure plane strain conditions for a pre-cracked specimen. 
This resulted in B ¼ 9 mm (i.e. B=W ¼ 0.5) being chosen for the thinnest 
specimen in the test programme. In contrast, for the test specimens 
containing notches, the results in Fig. 12(b) indicate that a minimum 
thickness closer to B=W ¼ 1.0 is required to minimise out-of-plane 
constraint loss. This finding is consistent with the numerical analysis 
in Ref. [23] which showed that although significant out-of-plane 
constraint loss occurred in CT specimens with B=W ¼ 0.5, doubling 
the thickness to B=W ¼ 1.0 was sufficient to eliminate the out-of-plane 
constraint loss. It is important to note that halving the width W 
instead of doubling the thickness B to achieve the same ratio B=W ¼ 1.0 
would not achieve the same result; not only would the specimen still be 
affected by out-of-plane constraint loss, but the reduced W may also lead 
to in-plane constraint loss. It is therefore important to note that a specific 
B=W ratio should not be regarded as a universal criterion for eliminating 
out-of-plane constraint loss, the ratio has used in this paper only as a 
convenient normalised measure of specimen thickness. Any universal 
criterion for defining the minimum specimen thickness to ensure plane 
strain conditions would be in the form of a modification to Equation 
(13), rather than a single B=W ratio. 

The philosophy adopted in BS7910 [2] is to measure fracture 
toughness using full thickness test specimens, i.e. specimens with a 
thickness B equal to the thickness of the structure being assessed. 
Although this is appropriate for assessing cracked structures using 
pre-cracked test specimens which meet the minimum thickness re
quirements, test specimens containing notches are more likely to suffer 
from out-of-plane constraint loss than pre-cracked specimens of the 

same thickness. Therefore, even full-thickness test specimens may 
exhibit higher toughness than would be expected if conditions were fully 
plane strain. Using such a value of Kρ

mat would be non-conservative in an 
NFAD assessment if the non-sharp defect in the structure being assessed 
was in plane strain, for example the deepest part of a long 
surface-breaking notch. 

7. Conclusions 

The main conclusions of this work are as follows:  

� The test data in this paper provide clear experimental evidence of a 
significant thickness effect on the effective cleavage toughness Kρ

mat 
measured using SENB specimens containing a U-notch instead of a 
pre-crack. This effect is over and above the microstructural weakest 
link effect arising from differences in the volume of the plastic zone.  
� The toughness benefit due to the notch, Kρ

mat / Kmat , is a function of 
both the in-plane effect of the notch radius and an out-of-plane 
constraint loss which itself is enhanced by the presence of the 
notch radius. The test data and FE modelling results indicate that the 
effect of this out-of-plane constraint loss on Kρ

mat / Kmat can be of the 
same order of magnitude as the in-plane effect of the notch radius 
alone.  
� For the material considered in this paper, significant out-of-plane 

constraint loss occurred for notched specimens with B=W ¼ 0.5, a 
geometry that if pre-cracked would have met the minimum thickness 
requirement mandated by ASTM E1820.  
� Doubling the thickness to B=W ¼ 1.0 was sufficient to eliminate the 

out-of-plane constraint loss for the material and geometry consid
ered, an observation consistent with a previous numerical study 
[23]. Kρ

mat was relatively insensitive to thickness for B=W>1.0.  
� The use of experimentally measured Kρ

mat values in an NFAD 
assessment of a structure may be non-conservative if B=W<1.0, due 
to the loss of plane strain conditions in the test specimen. 
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