
Journal of Computational and Applied Mathematics 399 (2022) 113706

d
a
g
o
d
m
a
t
e

e

h
0

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Parallel tridiagonalmatrix inversionwith a hybrid
multigrid-Thomas algorithmmethod
J.T. Parker a,b,∗, P.A. Hill c, D. Dickinson c, B.D. Dudson c

a United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14
3DB, UK
b Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
c York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK

a r t i c l e i n f o

Article history:
Received 9 December 2020
Received in revised form 4 May 2021

MSC:
65M55
65Y05

Keywords:
Tridiagonal matrix inversion
Multigrid
Parallel computing

a b s t r a c t

Tridiagonal matrix inversion is an important operation with many applications. It arises
frequently in solving discretized one-dimensional elliptic partial differential equations,
and forms the basis for many algorithms for block tridiagonal matrix inversion for
discretized PDEs in higher-dimensions. In such systems, this operation is often the
scaling bottleneck in parallel computation. In this paper, we derive a hybrid multigrid-
Thomas algorithm designed to efficiently invert tridiagonal matrix equations in a
highly-scalable fashion in the context of time evolving partial differential equation
systems. We decompose the domain between processors, using multigrid to solve on
a grid consisting of the boundary points of each processor’s local domain. We then
reconstruct the solution on each processor using a direct solve with the Thomas
algorithm. This algorithm has the same theoretical optimal scaling as cyclic reduction
and recursive doubling. We use our algorithm to solve Poisson’s equation as part of the
spatial discretization of a time-evolving PDE system. Our algorithm is faster than cyclic
reduction per inversion and retains good scaling efficiency to twice as many cores.

Crown Copyright© 2021 Published by Elsevier B.V. All rights reserved.

1. Introduction

Tridiagonal matrix inversion is an important operation with many applications, including in computational fluid
ynamics [1], plasma physics [2], Poisson solvers [3], preconditioning of iterative solvers [4], cubic spline interpolation [5],
nd computer graphics [6]. It arises frequently in the discretization of partial differential equation systems on structured
rids, particularly those involving the solution of elliptic equations, like Laplace’s or Poisson’s equation. The discretization
f operators in one dimension using centred second-order finite differences leads to tridiagonal systems, while the
iscretization in two or more dimensions leads to block tridiagonal systems. Developing efficient solvers for tridiagonal
atrix inversion is useful beyond one-dimensional systems however, as methods for equations in multiple dimensions
re often based on one-dimensional approaches. For example, the Alternating Direction Implicit (ADI) method for implicit
ime advance inverts a tridiagonal system for each dimension independently. Similarly, Naulin’s method [7] for inverting
lliptic operators in two or three dimensions is based on iterative corrections to a one-dimensional solver.
Tridiagonal systems may be inverted optimally in serial using the Thomas algorithm, a special case of Gaussian

limination that requires only O(Nx) operations, for Nx the dimension size. The Thomas algorithm is inherently sequential:

∗ Corresponding author at: United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon,
OX14 3DB, UK.

E-mail address: joseph.parker@ukaea.uk (J.T. Parker).
ttps://doi.org/10.1016/j.cam.2021.113706
377-0427/Crown Copyright © 2021 Published by Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2021.113706
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2021.113706&domain=pdf
mailto:joseph.parker@ukaea.uk
https://doi.org/10.1016/j.cam.2021.113706

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

s
s
s

c
t
a

t
a
h
g
r
a

a
H
t
c
a
e
a
p
a
o
o

it consists of two passes – forwards and backwards through the matrix rows – where each step depends on the previous
step. Elimination of unknowns is only possible because the passes reach the boundaries of the global domain, with the
boundary rows coupling two unknowns, rather than three unknowns as in the rest of the domain.

Many solvers exist for parallel tridiagonal matrix inversion [see for example 8, §5.5 for a review]. A fast, approximate
olution is given by the Parallel Diagonal Dominant (PDD) method [9,10]. This decomposes the tridiagonal system as a
eries of subsystems, one for each processor, and treats the coupling between subsystems as small corrections. While this
cales ideally, the approximation is not valid unless the coupling terms are indeed negligible.
Exact parallel solutions have a theoretical minimum run time of O(logNx) [8]. The first solvers to achieve this were

yclic reduction [3] and recursive doubling [11,12]. These are direct solvers based on computing the LU factorization of
he tridiagonal system from independent, and therefore parallelizable, components. In these solvers, the O(logNx) scaling
rises from the tree-like movement of data.
The SPIKE algorithm [13,14] is a recursive method for solving tridiagonal, and more general banded and block

ridiagonal, systems. It is motivated by using a factorization based on a domain decomposition method which is more
menable to parallelization than the LU factorization used in cyclic reduction and recursive doubling. The SPIKE algorithm
as two layers of solvers: an inner and an outer solver. The inner solver reconstructs the solution on local subdomains,
iven the solution from the outer solver, which solves a reduced system for the coupling of the subdomains. Since the
educed system takes the same form as the original system (in our case, the reduced system for a tridiagonal matrix is
lso tridiagonal), the inner solver is applied recursively.
In this paper, we introduce an algorithm with the same domain-decomposition factorization as the SPIKE and PDD

lgorithms. As our local subdomain systems are tridiagonal, we use the Thomas algorithm as an inner direct solver.
owever, rather than using a recursive direct solve as described in [13], we use multigrid, an iterative method, for
he reduced system. The motivation for this is two-fold. Firstly, we wish to minimize data movement, and therefore
onsider an iterative method that only requires local guard cell swaps, rather than global communications. Secondly, we
re interested in inverting tridiagonal systems as part of a larger initial value problem. We therefore have a good initial
stimate for the solution – namely, the solution from the previous timestep – and wish to take advantage of this by using
n iterative method. Iterative methods also allow control of convergence tolerances, while multigrid in particular has many
arameters that can be tuned to optimize a specific simulation, such as number of levels, number of smoothing cycles,
nd different options for the smoothing, prolongation and refinement methods. Finally, as the operator to be inverted is
ften constant or slowly-varying throughout a simulation, many quantities in our algorithm can be cached, reducing the
verall work. Where not strictly constant, corrections can be applied using an outer solver.
The local Thomas algorithm inversions require O(Nx/Np) operations, where Nx and Np are the total number of grid

points and processors respectively. The multigrid method converges to a given tolerance in a fixed number of cycles, so
(as we shall see in Sec. 2) the number of operations per processor is O(1) independent of problem size, while the number
of guard cell communications grows slowly as O(logNp). In addition, the cost of convergence checking scales empirically
as O

(
N5/4
p

)
. Thus the overall runtime of our algorithm is T = O(Nx/Np)+O(logNp)+O

(
N5/4

p

)
. We find experimentally

that the ideal scaling region persists across most core counts, with performance only degrading once there are ∼ 8 points
per processor.

This paper is structured as follows. In Section 2 we derive our hybrid method and discuss complexity and communica-
tion requirements. In Section 3 we present numerical experiments using different solvers in a plasma filament simulation
using the BOUT++ package [15]: we compare our hybrid multigrid-Thomas method to parallel cyclic reduction, a pure
multigrid implementation, and a direct solver that replaces the multigrid component of our algorithm with a direct solve
on a single core (requiring an additional gather/scatter communication). In Section 4 we summarize and discuss future
work.

2. Hybrid multigrid-Thomas algorithm method

In this section we derive our hybrid algorithm. We begin by discussing the solution of local tridiagonal systems on
subdomains in Section 2.1, and then derive the reduced system which couples the subdomains in Section 2.2. We describe
our implementation of multigrid for the reduced system in Section 2.3 and the calculation of error tolerances in Section 2.4.
In Section 2.5 we derive the theoretical runtime of our algorithm. Finally in Section 2.6 we discuss techniques for reducing
the amount of communication in the algorithm.

2.1. Local solves with the Thomas algorithm

We solve the n × n tridiagonal linear system Mx = f ,⎛⎜⎜⎜⎜⎜⎜⎝

b0 c0
a1 b1 c1

a2 b2 c2
. . .

. . .
. . .

an−2 bn−2 cn−2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

x0
x1
x2
...

xn−2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

f0
f1
f2
...

fn−2

⎞⎟⎟⎟⎟⎟⎟⎠ . (1)
an−1 bn−1 xn−1 fn−1

2

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706
We divide the domain x using p processors such that n = mp and there are m points per processor, and the rows qm to
(q + 1)m − 1 are local to the qth processor,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 c0
. . .

. . .
. . .

aqm−1 bqm−1 cqm−1
aqm bqm cqm

. . .
. . .

. . .

a(q+1)m−1 b(q+1)m−1 c(q+1)m−1
a(q+1)m b(q+1)m c(q+1)m

. . .
. . .

. . .

amp−1 bmp−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
.
.
.

xqm−1
xqm
.
.
.

x(q+1)m−1
x(q+1)m

.

.

.

xmp−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0
f1
.
.
.

fqm−1
fqm
.
.
.

f(q+1)m−1
f(q+1)m

.

.

.

fmp−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

The terms outside the block diagonal, aqm and c(q+1)m−1, contribute to the equations in processor q’s rows, but depend on
terms local to the neighbouring processors, and therefore require communication. To emphasize this, we introduce halo
cells (denoted with superscript h),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

aqm−1 bqm−1 cqm−1
1 0 −1

−1 0 1
aqm bqm cqm

. . .
. . .

. . .

a(q+1)m−1 b(q+1)m−1 c(q+1)m−1
1 0 −1

−1 0 1
a(q+1)m b(q+1)m c(q+1)m

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

xqm−1

xhqm
xhqm−1

xqm
...

x(q+1)m−1

xh(q+1)m

xh(q+1)m−1

x(q+1)m

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

fqm−1
0
0
fqm
...

f(q+1)m−1
0
0

f(q+1)m
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)

Focussing on the equations local to the qth processor, we have

Mqx =

⎛⎜⎜⎜⎜⎜⎜⎝

1
aqm bqm cqm

. . .
. . .

. . .

a(q+1)m−1 b(q+1)m−1 c(q+1)m−1

1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

xhqm−1

xqm
...

x(q+1)m−1

xh(q+1)m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

0
fqm
...

f(q+1)m−1

0

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝

xqm−1

0
...

0
0

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
x(q+1)m

⎞⎟⎟⎟⎟⎟⎟⎠ .
(4)

3

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706
We may solve for x by inverting Mq, which is local to processor q, to obtain⎛⎜⎜⎜⎜⎜⎜⎜⎝

xhqm−1

xqm
...

x(q+1)m−1

xh(q+1)m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= M−1

q

⎛⎜⎜⎜⎜⎜⎜⎝

0
fqm
...

f(q+1)m−1

0

⎞⎟⎟⎟⎟⎟⎟⎠+ M−1
q

⎛⎜⎜⎜⎜⎜⎜⎝

xqm−1

0
...

0
0

⎞⎟⎟⎟⎟⎟⎟⎠+ M−1
q

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
x(q+1)m

⎞⎟⎟⎟⎟⎟⎟⎠ . (5)

This may also be written

x = M−1
q f + αxqm−1 + βx(q+1)m, (6)

where x = (xhqm−1, xqm, . . . , x(q+1)m−1, xh(q+1)m), f = (0, fqm, . . . , f(q+1)m−1, 0), and α and β are the first and final columns of
M−1

q respectively. Note also that M−1
q f , α and β are all calculated using only data that is local to processor q. Moreover

M−1
q , α and β only change when the original operator M changes, and f only changes when the right-hand side changes.

That is, (M−1
q f), α, β and f are always constant within a timestep, and, when M is time-independent, M−1

q , α and β are
constant throughout the whole simulation.

Given vectors (M−1
q f), α and β , Eq. (6) allows us to construct the full solution on processor q from the values xqm−1

and x(q+1)m. These values are respectively the final interior point on the processor below and the first interior point on
the processor above. We also note from (5) that processor q’s first and last interior points xqm and x(q+1)m−1 depend on
the neighbouring points xqm−1 and x(q+1)m only. Other interior points, shown by ellipses in (5), are never required. We
may therefore construct the solution on every processor using a reduced grid that contains only the points either side
of processor boundaries, the 2(p − 1) variables {. . ., xqm−1, xqm, x(q+1)m−1, x(q+1)m, . . . }. Moreover, it is only necessary to
solve for the first interior points in each domain, as we can reconstruct the last interior points using (5). For example, if
processor q knows its first interior point xqm and its up-neighbour’s first interior point x(q+1)m, we may calculate xqm−1
from the first (interior) row of (5). We thus solve on the reduced grid

X = (X0, X1, . . . , Xq, . . . , Xp−1, Xp)T ≡ (x0, xm, . . . , xqm, . . . , x(p−1)m, xmp−1)T . (7)

This is a grid of (p+ 1) points: the p first interior points, plus the final interior point on the final processor. Including the
final point on this grid means we do not need to modify the boundary conditions from the original problem, since both
x0 and xmp−1 are on both the full and the reduced grid. Moreover, multigrid requires grids of size 2k

+ 1, so this choice
allows us to use processor counts of 2k (rather than the more awkward 2k

− 1).

2.2. Equations for the reduced system

To derive equations for the reduced grid X , we consider the first and last interior rows of (5),

xqm = r lq + αl
qxqm−1 + β l

qx(q+1)m, (8a)

x(q+1)m−1 = ruq + αu
qxqm−1 + βu

q x(q+1)m, (8b)

where l and u denote the lower and upper interfaces respectively, r lq = (M−1
q f)qm, ruq = (M−1

q f)(q+1)m−1, αl
q = αqm,

αu
q = α(q+1)m−1, β l

q = βqm and βu
q = β(q+1)m−1. We may substitute the lower interface variables in favour of X elements,

to yield

Xq = r lq + αl
qxqm−1 + β l

qXq+1, (9a)

x(q+1)m−1 = ruq + αu
qxqm−1 + βu

qXq+1. (9b)

To obtain an equation solely for Xq it is sufficient to eliminate xqm−1 from (9a). To do this, we consider the corresponding
equations on processor q − 1,

Xq−1 = r lq−1 + αl
q−1x(q−1)m−1 + β l

q−1Xq, (10a)

xqm−1 = ruq−1 + αu
q−1x(q−1)m−1 + βu

q−1Xq. (10b)

Eliminating x(q−1)m−1 between these, we obtain an expression for xqm−1,

xqm−1 =

(
ruq−1 −

αu
q−1
l r lq−1

)
+

αu
q−1
l Xq−1 +

(
βu
q−1 −

αu
q−1
l β l

q−1

)
Xq. (11)
αq−1 αq−1 αq−1

4

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

w
A
T
q
t

α

t

o
i
m
p
s

2

t
t
t
o

m
t
t
r
i
i

H
M
t
t
s

I
a

Algorithm 1: A sketch of 2-level multigrid

while residual ∥g − AX̂∥ is too large do
smooth, i.e., perform a few iterations of a method like Jacobi or Gauss–Seidel to improve X̂ , the approximate solution
to AX = g;
calculate the residual r = ∥g − AX̂∥ = ∥A(X − X̂)∥;
restrict the residual r by approximating it onto a coarser grid;
obtain an approximation solution to Ace = rc , where e = X − X̂ , and Ac and rc are approximations to the original
operator and the residual on the coarser grid;
prolong the solution e by interpolating it onto the original grid;
update the approximate solution X̂ to X̂ + e ≈ X;

end

Substituting this into (9a), we obtain

Xq =
1
∆

[
r lq + αl

q

(
ruq−1 −

αu
q−1

αl
q−1

r lq−1

)
+ αl

q

αu
q−1

αl
q−1

Xq−1 + β l
qXq+1

]
,

∆ = 1 − αl
q

(
βu
q−1 −

αu
q−1

αl
q−1

β l
q−1

)
,

(12)

hich is simply Xq as a linear combination of Xq−1, Xq+1 and a constant, i.e., it is a tridiagonal system which we write as
X = g . In (12), terms with subscript q− 1 are not local to processor q and must be communicated from processor q− 1.
he terms containing α and β depend on the system matrix M , so may be calculated and communicated once by processor
−1, and then stored on processor q. Terms containing r depend on f and so must be calculated and communicated every
imestep.

Note also that αl is an element from the inverse of a tridiagonal matrix, and is only zero if αu is also zero. If
l
q−1 = αu

q−1 = 0, we use (10b) directly to eliminate xqm−1 from (9a). This yields the same expression (12), but with
he ratio αu

q−1/α
l
q−1 = 0.

Eq. (12) defines a tridiagonal system for Xq. The size of the system is (p + 1) × (p + 1), so grows with the number
f processors, even though the underlying system for xi has fixed size n × n. This means that the reduced system and
ts properties change as we vary the number of processors. For example, if we were to solve for Xq using an iterative
ethod, we would expect the number of iterations required to reach a tolerance to change as we change the number of
rocessors. This is in contrast to more conventional approach of parallelizing serial algorithms where system properties
hould not depend on processor count.

.3. Multigrid

We now consider solving system (12) for X for a fixed problem size n × n. We consider iterative methods as these
ypically require nearest neighbour halo cell communications, rather than global collectives. At high core counts, we expect
he algorithm to be latency-bound — the limit to performance is the rate of passing small amounts of data, rather than
he rate at which work is performed. In this regime, the total number of iterations is a better measure of the algorithm’s
verall cost than complexity.
Let us first consider using a simple iterative method, like Jacobi or Gauss–Seidel. The rate of convergence of these

ethods depends on the largest eigenvalue of the system matrix A, but the number of iterations required to reach a
olerance typically increases with increasing problem size. Although our original problem is of fixed size, as we increase
he number of processors, the size of the reduced problem for X increases. We find the increased number of iterations
equired for convergence offsets the speed-up from increased parallelism, and the algorithm does not scale with simple
terative approaches. We therefore consider multigrid methods, which typically require many fewer iterations than simple
terative methods for large problem sizes.

Multigrid originated in the 1960s and 1970s with the theoretical work of Fedorenko [16], Bakhvalov [17] and
ackbusch [18], and the numerical work of Brandt [19,20] (see [21] for a brief overview of multigrid development).
ultigrid has since grown into a widely-developed subject [22–24]. The multigrid method is motivated by the observation

hat when solving AX = g by iterative methods, the long wavelength contributions to the residual r = g −AX̂ (where X̂ is
he approximate solution) decay much more slowly than short, grid-scale contributions. We can write r as the right-hand
ide of an equation for the error e = X − X̂ ,

Ae = AX − AX̂ = g − AX̂ = r. (13)

f we solve Ae = r on a grid that is coarser than the original grid, then errors that are long wavelength on the original grid

re now shorter wavelength relative to the coarse grid, and therefore decay more quickly. Taking the solution e to (13)

5

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

w
t

a
(
c
s
d

b
t
i

e

2

t
f

f

f

f

G
m
w

2

i

for the coarse grid and projecting back onto the original grid, we obtain an updated approximation for X̂ → X̂ + e ≈ X
hich is much improved at long wavelengths. An outline of multigrid with two levels is given in Algorithm 1. Iterating
his idea, we may solve Ae = r on a hierarchy of nested grids of varying coarseness to obtain an approximation that
converges quickly at all wavelengths. The standard grid has 2kl + 1 points on each level with grid spacing doubling with
each coarsening.

There are many variants of a multigrid method, as one can use different algorithms for each component part.
There are three main components: (1) smoothing, iterations of a solver like Jacobi or Gauss–Seidel to improve the
pproximate solution on a given grid; (2) restriction, approximating the residual from a fine grid onto a coarser grid; and
3) prolongation, interpolating a solution from a coarse grid onto a finer grid. In addition to these, there are different
hoices of cycles, i.e., when to traverse between different grid levels. In the simplest of these, the V cycle, the algorithm
tarts on the finest grid, smooths and coarsens on each level in turn. On reaching the coarsest grid, the algorithm reverses
irection, in turn smoothing and refining on each level. Other common choices are the W cycle and the F cycle [22].
The important property shared by all multigrid variants is that the norm of the residual ∥r∥ = ∥g − AX̂∥ decreases

y a fixed factor every cycle (excepting cases where the algorithm has failed). This ensures that the solution converges
o a fixed tolerance in a finite number of cycles. We show later that this ensures that multigrid requires total work that
ncreases linearly with problem size ∼ O(n), and the number of halo cell communications grows slowly as ∼ O(log2 p).

Owing to these properties, any multigrid variant should perform well. We now give details of the implementation we
benchmark in Section 3, namely smoothing with red–black Gauss–Seidel, restriction with the ‘‘full-weighting’’ operator,
and prolongation with linear interpolation. With these choices, the norm of the residual reduces from ∥r∥ to 0.06∥r∥ for
very V cycle [22, Table 4.2], a convergence rate we observe in our implementation.

.3.1. Red–black Gauss–Seidel
Red–black Gauss–Seidel is a parallelizable variant of the Gauss–Seidel method for obtaining an approximate solution

o AX = g . Alternate grid points are labelled red and black, and the approximate solution X̂ is updated in two passes, first
or red points,

X̂+

2k =
1
b2k

(
r2k − a2kX̂2k−1 − c2kX̂2k+1

)
, (14a)

or k = 0, . . . , (n + 1)/2, and then for black points,

X̂+

2k+1 =
1

b2k+1

(
r2k+1 − a2k+1X̂+

2k − c2k+1X̂+

2k+2

)
, (14b)

or k = 0, . . . , (n − 1)/2. Here X̂+ denotes the updated approximation to X̂ . Importantly, each red update depends only
on black points, and vice versa, meaning that each update in a pass is independent and can be performed in parallel. This
is unlike the original Gauss–Seidel method

X̂+

k =
1
bk

(
rk − akX̂+

k−1 − ckX̂k+1

)
, (15)

or k = 0, . . . , n, where each update has a serial dependence on the previous update X̂+

k−1. In both (14) and (15) half
the grid points used in the update are from the current approximation X̂ and half are from the update X̂+. In red-black
auss–Seidel, these are grouped so that all red points are updated using X̂ , and all black points are updated using X̂+. This
eans that the residual r2k+1−AX̂+

2k+1 = 0 by construction for all black points. This allows us to omit some communication
hen constructing the residual on the coarse grid.

.3.2. Prolongation
Prolongation, or interpolation, is the procedure for approximating a coarse grid solution on a finer grid. We use linear

nterpolation; this may be represented by the matrix I in

IX c
=

1
2

⎛⎜⎜⎜⎜⎜⎝
2
1 1

2
1 1

2

⎞⎟⎟⎟⎟⎟⎠
⎛⎝X c

0

X c
1

X c
2

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
X c
0

(X c
0 + X c

1)/2
X c
1

(X c
1 + X c

2)/2
X c
2

⎞⎟⎟⎟⎟⎟⎠ = X f , (16)

where X c and X f represent matrices on coarse and fine grids respectively.

2.3.3. Restriction
Restriction is the opposite operation to prolongation, namely approximating a finer grid vector on a coarser grid. As

multigrid grids are nested, it is tempting to simply take values from corresponding grid points. However, the coarse grid
problems better retain the properties of the full problem if the restriction operation R is proportional to the transpose of
6

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

w

w
r
b
g

2

w

a

w
w

o

e
c

the interpolation operation, R = IT [22]. In the case of the linear interpolation, the restriction operator is called the full
eighting operator, and is

RX f
=

1
4

⎛⎝ 2 1
1 2 1

1 2

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

X f
0

X f
1

X f
2

X f
3

X f
4

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎝ (2X f
0 + X f

1)/4

(X f
1 + 2X f

2 + X f
3)/4

(X f
3 + 2X f

4)/4

⎞⎟⎠ = X c . (17)

2.3.4. Coarse grid problems
Whatever choice is made for restriction R and prolongation I , the matrix of the problem to solve on the coarse grid is

found from the following consideration. Writing the coarse and fine grid problems AcX c
= gc and Af X f

= g f respectively,
we have

Af X f
= g f

Af IX c
= Igc

RAf IX c
= RIgc

≈ g f

H⇒ Ac
≡ RAf I.

(18)

For each level of multigrid, we therefore construct the system matrix Ac for the system matrix of the level above Af . When
A is fixed throughout a simulation, each of the coarse grid matrices may be calculated once during initialization. Note that
the coarse grids on every level are tridiagonal.

Coarse grid coefficients. With linear interpolation (16) and full weighting (17), the elements of the coarse matrix Ac are

ac =
1
4
af− +

1
8
bf− +

1
4
af (19a)

bc =
1
8
bf− +

1
4
c f− +

1
4
af +

1
2
bf +

1
4
c f +

1
4
af+ +

1
8
bf+ (19b)

cc =
1
4
c f +

1
8
bf+ +

1
4
c f+, (19c)

here a, b and c are the sub-, on-, and super-diagonal elements of either Ac or Af , depending on superscript. Terms on the
ight-hand side with no subscript are evaluated at the same grid point as the left-hand side term — the point is shared
etween the grids. Terms with subscript plus or minus are evaluated at the point above or below respectively on the finer
rid. These points do not exist on the coarser grid.

.4. Convergence checking and residual calculation

To check for convergence, we adopt the weighted error measure used in the ODE solver PVODE [25],

∥E∥ ≡

[
Nx−1∑
i=0

1
Nx

(wiEi)2
]1/2

, (20)

here Ei is the elementwise residual for the original (not reduced) problem,

Ei = |(f − Mx)i|, (21)

nd wi is a weight accounting for both absolute and relative error,

wi =
1

rtol|xi| + atol
, (22)

ith rtol and atol user inputs for the required relative and absolute tolerances respectively. The method is converged
hen ∥E∥ < 1.
This choice of error measure has a number of advantages. Firstly, it allows direct comparison between the errors in

ur inversion algorithm and the errors in the iterative PVODE time advance algorithm.
Secondly, by combining relative and absolute tolerances in a single weight, it allows the algorithm to converge when

ach point is converged in either the absolute or the relative error. This is in contrast to the other commonly-used error
onditions

E ≡ ∥f − Mx∥ < atol, E ≡ ∥f − Mx∥/∥x∥ < rtol, (23)
A R

7

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

r
w

r
f
r
p
p
t
r

w

a

T
e

I
t
S
w

i

where ∥ · ∥ is the Euclidean norm. The latter requires all points to converge in one of the absolute or relative measures,
ather than allowing some points to converge in one and some in the other. This means that the algorithm is more robust
hen using the PVODE error measure (20).
Finally, we note that the errors (20) and (23) are written in terms of the original problem Mx = f , not the

educed problem AX = g that is solved by our algorithm. This is potentially a problem, as reconstructing x from X
or every convergence check would represent a large amount of work relative to the other operations in an iteration —
econstructing the solution is O(Nx/Np) operations per processor, while the multigrid work for a processor’s single X grid
oint is O(1). However, we may write (20) in terms of the reduced problem. Given any boundary values Xq and Xq+1 for
rocessor q, our algorithm constructs a solution which satisfies Mx = f on the interior points of q. Thus by construction,
he residuals of interior points are zero. Moreover, the values of x in boundary cells correspond to the values on the
educed X grid. Therefore we may write (20) as

∥E∥ ≡

⎡⎣Np−1∑
q=0

1
Nx

(
ŵqÊq

)2⎤⎦1/2

, (24)

here the elementwise error Êq is now

Êq = |(g − AX)q|, (25)

nd the weight ŵq is now

ŵq =
1

rtol|Xq| + atol
. (26)

hus ∥E∥ may be computed without knowing the full solution x; this is not possible with the error (23), as the relative
rror ∥ER∥ cannot be computed without knowing all of x.

2.5. Complexity and communication

Algorithm 2: Iterative tridiagonal solver
Initialize left-hand side. Invert local matrix to calculate coefficients for constructing the solution from halo cells. Use these
coefficients to calculate coefficients of the matrix of the reduced problem. Calculate coarsened versions of this matrix for each
multigrid level. When M is constant, cache these values;
nitialize right-hand side. Invert local problem to calculate coefficient for constructing the solution arising from M−1f . Calculate this
erm’s contribution to the reduced system’s equations. These terms cannot be cached, as f changes every timestep;
et initial guess to solution from previous timestep;
hile true do
smooth solution using Gauss–Seidel with red-black colouring;
if done enough smoothings at this level then

calculate the residual;
if not enough subiterations then

continue;
else if residual tolerance met then

exit;
else if refining then

refine the grid;
update solution using residual calculated on previous level;
reset smoothing count;
if now on finest grid then

stop refining, start coarsening;

else
coarsen the grid;
reset smoothing count;
if now on coarsest grid then

stop coarsening, start refining;

Cache reduced solution for use on next timestep;
Construct full solution from halo cell values;

An outline of the full algorithm is given in Algorithm 2. As there is little opportunity for computation/communication
overlap, the total runtime is proportional to the runtime for the different components.

The cost of solving the local subsystems with the Thomas algorithm is O(Nx/Np). As these are local to processor, there
s no communication cost.
8

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

t
(
f
t
s
c
n

s
a

c
a
o

c
a

i
s

W
b

2

2

i
∂

t
s
c
k

d
a

2

The scaling for multigrid component of our algorithm is slightly different from usual multigrid scaling, as the size of
he multigrid system varies with processor count. The complexity of a multigrid system of size Nx is calculated as follows
see for example [24], §§2.4.3 and 6.2.1). Consider solving in serial. The error reduction per V cycle is independent of the
inest grid size, so reducing the residual from O(1) to a given tolerance takes a constant number of V cycles. Therefore
he total work is proportional to the work in one V cycle. The work on level k of a V cycle is proportional to the grid
ize Wk = CNk. Summing all levels and noting that the ratio of neighbouring grid sizes is approximately constant (in our
ase ρ = Nk−1/Nk = (2k−1

+ 1)/(2k
+ 1) ≈ 1/2), we find the total work is W =

∑l
k=1 Wk = CNl

∑l−1
k=0 ρk, where l is the

umber of multigrid levels and Nl = Nx is the resolution of the finest grid. Thus work is O(Nx), as ρ < 1.
In parallel, the work can be distributed over all processors, so the runtime is O(Nx/Np). There are however now two

ources of communication cost: nearest neighbour communications in smoothing, refining and prolongation, and a global
ll reduce to synchronize the summed residual for convergence checking.
The nearest neighbour communications are performed a fixed number of times per iteration. While the number of V

ycles is independent of Nx and Np, the number of iterations per V cycle increases with the number of multigrid levels,
nd therefore increases with Nx according to Nx = 2l

+1. With two visits to each level per V cycle, this implies the number
f iterations is Ni = 2l = 2 log2(Nx − 1) so the nearest neighbour communication time scales as O(log2 Nx).
The all reduce to synchronize summed residuals in the convergence check is performed once per V cycle, i.e. O(1)

alls. The cost of the all reduce depends on the implementation, machine (and machine state!) but we observe it to be
round O

(
N5/4

p

)
. The total cost of multigrid is therefore O(Nx/Np) + O(log2 Nx) + O

(
N5/4

p

)
.

Now considering our implementation, our grid size is Np + 1, so that the amount of multigrid work on each processor
s O((Np + 1)/Np) ∼ O(1) and the number of nearest neighbour communications is O(log2 Np). The global all reduce
till scales as O

(
N5/4

p

)
. Our expected runtime is therefore

T = A
Nx

Np
+ B log2(Np) + C + DN5/4

p . (27)

hile this theoretical runtime has the same scaling as parallel cyclic reduction, we see in Sec. 3 that our method yields
etter scaling for an initial value problem.

.6. Minimizing communication

As communication dominates our algorithm’s cost at scale, we consider some methods for reducing communication.

.6.1. Simultaneous solution of subsystems
We often need to invert many independent tridiagonal systems with different coefficients. This arises for example in

nverting a two-dimensional Laplacian with a Fourier transform in one of the dimensions, ∇
2

= ∂2/∂x2 + ∂2/∂z2 ↦→
2/∂x2 − k2z , where the x dimension is distributed, but the z direction is local to processor. We then have Nz independent
ridiagonal systems in x, parameterized by kz . Each processor holds the data for its x-subdomain for each of the Nz
ystems. We could invert these systems one at a time. However, doing so requires O(

∑
kz Ni(kz)) ∼ O(Nz N̄i) halo cell

ommunications of a single number, where Ni and N̄i are the number of iterations as a function of kz and its average over
z . This is inefficient due to the overheads of sending many small messages.
Instead, we perform the inversion for each system simultaneously, and communicate vectors of length Nz . While this

oes not significantly increase the cost of each send, it decreases the number of sends to O(maxNi), which is smaller by
round a factor of Nz . To prevent unnecessary work, we skip loop iterations for the kz modes that have converged.

.6.2. Predicting convergence
At large core counts, the dominant communication cost is from the all reduce needed to synchronize the summed

error E (24) to ensure all processors exit on the same iteration. To minimize all reduce calls we take advantage of the
fact that the error reduction per V cycle, R = E+/E, is constant when the algorithm is proceeding normally. The constant
R depends on the smoothing, prolongation and refinement methods, and are tabulated in [22, Table 4.2]. We compute R
using the errors from the second and third V cycles (the first cycle is often atypical) and use it to predict the number of
further V cycles needed for the slowest converging kz to meet the error tolerance. We then do not calculate the global
summed error – thus skipping the all reduce – until all modes are expected to have converged.

In our experiments, this reduced the number of all reduce calls from ∼ O(7) to 3. Unfortunately, the decrease in
communication time is offset by an increased amount of work required: since we no longer know which modes have
converged, we can no longer skip the corresponding work. Whether this yields a performance improvement appears to
be problem-dependent. We have therefore left this as an option in our implementation, but have not used this method
in our results presented in Section 3.
9

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

d
B

i
i
(
B
t
g
t
s

i
i
c
i
m
T
O
G
s
l
r
i
g

C
a
a
j
a
u

R
a
a
r
t
R
u
u
t
t
o
n

3

(
t
r
p

3. Numerical experiments

We now assess the performance of our algorithm by using it to invert a discretized Laplacian in a time-evolving partial
ifferential equation system. We consider a simple model for plasma filament propagation, the ‘‘blob2d’’ example in
OUT++ [15],

∂n
∂t

= −{φ, n} + 2
∂n
∂z

+ Dn∇
2n, (28a)

∂Ω

∂t
= −{φ, Ω} + 2

∂n
∂z

+ DΩ (∇2Ω)/n, (28b)

∇
2φ = Ω, (28c)

n a two-dimensional box (x, z) with Dirichlet boundary conditions in x and periodic boundary conditions in z. In (28), n
s plasma density, Ω is vorticity, φ is electrostatic potential, t is time, Dn and DΩ are dissipation parameters, and {A, B} =

∂A/∂x)(∂B/∂z) − (∂A/∂z)(∂B/∂x) is a Poisson bracket. We use the two-dimensional Laplacian ∇
2

≡ ∂2/∂x2 + ∂2/∂z2.
etween each timestep, the vorticity equation (28c) must be solved for φ so its value can be used in (28a) and (28b)
o advance n and Ω . We use φ at the current timestep as an initial guess for the iterative method (and φ = 0 as the
uess for the first time step). We parallelize only in the x direction, with the z direction remaining local to processor. As
he domain is periodic in z, we Fourier decompose in that direction and solve (28c) as a one-dimensional problem in x,
olving independent kz-modes simultaneously as described in Section 2.6.1.
This model is implemented in BOUT++ [15], a modular framework for writing fluid and plasma simulations. We

mplemented our tridiagonal matrix inversion algorithm as a module in BOUT++, and now compare it to BOUT++’s
mplementations of parallel cyclic reduction, of pure multigrid, and of a domain-partitioned direct solver. The parallel
yclic reduction is based on the implementation by Kang [26]. The multigrid implementation is the same as described
n Section 2.3; for fairness it is implemented using the same data structures and communication patterns as the hybrid
ultigrid-Thomas algorithm. The pure multigrid algorithm is applied on the full system rather than the reduced system.
his means there is no longer the need to reconstruct the full solution from the solution on the reduced grid, saving
(Nx/Np) work; but instead we must perform more levels of multigrid, requiring O(Nx/Np) more work from performing
auss–Seidel iterations on the finer grids, and O(log(Nx/Np)) additional communications from the corresponding halo
waps. The partitioned direct solver we use was derived by Austin et al. [27]. It is similar to our algorithm in that it uses
ocal solves on each processor to derive the same reduced system. However, instead of using multigrid, it gathers the
educed system onto a single processor, solves directly with the Thomas algorithm, and scatters the results back. That
s, it replaces the O(logNp) halo swap communications from multigrid’s iterations, with single all-to-one and one-to-all
ather/scatter communications of size Np.
The code is run on the Archer2 HPC system (two 64 core AMD Zen2 7742 processors per node, 2.25 GHz, with HPE

ray Slingshot 2 × 100 Gbps bi-directional interconnect per node). Timings are taken from BOUT++ internal timers, and
re for the evolution of Eqs. (28) including the initialization of our algorithm, but excluding other code initialization
nd I/O. To aid reproducibility, we have made available an archive containing BOUT++ input and output files, Archer2
ob submission scripts, and our scripts for processing and plotting the results [28]. This archive also contains a script to
utomatically download and build BOUT++ with the same git commit, Archer2 modules and runtime environment as we
sed to generate the results presented here.
We present run times for evolving (28) with two time advance algorithms, the explicit non-adaptive fourth-order

unge–Kutta (RK4) scheme, and the implicit, adaptive timestep and adaptive order PVODE solver [25]. As RK4 is non-
daptive, it performs a specified number of time steps regardless of the state of physical system (28). Therefore RK4 gives
simple measure of speed of the Laplacian inversion algorithm, in the context of the evolution of a full system. We show
esults of this numerical study in Section 3.1. In contrast, PVODE uses an implicit linear multistep method which adapts
he size of the timestep and the order of method depending on the stiffness of the problem (i.e. the current physical state).
ather than specifying a timestep, the user specifies relative and absolute tolerances for the error in the time advance,
sing the error expression (20). This time advance method is preferred in BOUT++, as it requires minimal user input, and
sually provides faster wall-time-to-solution than RK4. However, as the timestep is adaptive, the number of times that
he Laplacian inversion is called varies depending on the state of the physical system, and in particular varies between
he different algorithms, and the input parameters to these. In Section 3.2 we not only plot run times for the same set
f solvers, but now also vary the number of multigrid levels in our multigrid-Thomas solver, and show that this and the
umber of Laplacian inversion calls strongly influences the overall run time.

.1. Fourth-order Runge–Kutta

We advance the system (28) with fourth-order Runge–Kutta for two sets of resolutions, (Nx,Nz) = (1024, 1024) and
Nx,Nz) = (8192, 1024). We evolve the smaller case for 2000 time steps, which requires 8000 inversions of Eq. (28c), and
he larger case for 1000 time steps, which requires 4000 inversions. We plot run time against processor count for these
esolutions for our algorithm (solid blue), cyclic reduction (dashed red), pure multigrid (dot-dashed green) and the direct

artitioned algorithm (dotted magenta) in Fig. 1(a) and (b), and corresponding parallel efficiencies in Fig. 1(c) and (d). In

10

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

r
m
s
a

b

Fig. 1. Plots for the blob2d filament simulation with resolution (left column) Nx = 1024 and (right column) Nx = 8192. (a, b) Scaling plots for cyclic
eduction (dashed red), pure multigrid (dot-dashed green), the direct partitioned algorithm (dotted magenta) and our algorithm (solid blue). We
ark the run time for serial Thomas in the smaller case with a star. (c, d) The parallel efficiencies for timings shown in (a, b). In (d) we plot the
ame data using both 8 cores (solid) and 128 cores = 1 node (dashed) as the reference case. (e, f) The relative performance improvement of our
lgorithm compared to the other algorithms, expressed as a percentage for the timings shown in (a) and (b) respectively.

oth multigrid algorithms, we use the tolerances rtol = 10−7 and atol = 10−6, and set the number of multigrid levels
to the maximum number possible. For our algorithm, this varies with core count, log2(Np)− 1. For pure multigrid, this is
constant for fixed problem size, log (N) − 1.
2 x

11

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

c
s
A
t
2
p
r
i
3

For the smaller problem, all algorithms scale ideally to 64 cores, before dropping to around 60% to 70% efficiency at 128
ores. This is due to increased contention for memory on one Archer2 node (128 cores): at smaller core counts we have
pread ranks even across a single node, so that each doubling in core count halves the available memory to each core.
bove 128 cores, efficiency degrades in all algorithms, though our multigrid-Thomas algorithm scales the best, with run
ime continuing to reduce until reaching the maximum core count, 512 cores (BOUT++ is constrained to require at least
x-points per core). For the larger problem, we again see near-ideal scaling for all algorithms at small core counts, with
erformance degradation due to resource contention as we approach 1 node (128 cores). Above 128 cores, parallel cyclic
eduction and the multigrid algorithms scale super-ideally. Again our multigrid-Thomas algorithm scales best, retaining
deal scaling relative to a single node up to 16 nodes (2048 cores), and performing with 70% efficiency at the maximum
2 nodes (4096 cores, 2 x-points per core).
In Fig. 1(e) and (f) we plot the percentage speed up of our algorithm, relative to parallel cyclic reduction (red), pure

multigrid (green) and the direct partitioned algorithm (magenta). This shows that our algorithm is around 15% faster than
cyclic reduction, around 10% faster than the direct partitioned algorithm and around 5% faster than pure multigrid for low
and medium processor counts (except two small processor counts at the lower resolution where pure multigrid is faster).
It also shows that our algorithm is significantly faster than all other algorithms at high processor counts as expected from
the improved scaling.

3.2. PVODE time advance

We now show results for the PVODE time stepping algorithm. To use PVODE, we provide that library with a function
evaluating the right-hand sides of (28)(a, b) for each iteration of n and Ω; this function call includes inverting (28c) to find
φ, i.e. one call of the Laplacian inversion algorithm. As PVODE continues to iterate for n and Ω until the specified tolerances
are met, the number of times the right-hand side is called varies depending on the Laplacian inversion algorithm used,
and each Laplacian inversion algorithm’s parameters. This means that the run time now not only depends on the time
per Laplacian inversion, but also the number of Laplacian inversions that are required.

We consider a simulation following a filament for 400 cyclotron times with (Nx,Nz) = (8192, 1024), and with the
tolerances (atol, rtol) = (10−7, 10−6) for our algorithm and the multigrid algorithm, and (atol, rtol) = (10−6, 10−5)
for the PVODE time advance. This corresponds to the larger problem in Section 3.1, though run for a longer physical time,
so that unnormalized run times are not comparable.

In Fig. 2(a) we plot the total run time against core count for simulations using the PVODE time advance with the
Laplacian inversion performed using parallel cyclic reduction (dashed red), pure multigrid (dot-dashed green), the direct
partitioned algorithm (dotted magenta), and the multigrid-Thomas algorithm (solid colours). We also plot the parallel
efficiency relative to 128 cores (one Archer2 node) in Fig. 2(b) and the speed-up of the multigrid-Thomas algorithm
relative to the other algorithms in Fig. 2(c). Different line colours correspond to the maximum number of multigrid levels
used in the multigrid-Thomas algorithm. Recall that as each core represents a grid point, the maximum possible number of
multigrid levels increases with core count as log2(Np) − 1. In contrast, the maximum number of levels in pure multigrid
is set by the problem size as log2(Nx) − 1, so in this case is 12. While the overall scaling behaviour is independent of
max_level, the maximum number of multigrid levels, at a fixed core count there can be significant differences in the
run time depending on max_level. Moreover, the fastest run times do not correspond to setting max_level to the
maximum possible number of levels; rather the optimal value is problem-dependent and requires user tuning. In this
particular case, setting max_level = 4 results in ideal scaling up to 1024 cores (8 nodes, 8 x-points per core). The
parallel efficiency in Fig. 2(b) confirms that our algorithm scales with at least 90% efficiency for all values of max_level
up to 1024 cores, before dropping to around 60% and 30% efficiency at 2048 and 4096 cores respectively (except for
max_level = 6 which has 80% at 2084 cores). While this is reasonably good scaling efficiency, it is somewhat worse
than the efficiency seen in Fig. 1(b) for the large RK4 test case (for parallel efficiency relative to a single node, the dashed
lines). Indeed both algorithms with a multigrid component have a worse parallel efficiency with PVODE; in contrast,
parallel cyclic reduction has an almost identical parallel efficiency for the two time advance methods. Consequently,
parallel cyclic reduction is now more competitive with multigrid-Thomas with the two algorithms having similar parallel
efficiencies. However, the relative speed-up graph in Fig. 2(c) shows that multigrid-Thomas is still 10% to 20% faster in
the good scaling region (except at 512 cores), similar to the speed-up in the good scaling region of the larger RK4 case,
Fig. 1(f). When the multigrid-Thomas algorithm stops scaling ideally at 1024 cores (with max_level = 4), it is ∼ 20%
faster than parallel cyclic reduction, ∼ 30% than pure multigrid, and ∼ 80% faster than the direct partitioned algorithm.
As before, the multigrid-Thomas algorithm attains its fastest run time at the maximum 32 nodes (4096 cores, 2 x-points
per core).

We can understand the spread in run times for different values of max_level in the multigrid-Thomas algorithm by
considering the number of times the Laplacian inversion is called, which we plot in Fig. 2(d) against core count. These
values are noisy and with no discernible dependence on core count, but typically parallel cyclic reduction requires a similar
number of Laplacian inversions or fewer when compared to the multigrid-Thomas algorithm. In Fig. 2(e) we plot the run
times from Fig. 2(a) normalized to the number of Laplacian inversions. This shows that multigrid-Thomas is the fastest
algorithm per single inversion. This essentially replicates the result shown in Fig. 1(b). Moreover, after normalization the
lines for different max_level largely coincide, showing that the variation in the run time is accounted for by variation

in the number of Laplacian inversions required.

12

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

d
c
c
o

i

Fig. 2. Metrics for PVODE time advance with Laplacian inversion performed by cyclic reduction (dashed red), pure multigrid (dot-dashed green), the
irect partitioned algorithm (dotted magenta) and our algorithm varying the maximum number of multigrid levels (solid colours), plotted against core
ount: (a) total run time; (b) parallel efficiency relative to 128 cores (one Archer2 node); (c) relative performance improvement of multigrid-Thomas
ompared to other algorithms; (d) number of Laplacian inversions; (e) total run time divided by number of Laplacian inversions; and (f) percentage
f total time spent inverting the Laplacian.

Finally in Fig. 2(f) we plot the percentage of total run time spent in the Laplacian inversion measured by BOUT++

nternal timers. This shows that at a fixed core count, the multigrid-Thomas algorithm spends the smallest proportion of

13

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706

t
B
s
t
a
c
m
u
s
w
s

4

p
s
m
a
a
i

time in Laplacian inversion. For all algorithms, the proportion increases with core count, and dominates the run time at
the highest core counts showing that inversion is indeed the scaling bottleneck.

4. Summary

In this paper we have introduced a hybrid multigrid-Thomas algorithm designed to efficiently invert one-dimensional
ridiagonal matrix equations in a highly-scalable fashion. We implemented this algorithm as a module in the plasma code
OUT++ [15] and measured its performance in a model problem for plasma filament propagation using our algorithm to
olve Poisson’s equation as part of the spatial discretization of a time-evolving PDE system. We compared its performance
o that of cyclic reduction, pure multigrid and a direct partitioned solver in two cases using different time-advance
lgorithms, non-adaptive fourth-order Runge–Kutta and an adaptive solver from the PVODE library. While both parallel
yclic reduction and pure multigrid also have the minimum theoretical complexity for parallel algorithms, log(Nx), the
ultigrid-Thomas algorithm is fastest per Laplacian inversion and scales best. Thus it is the fastest and most-scalable when
sing non-adaptive time stepping schemes, like fourth-order Runge–Kutta. When using the adaptive PVODE time stepping
cheme, we found that the multigrid-Thomas algorithm required more internal time steps to achieve a given tolerance
hich reduces its performance advantage over the other algorithms. However, the multigrid-Thomas algorithm’s better
caling performance means that it still outperforms the other algorithms while still retaining good parallel efficiency.

.1. Further work

There are two areas of further work which may extend the scalability of the hybrid multigrid algorithm.
Firstly, we could consider changes to the multigrid algorithm to reduce the amount of communication required. In this

aper, we have used linear interpolation in the multigrid prolongation step. We could replace this with a higher order
cheme, which would be more expensive to compute but which would converge at a faster rate. Faster convergence
eans fewer iterations and thus less communication; at high core counts, this might lead to faster run times, even
fter accounting for the increased work. As a concrete example, Briggs et al. [22, Table 4.2] studied convergence rates
nd costs for different smoothing, interpolation and prolongation methods. Our scheme (red–black Gauss–Seidel, linear
nterpolation, full weighting, and one pre- and post-smoothing, ν1 = 1, ν2 = 1) has a computational cost of 1.63 (relative
to some baseline) and a convergence factor of 0.06 (i.e. one multigrid cycle reduces the residual from r to 0.06r). For
Briggs et al.’s model problem, replacing linear interpolation with cubic interpolation and increasing the number of pre-
smoothings to ν1 = 2 not only roughly doubles the cost to 3.37 but also halves the convergence factor to 0.03 (i.e. doubles
the rate). In a communication-bound computing regime, this may well yield reduced run times.

Finally, we could extend the scalability by exploiting the non-uniform memory access (NUMA) region of modern
processor architecture [29]. Each core has fast access to shared memory in the NUMA region, usually a socket or a node.
In this paper, we have performed the direct solver on a core and the multigrid solve on a grid of cores. However, shared
memory would allows us to perform the direct solve on a NUMA region, and multigrid across NUMA regions. This would
extend the good scaling performance of our algorithm by a factor of the number of cores per NUMA region, which on
Archer2 is 8. This approach as been used to extend the scalability of the Fast Fourier Transform in the plasma code GS2 [30]
on the original Archer system (which had 12 cores per NUMA region) by a factor of ∼ 10 [31].

Acknowledgements

This work has been funded by the RCUK Energy Programme [grant number EP/T012250/1]. To obtain further informa-
tion on the data and models underlying this paper please contact PublicationsManager@ukaea.uk. This work made use
of computational support by CoSeC, the Computational Science Centre for Research Communities, through CCP Plasma
(EP/M022463/1) and HEC Plasma (EP/R029148/1). This work used the ARCHER2 UK National Supercomputing Service
(https://www.archer2.ac.uk) and the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). J.T.P. is
grateful for fruitful conversations with H.S. Thorne and F.C. Parker.

References

[1] J. Wendt, Computational Fluid Dynamics: An Introduction, in: A von Karman Institute book, Springer Berlin Heidelberg, 2008, URL https:
//books.google.co.uk/books?id=IIUkqI-HNbQC.

[2] S. Jardin, Computational Methods in Plasma Physics, in: Chapman & Hall/CRC Computational Science, CRC Press, 2010, URL https://books.google.
co.uk/books?id=gZzf_B56FDcC.

[3] R.W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. ACM 12 (1) (1965) 95–113.
[4] D. Bertaccini, F. Durastante, Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications, in: Chapman &

Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, 2018, URL https://books.google.co.uk/books?id=YmpQDwAAQBAJ.
[5] G.D. Knott, Interpolating Cubic Splines, in: Progress in Computer Science and Applied Logic, Birkhäuser Boston, 2012, URL https://books.google.

co.uk/books?id=7SPUBwAAQBAJ.
[6] R. Ferguson, Practical Algorithms for 3D Computer Graphics, Second Edition, Taylor & Francis, 2013, URL https://books.google.co.uk/books?id=

NKONAgAAQBAJ.
[7] M. Løiten, Technical University of Denmark (Ph.D. thesis), Technical University of Denmark, 2017, https://github.com/CELMA-project/dissertation/
releases/download/v1.1.x/17_PhD_Loeiten.pdf.

14

mailto:PublicationsManager@ukaea.uk
https://www.archer2.ac.uk
http://www.archer.ac.uk
https://books.google.co.uk/books?id=IIUkqI-HNbQC
https://books.google.co.uk/books?id=IIUkqI-HNbQC
https://books.google.co.uk/books?id=IIUkqI-HNbQC
https://books.google.co.uk/books?id=gZzf_B56FDcC
https://books.google.co.uk/books?id=gZzf_B56FDcC
https://books.google.co.uk/books?id=gZzf_B56FDcC
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb3
https://books.google.co.uk/books?id=YmpQDwAAQBAJ
https://books.google.co.uk/books?id=7SPUBwAAQBAJ
https://books.google.co.uk/books?id=7SPUBwAAQBAJ
https://books.google.co.uk/books?id=7SPUBwAAQBAJ
https://books.google.co.uk/books?id=NKONAgAAQBAJ
https://books.google.co.uk/books?id=NKONAgAAQBAJ
https://books.google.co.uk/books?id=NKONAgAAQBAJ
https://github.com/CELMA-project/dissertation/releases/download/v1.1.x/17_PhD_Loeiten.pdf
https://github.com/CELMA-project/dissertation/releases/download/v1.1.x/17_PhD_Loeiten.pdf
https://github.com/CELMA-project/dissertation/releases/download/v1.1.x/17_PhD_Loeiten.pdf

J.T. Parker, P.A. Hill, D. Dickinson et al. Journal of Computational and Applied Mathematics 399 (2022) 113706
[8] E. Gallopoulos, B. Philippe, A. Sameh, Parallelism in Matrix Computations, in: Scientific Computation, Springer Netherlands, 2015, URL
https://books.google.co.uk/books?id=q9xECgAAQBAJ.

[9] X.-H. Sun, Application and accuracy of the parallel diagonal dominant algorithm, Parallel Comput. 21 (8) (1995) 1241–1267.
[10] X.-H. Sun, S. Moitra, A Fast Parallel Tridiagonal Algorithm for a Class of CFD Applications, Vol. 3585, Citeseer, 1996.
[11] H.S. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system of equations, J. ACM 20 (1) (1973) 27–38.
[12] H.S. Stone, Parallel tridiagonal equation solvers, ACM Trans. Math. Softw. 1 (4) (1975) 289–307.
[13] E. Polizzi, A.H. Sameh, A parallel hybrid banded system solver: the SPIKE algorithm, Parallel Comput. 32 (2) (2006) 177–194.
[14] B.S. Spring, E. Polizzi, A.H. Sameh, A feature complete SPIKE banded algorithm and solver, 2018, ArXiv Preprint arXiv:1811.03559.
[15] B.D. Dudson, P.A. Hill, D. Dickinson, J.T. Parker, A. Allen, G. Breyiannia, J. Brown, L. Easy, S. Farley, B. Friedman, E. Grinaker, O. Izacard, I. Joseph,

M. Kim, M. Leconte, J. Leddy, M. Liten, C. Ma, J. Madsen, D. Meyerson, P. Naylor, S. Myers, J. Omotani, T. Rhee, J. Sauppe, K. Savage, H. Seto,
D. Schwörer, B. Shanahan, M. Thomas, S. Tiwari, M. Umansky, N. Walkden, L. Wang, Z. Wang, P. Xi, T. Xia, X. Xu, H. Zhang, A. Bokshi, H.
Muhammed, M. Estarellas, F. Riva, BOUT++ v4.3.1, Zenodo, 2020, http://dx.doi.org/10.5281/zenodo.3727089.

[16] R.P. Fedorenko, The speed of convergence of one iterative process, USSR Comput. Math. Math. Phys. 4 (3) (1964) 227–235.
[17] N.S. Bakhvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comput. Math. Math. Phys.

6 (5) (1966) 101–135.
[18] W. Hackbusch, Ein Iteratives Verfahren Zur Schnellen AuflÖSung Elliptischer Randwertprobleme, Math. Inst., Univ., 1976.
[19] A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems, in: Proceedings of the Third

International Conference on Numerical Methods in Fluid Mechanics, Springer, 1973, pp. 82–89.
[20] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (138) (1977) 333–390.
[21] P. Wesseling, Introduction to Multigrid Methods, NASA Technical Report, 1995.
[22] W. Briggs, V. Henson, S. McCormick, A Multigrid Tutorial, 2nd Edition, SIAM, 2000, https://www.researchgate.net/publication/220690328_A_

Multigrid_Tutorial_2nd_Edition.
[23] W. Hackbusch, Multi-Grid Methods and Applications, in: Springer Series in Computational Mathematics, Springer Berlin Heidelberg, 2013, URL

https://books.google.co.uk/books?id=jJ36CAAAQBAJ.
[24] U. Trottenberg, C. Ulrich Trottenberg, C. Oosterlee, A. Schuller, A. Brandt, P. Oswald, K. Stüben, Multigrid, Elsevier Science, 2001, URL

https://books.google.co.uk/books?id=-og1wD-Nx_wC.
[25] G.D. Byrne, A.C. Hindmarsh, PVODE, an ODE solver for parallel computers, Int. J. High Perform. Comput. Appl. 13 (4) (1999) 354–365,

http://dx.doi.org/10.1177/109434209901300405, URL arXiv:https://doi.org/10.1177/109434209901300405.
[26] J.-H. Kang, Parallel tri-diagonal matrix solver using cyclic reduction (CR), parallel CR (PCR), and Thomas+PCR hybrid algorithm, 2019, URL

https://github.com/jihoonakang/parallel_tdma_cpp.
[27] T.M. Austin, M. Berndt, J.D. Moulton, A memory efficient parallel tridiagonal solver, 2004, Preprint la-VR-03-4149.
[28] J.T. Parker, P.A. Hill, D. Dickinson, B.D. Dudson, Files and Plotting Scripts for ‘‘Parallel Tridiagonal Matrix Inversion with a Hybrid

Multigrid–Thomas Algorithm Method’’, Zenodo, 2020, http://dx.doi.org/10.5281/zenodo.4292047.
[29] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur, MPI + MPI: a new hybrid approach to parallel

programming with MPI plus shared memory, Computing 95 (12) (2013) 1121–1136.
[30] M. Barnes, D. Dickinson, W. Dorland, P.A. Hill, J.T. Parker, C.M. Roach, S. Biggs-Fox, N. Christen, R. Numata, G. Wilkie, L. Anton, J. Ball, J.

Baumgaertel, G. Colyer, M. Hardman, J. Hein, E. Highcock, G. Howes, A. Jackson, M.T. Kotschenreuther, J. Lee, H. Leggate, N. Mandell, A.
Mauriya, T. Tatsuno, F. Van Wyk, GS2 Gyrokinetics Software, Zenodo, 2020, http://dx.doi.org/10.5281/zenodo.2551066.

[31] L. Anton, F. van Wyk, E. Highcock, C. Roach, J.T. Parker, Enhancing scalability of the gyrokinetic code GS2 by using MPI shared memory for
FFTs, Proc. Cray User Group (2016) URL https://cug.org/proceedings/cug2016_proceedings/includes/files/pap124s2-file1.pdf.
15

https://books.google.co.uk/books?id=q9xECgAAQBAJ
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb9
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb10
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb11
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb12
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb13
http://arxiv.org/abs/1811.03559
http://dx.doi.org/10.5281/zenodo.3727089
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb16
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb17
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb17
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb17
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb18
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb19
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb19
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb19
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb20
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb21
https://www.researchgate.net/publication/220690328_A_Multigrid_Tutorial_2nd_Edition
https://www.researchgate.net/publication/220690328_A_Multigrid_Tutorial_2nd_Edition
https://www.researchgate.net/publication/220690328_A_Multigrid_Tutorial_2nd_Edition
https://books.google.co.uk/books?id=jJ36CAAAQBAJ
https://books.google.co.uk/books?id=-og1wD-Nx_wC
http://dx.doi.org/10.1177/109434209901300405
http://dx.doi.org/10.1177/109434209901300405
https://github.com/jihoonakang/parallel_tdma_cpp
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb27
http://dx.doi.org/10.5281/zenodo.4292047
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb29
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb29
http://refhub.elsevier.com/S0377-0427(21)00328-9/sb29
http://dx.doi.org/10.5281/zenodo.2551066
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap124s2-file1.pdf

	Parallel tridiagonal matrix inversion with a hybrid multigrid-Thomas algorithm method
	Introduction
	Hybrid multigrid-Thomas algorithm method
	Local solves with the Thomas algorithm
	Equations for the reduced system
	Multigrid
	Red–black Gauss–Seidel
	Prolongation
	Restriction
	Coarse grid problems

	Convergence checking and residual calculation
	Complexity and communication
	Minimizing communication
	Simultaneous solution of subsystems
	Predicting convergence

	Numerical experiments
	Fourth-order Runge–Kutta
	PVODE time advance

	Summary
	Further work

	Acknowledgements
	References

