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A B S T R A C T   

Dislocation climb is an important high temperature process in metals plasticity, responsible for 
the phenomena such as creep, swelling, or hardening. Climb is defined by the ability of dislo
cations to leave their original glide plane by interacting with point defects. As such, dislocation 
climb is controlled by point defect diffusion/absorption/emission, all of which involve thermal 
activation. The existing thermodynamically consistent models for climb are generally formulated 
in a continuum framework, through the definition of effective defect fluxes and climb propensities 
in response to thermodynamic driving forces. However, the point-wise discrete nature of va
cancies (and/or self-interstitials) confers a highly discrete nature to the climb dynamics, which is 
also strongly affected by elastic forces. The combination of discreteness, thermal activation, and 
elasticity makes this process too challenging for direct atomistic methods such as molecular dy
namics. Here we develop a kinetic Monte Carlo model that captures vacancy generation and 
transport kinetics acting in conjuction with the evolving elastic fields provided by discrete 
dislocation dynamics simulations. The two models are coupled via the applied stresses and stress 
gradients generated by dislocation structures at vacancy locations. Our simulations reveal two 
surprising results. First that climb is dominated by vacancy emission even when the background 
vacancy concentration is much higher than the equilibrium one. And, second, that climb veloc
ities might be much faster than otherwise believed when one uses the classical theories of climb. 
These effects are due to the locality of vacancy-dislocation processes, which are not captured in 
classical treatments that assume smooth vacancy fluxes and homogeneous concentrations. We 
apply the method to study elementary climb processes in body-centered cubic iron and furnish 
climb mobility functions to be used in parametric dislocation dynamics and/or crystal plasticity 
simulations. We apply the technique to study non-conservative plastic bypass of spherical pre
cipitates by edge dislocations and point out the differences between our discrete approach and 
existing continuum formulations.   
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1. Introduction 

Non-conservative dislocation motion is responsible for important processes in plasticity such as climb, jog-dragging, the closing of 
cross-kinks, among others, with significant implications for mechanical behavior such as e.g. hardening, creep, dynamic strain aging, 
or swelling in irradiated materials (Weertman, 1955; Messerschmidt, 1970; Mohamed and Langdon, 1974; Strunk and Frydman, 1975; 
Mansur, 1979; Hong, 1986; Louchet and Viguier, 2000; Marian, Cai and Bulatov, 2004; Stukowski et al., 2015). Generally speaking, 
non-conservative motion refers to a point defect-assisted process that allows a dislocation segment to leave its glide plane in the di
rection of its normal. This normal n is uniquely defined as n≡ s×t, where s = b/b is the slip direction (b is the Burgers vector and b =

‖b‖) and t is the local tangent vector defining the local direction of the dislocation line. The necessity of point defect intervention 
makes processes like climb only feasible either at high temperatures (via vacancies, when their thermal concentration and/or emission 
rate is sufficiently high), or under far-from-equilibrium conditions as for example when irradiation is involved (Bullough and Hayns, 
1975; Mansur, 1979; Rovelli et al., 2017, 2018). 

For a dislocation segment to undergo climb, net defect fluxes must establish themselves, implying the presence of local sub or 
supersaturation. In its most common manifestation, stress fields produce the concentration gradients that lead to non-conservative 
dislocation climb. Also, dislocations are strong sinks in situations of supersaturated vacancy concentrations (Bullough and Hayns, 
1975; Bullough and Quigley, 1981; Stoller, 1990), so that climb can be regarded as a process that acts to reconstitute thermal equi
librium. Due to its non-conservative nature, dislocation climb is a process by which dislocations can produce volumetric and 
dimensional changes in addition to slip. 

Due to its intrinsically atomistic nature, studies of climb processes have been attempted by direct molecular dynamics (MD) 
simulations (e.g. Wang et al. (2009)) and/or lattice-based kinetic Monte Carlo (kMC) (Kabir et al., 2010; Sivak et al., 2011). However, 
apart from exceptionally rare situations, vacancy transport at the lattice level is far too slow to be accessible to atomistic simulations in 
a statistically meaningful manner. Instead, mean-field continuum models, based on the adiabatic approximation, have been the 
preferred choice in terms of theoretical implementations of climb processes in crystal plasticity and/or dislocation dynamics models. 
Within these, the more popular approach has been to superimpose a chemical force on the standard elastic forces due to external and 
internal stresses (Lothe and Hirth, 1967; Turunen, 1976; Raabe, 1998; Mordehai et al., 2008; Bakó et al., 2011; Gu et al., 2015; 
Thompson et al., 2018). This force is obtained by matching the work done when a dislocation segment climbs a certain distance with 
the free energy required to create the vacancies needed to climb that same distance. An alternative approach is to formulate the climb 
velocity directly from the vacancy transport equations in the presence of dislocations (Fischer and Svoboda, 2011; Keralavarma et al., 
2012; Davoudi et al., 2012; Rajaguru and Keralavarma, 2018; Liu et al., 2019). 

Implementations of climb in discrete dislocation dynamics (DDD) simulations by way of suitable modifications to dislocation 
mobilities (Cai and Bulatov, 2004; Arsenlis et al., 2007) have been applied successfully in many scenarios (Bakó et al., 2011; Davoudi 
et al., 2012; Keralavarma et al., 2012; Haghighat et al., 2013; Záležák et al., 2017; Liu et al., 2019). These approaches are all 
formulated at the continuum level, which – while thermodynamically consistent and numerically efficient – disregard local fluctua
tions in stress and defect concentrations. These fluctuations are especially important under heterogeneous conditions, when 
spatially-complex dislocation structures and/or defect distributions (e.g. as during irradiation) exist. Since vacancies are discrete 
particles, they are highly sensitive to these local variations of stress and presence of other defects. Thus, understanding how they 
evolve, taking into account such fluctuations, and studying how sensitive climb processes are to spatial heterogeneities is of relevance 
in many cases. The objective of this work is to superimpose a kMC module tasked with simulating vacancy diffusion onto a micro
structural simulator based on DDD, tasked with updating dislocation structure morphology and stress fields. As such, the kinetic 
module and the DDD simulator are coupled together by the underlying stress fields in the simulation volume. Vacancy transport is 
modeled using a drift-diffusion equation with the drift velocity depending on the spatial stress state in the system. One of our objectives 
is to determine effective climb rates as a function of temperature and vacancy concentration for isolated dislocations, as well as to 
study the effects on arbitrary dislocation structures of a vacancy supersaturation. 

The paper is organized as follows. First, we provide a formal theoretical framework for the kinetic transport model. This is followed 
by a description of the numerical implementation and modifications to the DDD simulator. Then, verification benchmarks are pre
sented to check the validity of the approach at the local dislocation level, followed by calculations of climb rates in well-controlled 
conditions. We also discuss the effect of varying parametric parameters on computational cost. Next, we show results demon
strating bypass of a spherical precipitate by an edge dislocation. We finalize the paper with a discussion of the results and the 
conclusions. 

2. Underlying theory 

2.1. Kinetic model for point defect diffusion 

According to transition state theory (Vineyard, 1957; Laidler and King, 1983), the diffusion coefficient for vacancies hopping in an 
isotropic medium follows an Arrhenius expression of the following type: 

D(T) = zfb2ν(T) (1)  

where z is the coordination number of the lattice in question (z = 8 for bcc crystals), f is a correlation factor, b is the crystallographic 
jump distance (b = a0

̅̅̅
3

√
/2 for bcc crystals, a0 is the lattice parameter) and ν(T) is the temperature dependent jump frequency of the 
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form 

ν(T) = ν0exp
(

−
ΔHm

kT

)

(2)  

where ν0 is an attempt frequency, k is Boltzmann’s constant, and ΔHm is the vacancy migration enthalpy. In the low-stress limit, ΔHm 
depends on stress σ via a mechanical work coupling: 

ΔHm(σ) = ΔE0
m − σ : Ωact  

where ΔE0
m is the migration energy of a vacancy in a solid subjected to no stress, and Ωact is the activation volume tensor defined as the 

difference between the relaxation volume tensors at the saddle point and at an equilibrium position. Parameters ν0, ΔE0
m, and Ωact are 

routinely computed using first principles methods (Ma and Dudarev, 2019 a). 
Another, and often more significant, effect of stress on the diffusion of defects results from the fact that the enthalpy of formation of 

a defect at an equilibrium position in the lattice depends on the local stress through: 

Hf (σ) = E0
f − σ : Ωf (3)  

where E0
f is the defect formation energy and Ωf is the formation volume tensor (Ma and Dudarev, 2019 a,b). It must be noted, however, 

that in most cases it is the relaxation, and not the formation, volume of a defect that enters the equations of elasticity, since it is the 
relaxation of the lattice around a defect that determines its elastic interaction with other defects and dislocations. As such, the 
relaxation volume tensor provides a tensorial measure of global deformation of the material due to the presence of a defect in it 
(Puchala et al., 2008). 

The relaxation and formation volume tensors, Ω and Ωf, are related to one another via Ωf = ±1
3ΩaI+ Ω, where Ωa is the atomic 

volume, and the sign of Ωa depends on the nature of the defect, vacancy (+) or self-interstitial (− ) (Kraftmakher, 1998). For vacancies, 
the first term in the above relation is positive, since in order to form an individual vacancy in the bulk of the crystal, it is necessary to 
deposit an atom onto its surface, hence increasing the total volume of the material by one atomic volume Ωa. Conversely, the formation 
of a self-interstitial atom involves punching a surface atom into the bulk of the material, hence reducing the apparent total volume by 
Ωa.1 The second term, Ω, entering the formula for Ωf, is the relaxation volume tensor (Ma and Dudarev, 2019 a,b), describing the lattice 
relaxation effects. Elements of the relaxation volume tensor of a point defect can be readily evaluated using first-principles calculations 
(Ma and Dudarev, 2019 a,b). 

Note that in the context of studies of radiation damage, the formation volumes of defects rarely enter the equations for the 
experimentally observed quantities. That is because, under irradiation, vacancies and self-interstitial defects are formed in pairs, and 
this results in the cancellation of terms ±1

3ΩaI in the definition (Ma and Dudarev, 2019 a) of the formation volume tensor Ωf above. 
Also, one should recognize the difference between the volumetric swelling of a material, which is a quantity given by the sum of 
formation volumes of all the defects, and lattice strain, measured for example by X-ray diffraction. Lattice strain is a measure of 
relaxation of the lattice, and it therefore depends on the relaxation volumes of defects, as illustrated for example by the observed 
negative lattice strain resulting from the accumulation of vacancies in metals (Hertz et al., 1973). 

The trace of the relaxation volume tensor Tr(Ω) = Ωkk = Ω11 + Ω22 + Ω33 gives the total relaxation volume of a defect Ωrel, which, 
depending on its sign (negative or positive), provides a measure of the total elastic contraction or expansion of the lattice due to the 
presence of the defect in the material (Dudarev et al., 2018). For a vacancy, the relaxation volume tensor is isotropic (Dudarev et al., 
2018), namely Ωij = 1

3δijΩrel, where δij is Kronecker’s delta. Since the trace of the identity tensor Tr(I) = δkk = δ11 + δ22 + δ33 = 3, we 
find Tr(Ω) = 1

3ΩrelTr(I) = Ωrel. In terms of atomic volume, we can express the relaxation volume tensor as (Ma and Dudarev, 2019 a,b): 

Ω = Ωaεv (4)  

where εv is a diagonal strain tensor with identical components εv = (εv)11 = (εv)22 = (εv)33 equal to: 

εv =
Ωrel

3Ωa
=

θv

3  

with θv being the relative local lattice contraction around a vacancy (typically around − 20% (Ma and Dudarev, 2019 a,b)). With this, 
assuming that the relaxation volume of a defect is isotropic, eq. (3) becomes: 

Hf = E0
f −

1
3
σijδij(Ωrel ± Ωa) = E0

f −
1
3
σjj(Ωrel ± Ωa) = E0

f + p(Ωrel ± Ωa) (5)  

where, as above, ‘+’ refers to vacancies and ‘− ’ to self-interstitials, and p = − 1
3 Tr(σ) = − 1

3σkk = − 1
3 (σ11 +σ22 +σ33) is the hydrostatic 

pressure (Landau and Lifshits, 1970). Note that in the above equations we use the Einstein convention where repeated indeces imply 
summation. The energy of a defect at an equilibrium position in the lattice depends on the stress as follows (Heald and Speight, 1975; 

1 See for example Fig. 14.10 from Hirth and Lothe (1992). 
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Bullough and Newman, 1970): 

E = E0 −
1
3
σijδijΩrel = E0 −

1
3
σkkΩrel = E0 + pΩrel. (6) 

In the approximation where both the relaxation and activation volume tensors of a defect are assumed to be isotropic, the diffusion 
tensor is also isotropic (Bullough and Newman, 1970; Dederichs and Schroeder, 1978). This justifies the drift-diffusion equation 
approach developed below. 

2.2. The drift-diffusion equation 

Vacancy transport is governed by the so-called the drift-diffusion (or advection-diffusion) equation: 

∂C
∂t

= D∇2C − u · ∇C (7)  

where C is the defect concentration, u is the average drift velocity (a three-dimensional vector), ∇ is the gradient operator, D is the 
diffusion coefficient, and ∇2 is the Laplacian. The first term on the right-hand side of eq. (7) represents drift due to the bias in the 
probability of moving in a preferred direction and the second term describes ordinary isotropic three-dimensional diffusion. For 
walkers centered at the origin, the above equation has the following solution in one dimension (Codling et al., 2008; Blaj et al., 2017) 

C(x, t) =
1

(4πDt)1/2exp
{

−
(x − ut)2

4Dt

}

(8)  

where t is the time and x is the position vector. Useful time-dependent statistics of this process are the mean location m(Xt) (first 
moment of the C(x, t) distribution) and the mean squared displacement (MSD) m(R2

t ) (second moment, with Rt = |Xt |), defined as: 

m(Xt) =
∫

xC(x, t)dx (9)  

m
(
R2

t

)
=

∫
|x|2C(x, t)dx (10) 

The solutions to the above integrals are m(Xt) = ut and: 

m
(
R2

t

)
= u2t2 + 6Dt  

That is, the effect of the drift compared to a simple random walk process is to shift the center of the Gaussian distribution from x = 0 to 
x = ut and to make the MSD depend quadratically on time (for long times) instead of linearly. 

The drift term can be obtained by mapping eq. (7) to the general form of the diffusion equation for isotropic cubic crystals 
(Dederichs and Schroeder, 1978): 

∂C(x, t)
∂t

= ∇ ·

[

D
(

∇C(x, t) +
C(x, t)

kT
∇E(x)

)]

(11)  

where the energy gradient term reflects the variation of the energy of defects at equilibrium lattice sites. Equation (11) is encountered 
in the treatment of diffusion of particles in a potential energy field E(x), where the right-hand side of the equation equals the 
divergence of the defect flux. Comparing the second terms in the r.h.s. of eqs. (7) and (11) gives the expression for the drift velocity u is: 

u = −
D
kT

∇E(x) (12) 

Inserting eq. (6) into the above expression results in the drift velocity being proportional to the gradient of the pressure: 

u =
DΩrel

3kT
∇Tr(σ(x)) = −

DΩrel

kT
∇p(x) (13) 

In the above expression, we have neglected the variation of the diffusion coefficient with spatial coordinates. This variation is 
associated with the change of shape of the strain field of a vacancy during its transition across a saddle point (Ma and Dudarev, 2019 a), 
and it adds an extra term, quadratic in stress, to the right-hand side of eq. (13). We have also neglected the dependence of the relaxation 
volume on stress, and retained only the term linear in elastic field (see Leibfried and Breuer (1978)). With this, equation (13) can be 
expressed in explicit Cartesian form as: 

ui =
DΩrel

3kT
∂σkk

∂xi
, (14)  

where σkk ≡ Tr(σ). 
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2.3. Vacancy production/elimination mechanisms 

2.3.1. Vacancy absorption 
Once a vacancy or a number of vacancies Ni reaches a given dislocation segment i of length ℓi, the following volume balance can be 

written: 

NiΩa = ℓihi(ti × bi) ·ni  

where hi is the climb distance along the normal direction ni, bi and bi = |b| are the Burgers vector and its modulus, and ti is the segment 
direction. This results in a climb jump of magnitude: 

hi =
NiΩabi

ℓi|ti × bi|
2 (15)  

where we have used that n = (t × b)/b. Note that hi is undefined for screw dislocations, as is commonly the case in this type of models 
(Turunen, 1976; Bakó et al., 2011). 

2.3.2. Thermal vacancy emission 
After Friedel (Friedel and Yoshida, 1975), the rate of emission of vacancies from dislocations can be written as: 

Ċ = qν(T)
(

1 −
C
C0

)

(16)  

where q is a geometric factor, ν(T) is the vacancy jump rate (refer to eq (2)), and C0 = exp
(

−
Hf
kT

)

is the equilibrium vacancy con

centration (Hf is the vacancy formation enthalpy, eq. (5)). 
Expression (16) is nonlocal, i.e., it is enforced in a global sense (as defined by C0). However, vacancy emission from a dislocation 

segment is highly local in that it is strongly influenced by the local stress and vacancy concentration. Consequently, the above equation 
can be adapted to give the local emission from a given dislocation segment of length ℓ surrounded by a number of vacancies N in a 
volume around the segment. Further, here we take the approach that the emission rate is zero for purely screw segments and maximum 
for pure edge segments. With this, we can write: 

Ṅi =

(
2πℓi

bi

(

1 −
ti · bi

bi

))

ν(T)

⎛

⎜
⎜
⎝1 −

Ni

ρaViexp
(

−
Hf
kT

)

⎞

⎟
⎟
⎠ (17)  

where Ni is the number of vacancies contained in a volume Vi = πR2ℓi around dislocation segment i. The stress σ in this volume is taken 
to be the local stress (from sources other than the self-stress) at the dislocation segment’s location, ri. In principle, R is arbitrary but it 
should be sufficiently small for this approximation to be valid. Note that in most cases, this will result in zero vacancies in this volume, 
meaning that the rate of insertion will generally be positive.2 To avoid repeated emission/reabsorption cycles, we place the emitted 
vacancies at a random location within the simulation box while displacing the dislocation segment along the negative sense of ni by an 
amount consistent with the emitted volume of vacancies (eq. (15)). 

Instead of eq. (16), a more consistent expression of the vacancy emission rate needed to maintain a global vacancy concentration is 
obtained by integrating eq. (17) over the entire simulation volume V3: 

Ċv =
2πVρd

b
ν(T)

⎛

⎜
⎜
⎝1 −

Cv

exp
(

−
Hf (σext)

kT

)

⎞

⎟
⎟
⎠ (18)  

where ρd is the total dislocation density and Cv is the global vacancy concentration. Once a vacancy is emitted using this expression a 
random segment is selected and displaced by one climb distance h. Emission-dominated conditions lead to ‘downward’ climb, i.e. along 
the direction of the tensile region of the stress field of an edge dislocation, while absorption dominated climb takes place ‘upwards’, or 
towards the compressive semi-plane. 

2 To introduce a stochastic variability in the insertion rate (accepting cases where the vacancy concentration might be higher than the equilibrium 
concentration, or rejecting cases where the vacancy concentration might be lower than the equilibrium concentration), the second ‘1’ in eq. (17) is 
replaced with a Gaussian defined by N(1, kT /E0

f ).  
3 Summation of all segments over V yields: 

∑
iℓi = ρdV. 
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2.4. Connection to elasticity and climb mobilities 

The climb velocity of a given segment vi
c points along the direction of ni and is connected to the climb forces as: 

vi
c = vi

c ni

vi
c = Mc

(
f el

i + f os
i

) (19)  

where Mc ≡ Mc(T, p, Cv) is a scalar-valued function representing the climb mobility, fel
i = [(σi · bi) × ti ]ni is the climb contribution of the 

Peach-Koehler force, while fos
i is the chemical force, often referred to as ‘osmotic’ force, which in linearized form can be expressed as 

(Mordehai et al., 2008; Bakó et al., 2011): 

f os =
bkT
Ωa

(

1 −
C0

Cv

)

(20) 

We will use these expressions to reconcile the results obtained in Section 3.3 with the elastic formulation of DDD. 

2.5. Material parameters 

We use bcc Fe as our model system in this work. Point defects in iron have been extensively studied experimentally and compu
tationally over the past several decades and a very accurate numerical database exists from which to get the parameters used here 
(Johnson, 1964; Kim and Buyers, 1978; Söderlind et al., 2000; Domain and Becquart, 2001; Mendelev et al., 2003; Marian et al., 2004; 
Fu et al., 2005; Souidi et al., 2006; Fu and Willaime, 2008; Ma and Dudarev, 2019 a,b). They are given in Table 1. 

3. Results 

Next we apply the method described in the previous section to the calculation of climb velocities for edge dislocations in Fe. The 
solution procedure and the numerical details of the simulations are discussed in depth in A. First we carry out a set of self-consistency 
verification checks to ensure the correctness of the model, followed by production runs to calculate climb velocities as a function of 
temperature, pressure, and global vacancy concentration. 

3.1. Self-consistency checks 

We begin by testing the evolution of the mean square displacement, 〈r2〉, of vacancies diffusing in an isotropic medium versus 
vacancies moving in the stress field near the core of an edge dislocation. The results for 200 independent tests (one single vacancy 
placed at random in a 2D square box) are shown in Fig. 1 with error bars. The evolution of 〈r2〉 in each case displays the expected 
dependence with time described in Sec. 2.2. The diffusivity used was 1.0 × 10− 9 m2 ⋅s− 1 (~300 K in Fe), which correlates well with the 
values of 8.6 × 10− 10 and 1.3 × 10− 9 m2 ⋅s− 1 displayed in Fig. 1 for biased and unbiased diffusion, respectively. 

While tracking the evolution of 〈r2〉 is useful to verify the solution of eq. (7), the mean square displacement is an integrated measure 
that does not give information about the trajectories of migrating vacancies. To check whether vacancy trajectories are consistent with 
the drift velocity derived in Sec. 2.2, we plot in Fig. 2 the generic trajectories of vacancies against the backdrop of the (isotropic elastic) 
stress field of an edge dislocation (shown as a color contour plot) and vector (14). The figure contains results for the σxx and σyy 

components of the stress, as well as for the ∂σkk
∂x and ∂σkk

∂y components of (14) (Fig. 2a and b). The vacancy trajectories are clearly seen to 
follow a biased walk as dictated by the existing stress gradients. The tests performed in Figs. 1 and 2 verify the model of Secs. 2.1 and 
2.2 at the local level and gives us confidence to apply it for calculations of dislocation climb in realistic line geometries. 

Table 1 
Material parameters for bcc Fe employed in this work.  

Parameter Symbol Value Units 

Boltzmann’s constant k 8.615 × 10− 5 eV ⋅K− 1 

Correlation factor f 0.78 – 
Burgers vector’s modulus b 0.25 nm 
Attempt frequency ν0 1012 Hz 
Vacancy migration energy ΔE0

m  0.60 eV 

Atomic volume Ωa 0.77 b3 

Vacancy relaxation volume Ωrel θv Ωa 

Vacancy formation volume Ωf 1 + θv Ωa 

Vacancy volumetric strain θv − 0.2 – 
Vacancy formation energy E0

f  1.7 eV 

Capture radius R 2.0 b  
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3.2. Dislocation climb calculations 

3.2.1. Single dislocation behavior 
Next, we systematically study dislocation climb in the ternary parametric space of pressure p, temperature T, and vacancy con

centration Cv. To obtain climb velocities, we track the dislocation position normal to the glide plane as a function of time until steady 
state is reached and a linear relation is established between the two. We then calculate the climb velocity, vc, as the slope of this linear 
relationship, as shown in the example in Fig. 3. The graph shows the position of a 100-nm edge dislocation segment obtained from two 
independent measurements: (i) one according to eq. (15) (labeled ‘vacancies absorbed’) and (ii) another from the overall dislocation 
position (‘center of mass’). As the figure shows, both approaches are equivalent and result in a climb velocity of 4.62 × 10− 4 m ⋅s− 1. 
This value of vc corresponds to a temperature of T = 1000 K, a pressure of p = − 100 MPa (tensile), with an equilibrium vacancy 
concentration Cv ≡ C0(p, T). A direct feature of our model is that h evolves with t in a discrete manner, with clear jumps (e.g. at 15, 26, 
35, and 52 ns) correlating with vacancy absorption/emission events. This has a manifestation in the dislocation line morphology. Fig. 4 
shows the dislocation structure at the end of the simulation shown in Fig. 3. Vacancies are shown as small cyan spheres. The dislocation 

Fig. 1. Time evolution of the mean square displacement, 〈r2〉, of vacancies diffusing in an isotropic medium undergoing an unbiased random walk 
(blue circles) and for vacancies moving in the stress field of an edge dislocation (biased random walk, red diamonds). Linear and quadratic least- 
squares fits are shown for each case. The vacancy diffusivity employed corresponds to a temperature of 300 K. The error bars originate from 
five independent stochastic runs. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 2. Stress and stress-gradient maps for an edge dislocation showing: (a) a contour plot of σxx (red: tensile, blue: compressive, arbitrary units) and 
the directional field of the ∂σkk

∂x component of vector (14) (shown with arrows); (b) Corresponding plot for σyy (red: tensile, blue: compressive, 
arbitrary units) and ∂σkk

∂y . The trajectories of vacancies initially located at the point marked by the white arrow are highlighted using circles. The 
vacancy paths are seen to follow the direction of the stress gradient. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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line displays a number of jogs consistent with the steps seen in Fig. 3. The shaded horizontal plane marks the original glide plane, while 
the shaded region normal to the glide plane marks the slipped climb area. 

3.2.2. Dislocation climb as a function of temperature, pressure, and vacancy concentration 
We repeat the procedure described in the previous to obtain the fundamental climb velocity dependencies as a function of T, p, and 

Cv. The results are given in Fig. 5, where a sequence of plots is shown with the net climb velocities of edge dislocation segments with 
lengths ranging between 50 and 500 nm under different combinations of temperature, pressure, and vacancy concentration. The 
temperature and the pressure set the equilibrium vacancy concentration C0 according to eq. (16), which at, e.g., − 100 MPa and 1000 K 
(conditions in Fig. 3) is 2.45 × 10− 9. A multiplication factor is then applied to C0 as to artificially increase the vacancy concentration to 

Fig. 3. Dislocation position along the glide plane normal direction h as a function of time t at a temperature of 1000 K and a pressure of − 100 MPa 
(tensile) and equilibrium vacancy concentrations. The graph shows the position obtained from two independent measurements: according to eq. 
(15) (labeled ‘vacancies absorbed’) and from the overall dislocation position (‘center of mass’). The resulting climb velocity is extracted from a 
linear fit to the data points in steady state. 

Fig. 4. Dislocation structure after 1 μs at 1000 K and a pressure of − 100 MPa with Cv = C0(T, p). Vacancies are shown as small spheres. The 
dislocation line displays a number of jogs originating from local vacancy emission (and/or absorption) events. The height of the jogs is 
commensurate with the Δh jumps displayed in Fig. 3, which are approximately 0.1 Å (single vacancy absorption/emission event). The shaded 
horizontal plane marks the original glide plane. The shaded region normal to the glide plane marks the slipped climb area. A scale marker for all 
three Cartesian directions is shown for reference. 
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nonequilibrium levels to study its effect on vc. Dislocation climb velocities are calculated as in Fig. 3, with each data point representing 
the average of five statistically independent simulations. The error bars displayed correspond to the standard deviations for each 
condition. Each row of figures shows the climb velocity as a function of a primary variable and two secondary variables. In the top row, 
the primary dependency is on temperature, while secondary dependencies are on pressure (colors) and global vacancy concentration 
(left to right). In the middle row the primary dependency is on pressure, with secondary dependencies on global vacancy concentration 
(colors) and temperature (left to right). Finally, the bottom one contains the relationship of the climb velocity with the global vacancy 
concentration, along with secondary dependencies on temperature (colors) and pressure (left to right). In all curves, dashed lines 
correspond to climb velocities using eq. (18) for vacancy emission, i.e. when the vacancy concentration is enforced in a ‘global’ way 
irrespective of the stress state at each of the dislocation segments. Conversely, continuous lines indicate that the velocities have been 
calculated under local conditions (with vacancy emission defined by eq. (17)). 

Inspection of the results reveals the following general trends:  

(i) As indicated earlier, velocities obtained enforcing global vacancy emission tend to be positive (shaded gray region in Fig. 5’s 
plots), while local climb velocities are strongly negative. This points to regimes governed by vacancy absorption and emission, 
respectively.  

(ii) The results are practically insensitive to pressures in the − 100-to-100-MPa range.  
(iii) The climb velocities have a clear exponential dependence on temperature. 

Fig. 5. Sequence of plots showing the net climb velocities of edge dislocation segments with lengths ranging between 50 and 500 nm under different 
combinations of temperature, pressure, and vacancy concentration. The temperature and the pressure set the equilibrium vacancy concentration C0 
according to eq. (16). Then a multiplication factor is applied to C0 so as to artificially increase the vacancy concentration to nonequilibrium levels. 
The average position of the entire dislocation line is then tracked with time and a climb velocity is extracted. Each row of figures shows the climb 
velocity as a function of a primary variable and two secondary variables. Top row: the primary dependency is on temperature; secondary de
pendencies are on pressure (colors) and global vacancy concentration (left to right). Middle row: primary dependency on pressure; secondary 
dependencies on global vacancy concentration (colors) and temperature (left to right). Bottom row: primary dependency on global vacancy con
centration; secondary dependencies on temperature (colors) and pressure (left to right). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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(iv) The total vacancy concentration has an incremental effect on climb velocities, with higher vacancy concentrations resulting in 
higher values, both positive and negative. In the case of global vacancy emission, a larger Cv results in a higher rate of vacancy 
absorption and therefore faster positive climb velocities.4 Enforcing the global vacancy concentration, however, also results in 
an enhanced emission rate as the differential vacancy concentration around dislocation segments (global minus local) remains 
positive, keeping eq. (18) active for a longer time, leading to faster negative climb. 

To further understand the processes that control the kinetic evolution in the simulations, it is useful to analyze the time step 
distribution of events. A representative set results is shown in Fig. 6, where we have separated the histogram into a δt-spectrum 
associated with vacancy diffusion/absorption events (shown in red), and another one corresponding to vacancy emission events (in 
blue). It can be seen that diffusion/absorption is governed by much faster time scales than vacancy emission. The average of the blue 
histogram is approximately 3.0 ps, while that of the orange histogram is almost three orders of magnitude higher, ≈ 0.72 ns. These 
averages are both consistent with eqs. (1), (2) and (17) at the conditions of the simulation. 

The large spread in the vacancy emission distribution gives an idea of the wide range of stress spatial variations found in the 
computational domain. In contrast, vacancy diffusion is defined by a much narrower spectrum. The clear separation of scales between 
both time distributions results in a numerically-stiff system, which makes it amenable to certain speedup procedures that can increase 
the computational efficiency (Snyder et al., 2005; Martínez et al., 2008; Núñez and Vlachos, 2015; Savara and Sutton, 2018). In fact, 
the histogram displayed in the figure points to the causes behind the relatively high computational cost in some of the studied cases. 
The actual CPU cost of the simulations in Fig. 5 is discussed in A.3 and shown in Fig. A.11. 

3.3. Climb mobility functions 

We can now use the results from Section 3.2 to parameterize climb mobility functions to be used in parametric dislocation dynamics 
simulations. The climb contribution to the mobility of a dislocation segment i in DDD is given by eq. (19) in Section 2.4. In those 
equations fel and fos represent two distinct driving forces for dislocation climb:  

(i) The existence of non-glide elastic forces, represented by fel, breaks the local vacancy equilibrium at the nodal or segment level, 
resulting in an imbalance that is resolved by stimulating vacancy diffusion into or out of the dislocation core. As such, these 
forces can produce climb even in the absence of a global vacancy supersaturation. A well-known example of this interaction is 
climb-induced bypass of precipitates or inclusions blocking dislocations in hardened alloys at high temperatures. While global 
thermodynamic equilibrium may exist, hydrostatic elastic forces created by the precipitates on dislocations distort local 
equilibrium facilitating vacancy-assisted climb.  

(ii) Complementarily, dislocations can climb in the absence of elastic forces when the global vacancy concentration is far-from- 
equilibrium e.g. as in quenched metals or irradiation conditions, both of which can produce high vacancy supersaturations. 
This driving force is represented by fos. Note that, as shown in B, stress gradients confer a mechanical bias to the osmotic force 
that is not captured in standard theories of dislocation climb. 

The model presented here naturally captures both driving forces. Indeed, the so-called ‘global’ emission model numerically rep
resents fos, while the ‘local’ model represents fel. Fortunately, emission-dominated conditions lead to ‘downward’ climb, i.e. along the 
direction of the tensile region of the stress field of an edge dislocation, while absorption dominated climb takes place ‘upwards’, or 
towards the compressive semi-plane. As such, osmotic and stress-induced climb work in opposite directions, which allows us to 
separate their contribution. 

Next, we apply the data in Fig. 5 (dashed lines) to eq. (20). The ratio of vc and fos gives the climb mobility, which we show in Fig. 7a 
as a function of inverse temperature and Cv.5 

The results show that even after accounting for the linear temperature dependence of fos (eq. (20)) Mc consistently displays an 
Arrhenius form of the type: 

Mc(T,Cv) = A
(

Cv

C0

)

exp
(

−
ΔQ
kT

)

(21)  

where A is a pre-factor that depends on the Cv/C0 ratio and ΔQ is an activation energy. The dependence of ΔQ on Cv is shown in the 
lower inset to Fig. 7a, where a weak decline from 1.7 to 1.2 eV can be appreciated. This correlates well with vacancy nucleation 
–characterized by an activation energy of 1.7 eV– playing a decreasingly important role as the global vacancy concentration increases. 
The dependence on the ratio y = Cv/C0 is less clear (upper inset) but can be approximated reasonably well by a linear relation (shown 
as a dotted line on the upper figure inset): 

A(y) = 1.9 × 105 − 1.5 × 103y
[
Pa− 1 s− 1] (22) 

4 Maintaining a constant vacancy supersaturation in globally acts as an inexhaustible vacancy source, with vacancies constantly being replenished 
as they disappear due to their interactions with dislocations.  

5 Note that no driving force exists when Cv = C0 and so the climb velocity is nominally zero. 
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The above mobilities pertain to simulations under the action of chemical forces alone. When elastic forces act in conjunction with 
these chemical forces, we get the (negative) climb velocities given in Fig. 5. From these, as in eq. (21), a mobility can be extracted: 

Mc =
vc

f el + f os 

The only stress component conducive to climb is the diagonal component along the glide direction (i.e. n× t, usually taken as σxx). 
However, while this component can be prescribed via the applied stress, local stresses due to jogs in the dislocation line can also 
contribute to the elastic climb force (recall Fig. 4). These are difficult to quantify, however, due to their highly local and fluctuative 
nature, which means that it is difficult to specify fel with precision. If we go strictly by the applied force, the results of the analysis using 
the same tools as for eq. (20) are shown in Fig. 7b. As in Fig. 7a, the mobilities follow an Arrhenius evolution with temperature, 
characterized by the corresponding activation energies and pre-factors. The lower inset in Fig. 7b shows that the activation energies are 

Fig. 6. Histogram of time steps in a general climb simulation at 1000 K. The red histogram (shorter timescales) represents the spectrum of δt 
associated with vacancy diffusion/absorption, while the blue one (longer time steps) represents vacancy emission events. The large spread in the 
distributions gives an idea of the range of stress spatial variations found in the computational domain. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Inverse temperature dependence of Mc for several nonequilibrium vacancy concentrations (given as a multiplier of the vacancy concen
tration C0(T, p)). The lower and upper insets in both graphs show the activation energies and pre-factors for each curve, respectively, assuming an 
Arrhenius expression. 
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not unlike those for the case with no elastic forces, ranging between 1.5 and 1.3 eV. The pre-factors (upper inset in Fig. 7b), however, 
are approximately one order of magnitude higher than their ‘chemical’ counterparts. We attribute this difference to localized and 
fluctuating elastic climb forces that develop owing to the discrete nature of our model. These pre-factors do not exhibit a clear trend 
with Cv, showing almost a concentration-independent behavior: 

A(y) = 1.9 × 106 − 5.7 × 103y
[
Pa− 1 s− 1] (23) 

Note that in the temperature range studied here, climb mobilities range from approximately three to four orders of magnitude 
smaller than glide mobilities at low temperatures, to comparable values at 1500 K (e.g., Gilbert et al. (2011); Queyreau et al. (2011)). 

3.4. Application: dislocation climb over a spherical precipitate 

We finish the Results section with a more practical application of the method. It is known that one of the mechanisms of dislocation- 
based creep is climb over precipitates that exert a force on dislocations greater than the glide force. Here, we simulate such a process by 
considering a spherical precipitate 4 nm in radius with an associated volumetric field characterized by stresses σrr ∝ 1/r3 (Ringdalen 
et al., 2017). The dislocation is then driven towards the precipitate by glide with a force insufficient to cut or loop around it. Aided by 
the volumetric force and by temperature, the dislocation can then climb by vacancy emission and circumvent the precipitate, 
continuing its glide. The simulations are conducted with a modified version of the DDLab code that includes spherical inclusions 
(Ringdalen et al., 2017) and to which we add the kMC module developed here. A sequence of snapshots showing this process, together 
with the number and position of the emitted vacancies is shown in Fig. 8. Note the relative large local concentration of vacancies along 
the climb path. 

Additional analysis is given in Fig. 9 where the dislocation configuration at the point of maximum climb is provided. The color 
background in the figure represents the intensity of the radial stress caused by the precipitate in the matrix (in arbitrary units). The 
black dashed line represents the original glide plane (the equatorial plane of the precipitate), while the superimposed curve gives the 
number of vacancies emitted as a function of distance to the precipitate’s outer radius. The combined action of the line tension, the 
glide force, and the precipitate stress field shape the dislocation line into an arced configuration as shown in the figure. Note that the 
timescale is arbitrary but the glide mobilities are about four orders of magnitude larger than climb mobilities. 

These can be regarded as direct simulations of elementary creep mechanisms on time scales much longer than those associated with 
glide. 

4. Discussion 

4.1. The need for discreticity and stochasticity 

First we justify the need for works such as the present one. Vacancy emission and diffusion are both thermally-activated processes, 
while dislocation network evolution is driven by elastic forces. However, while dislocation climb involves the conjunction of both 
phenomena, they typically act on very different length and time scales. Moreover, point defect processes are intrinsically stochastic in 
that they are driven by thermal fluctuations. As such, kMC is the pertinent method to study them, whereas DDD is the preferred tool to 
simulate dislocation dynamics. This work combines both techniques in a self-consistent way, i.e. (i) DDD resolves the elastic fields 
created by the dislocation structure, (ii) the kMC module evolves the vacancy subpopulation embedded in these fields, and (iii) 
dislocation-defect processes alter the dislocation substructures, giving rise to updated elastic fields. To our knowledge, the only prior 
work where kMC was linked to DDD is that by Ghoniem et al. (2002) to study defect decoration of dislocation loops. Our approach 
considers a drift on vacancy diffusion created by stress fields, which leads to an expression governed by stress gradients. This problem 
has been considered by several authors in the past (Bullough and Newman, 1970; Olmsted et al., 2004), albeit using a different 
approach to the one presented here. 

Another thing worth emphasizing of this work is its discrete nature. Studies where the point nature of defects is directly accounted 

Fig. 8. Sequence of snapshots of an edge dislocation undergoing climb over a spherical precipitate in equilibrium conditions. The applied stress 
produces a force only along the glide direction that is insufficient to curve the dislocation around the precipitate on the glide plane. The images show 
the vacancies emitted while the dislocation climbs. 
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for are rare in the plasticity and DDD community. Direct atomistic calculations can only cover limited length and time scales (Nam and 
Srolovitz, 2007; Kabir et al., 2010), often too small or too short for steady state defect fluxes to occur. Mesoscopic models are better 
equipped to deal with the combination of small length scales and long time scales, but they can suffer from numerical stiffness. A model 
of dislocation climb based on elementary jog kinetics has been recently proposed (Niu et al., 2017). These are examples that discreticity 
and elasticity can be merged with relative high efficacy. Our method is a demonstration that defect generation, absorption, and 
diffusion can be treated in a point-like manner in conjunction with discrete dislocation dynamics. 

It is important to note, however, that some relevant vacancy-related mechanisms are not captured by the present model. We do not 
consider pipe diffusion (diffusion along the dislocation line), which is known to be of importance in certain cases (Love, 1964; Mimkes, 
1975; Miller et al., 1981; Gao et al., 2011). As well, vacancy clustering is not a feature of our approach, although atomistic studies have 
revealed conclusively that small vacancy clusters are unstable and have a short lifetime in bcc metals at the high temperatures explored 
here (Osetsky et al., 2000; Kiritani, 2000; Zinkle and Matsukawa, 2004). Finally, our results pertain to bulk material grains, without 
considering the effects of grain boundaries, which are known to be very effective vacancy sources/sinks and could alter the local and 
global vacancy supersaturation limits compared to those in ideal conditions. 

4.2. Climb dynamics 

Climb takes place under the action of two distinct forces, see eq. (19). The osmotic force is characterized by vacancy absorption due 
to the existence of a vacancy supersaturation and, as such, results in ‘upwards’ climb (along the direction of the compressive half- 
plane). Elastic climb, on the other hand, activates itself via vacancy emission and thus leads to climb in the direction of the tensile 
half-plane of the edge component of a dislocation. This elastic force clearly represents a mechanical bias conveyed by the stress at each 
point. The osmotic force, while in principle not a bias in the thermodynamic sense, is influenced by the stress gradient via the drift term 
in eq. (14), which can also be regarded a mechanical bias (although a second order one, see B). In this sense, our approach differs from 
the classical one in that locality is a feature of both fel and fos, not just of fel (Lothe and Hirth, 1967; Turunen and Lindroos, 1973; 
Turunen, 1976; Raabe, 1998; Mordehai et al., 2008; Bakó et al., 2011). 

Indeed, the classical treatment of dislocation climb suggests that the osmotic force scales with the vacancy supersaturation level. 
However, as our approach reveals, at the local level (near each dislocation segment), the local concentration is often zero, so that the 
driving force for vacancy emission is almost independent of the global vacancy concentration. As well, stress induced climb is seen to 
clearly dominate over chemical climb because the mechanical bias that controls vacancy emission (local stresses) is dominant over 

Fig. 9. Dislocation configuration at the point of maximum climb during simulations of temperature-enabled precipitate bypassing by an edge 
dislocation. The precipitate has spherical shape with a radius of 4 nm. The color background represents the intensity of the radial stress caused by 
the precipitate in the matrix (in arbitrary units). The black dashed line represents the original glide plane (the equatorial plane of the precipitate), 
while the superimposed curve gives the number of vacancies emitted as a function of distance to the precipitate’s outer radius. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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drift effects brought about by stress gradients that control vacancy absorption. 

4.3. Mobility functions 

Mobility functions relate forces (stresses) and dislocation velocities and thus are an essential constitutive input to DDD simulations. 
For climb, it is generally impractical to simulate vacancy-dislocation coevolution in the manner done here, or as in molecular dynamics 
simulations. Hence, the present simulations should be seen as an intermediate step linking vacancy kinetics with dislocation dynamics, 
providing a general-purpose mobility functions with dependencies on the relevant state variables of the problem. Several authors have 
derived climb mobilities of the type (Turunen and Lindroos, 1973; Nix et al., 1971; Mordehai et al., 2008; Bakó et al., 2011): obtained 
by linearizing the exponential term containing the mechanical work done by the elastic force (Dv is the vacancy diffusivity, and r∞ and 
r0 are the standard elastic integration limits around a dislocation). θ represents the dislocation character, with sin θ = 1 for edge 
dislocations. The application of this expression in DDD simulations has been tested in depth (Zhuang et al., 2019) showing that it can 
work qualitatively for situations such as prismatic loop expansion and ‘raft’ microstructure formation. Our expression, by contrast, 
emanates from elementary vacancy processes such as lattice diffusion, emission, and absorption, and includes spatial and time fluc
tuations intrinsically. A comparison of both mobilities in the 800 < T < 1500 K interval is provided in Fig. 10. An obvious difference is 
that, in our treatment, the mobility function itself depends on the vacancy supersaturation Cv/C0, whereas eq. (24) does not. The most 
important difference to note, however, is how much faster the present mobilities are compared to the classical ones represented by eq. 
(24) (between two to three orders of magnitude, respectively, at high and low temperatures). We again rationalize this in terms of the 
local nature of vacancy absorption/emission, which is not captured by classical models based on homogeneous vacancy concentrations 
and smooth defect fluxes into or out of dislocation segments. Further studies are recommended to establish the correct time scale of 
climb in bcc metals. 

Mc =
2πDvΩaC0

kTb2sin2θln(r∞/r0)
(24) 

The final expression for the climb velocity for general use in DDD simulations is: 

vc =A(y)exp
(

−
ΔQ(y)

kT

)[
kT
Ωa

(
y − 1

y

)

− σxx

]

bsin θ (25)  

where y = C0
Cv

, ΔQ(y) ≈ 1.3 eV and A(y) given by eqs. (22) and (23), σxx is the corresponding component of the local stress tensor at 

segment i, σ(ri), and θ = cos− 1
(

b · t
b

)

. 

5. Conclusions 

We separate our conclusions into those relevant for the theory of plasticity and those that are technical in nature. Our main physical 
conclusions are:  

• Stress gradients control vacancy diffusion in the presence of dislocation elastic fields. This results in a drift on vacancy transport 
that steers defects towards dislocation cores, conferring a mechanical bias to an otherwise ‘chemical’ process. 

Fig. 10. Comparison between eq. (21) (present climb mobility expression, dashed blue) and (24) (expression by Bakó et al. (2011), red continuous). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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• Climb is dominated by vacancy emission even when the background vacancy concentration is much higher than the equilibrium 
one. This is because local vacancy conditions control the overall kinetics, as captured in our approach, whereas classical treatments 
assume smooth vacancy fluxes from homogeneous defect concentrations.  

• Climb velocities might be much faster than otherwise believed when one uses the classical theory of climb. Again, a consequence of 
local vacancy-dislocation interactions. 

Our main technical conclusions are:  

• We have developed a discrete stochastic model of vacancy evolution in the presence of arbitrary elastic fields furnished by DDD 
methods. Vacancy kinetics include emission, diffusion, and absorption, rigorously coupled to underlying dislocation fields, while 
absorption/emission events change the dislocation microstructure which is updated in time and, with it, the elastic fields.  

• The method enables the calculation of dislocation climb mobility functions as a function of temperature, pressure, and vacancy 
concentration, to be directly used in parametric DDD simulations. The calculated climb mobilities are over 100 × larger than those 
from previous derivations.  

• Preliminary calculations of dislocation bypassing of spherical precipitates demonstrate that the method is capable of simulating 
physical processes conducive to high-temperature creep. 
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Appendix A. Numerical solution procedure 

The challenge in solving eq. (14) using expression (8) is that δxi and ui have an implicit relationship. That is, to compute ui one needs 
to know δxi, which itself is sampled from the solution to the drift-diffusion equation (8) which requires ui as an input. Solving this 
requires running a self-consistent iterative procedure until the values of δxi and ui self-consistently converge. 

Appendix A.1The Box-Müller sampling 

To sample from eq. (8) we use the Box-Müller approach (Golder and Settle, 1976), by which two random samplings z1 and z2 are 
generated using: 

z1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2 ln ξ1

√
cos(2πξ2)

z2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2 ln ξ1

√
sin(2πξ2)

where ξ1 and ξ2 are two uniformly distributed random numbers in the (0, 1] interval. From this, the jump steps obtained are: 

(δxi)1,2 = uiδt + z1,2
̅̅̅̅̅̅̅̅̅̅
2Dδt

√
(A.1)  

Note that δt is an input to the sampling procedure, but it is a priori unknown. This means that it also should be determined self- 
consistently (iteratively). 

Appendix A.2. Numerical algorithm 

Next, we present the recursive algorithm used to integrate the transport equations. 

Algorithm 1. Numerical procedure to solve the vacancy elasto-diffusion model. 
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where N and M are, respectively, the number of vacancies and dislocation segments in the simulation box at any give time step. In this 
fashion, the DDD method acts as a library linked to the main workflow loop, from which information is passed bidirectionally. These 
links are highlighted in red color in the algorithm. Basically, Algorithm 1 consists of two for loops nested within a do-while loop. 
Each of the for loops is tasked with computing event rates due to vacancy diffusion (first loop) and vacancy emission (second loop), 
respectively. As such, one runs over all vacancies while the other runs over all dislocation segments. The do-while loop ensures the 
self-consistency of the δx ≡ δx′ condition. 

Appendix A.3. Computational cost 

To assess the computational cost of the simulations conducted here (which follow Algorithm 1), we calculate the ratio of CPU time 
to simulated (physical) time as a function of pressure, temperature, and vacancy concentration. We find that temperature is over
whelmingly the dominant parameter, with pressure and vacancy concentration having only a minor impact on CPU time. An example 
is shown in Fig. A.11, where the ratio of CPU time to simulated time for local and global vacancy emission implementations is given as 
a function of simulated temperature and pressure (with Cv = C0). Temperature is seen to exponentially increase the CPU cost, while 
pressures up to ±100 MPa have little to no effect on the computational efficiency. The local treatment of vacancy emission adds a cost 
factor of approximately 100 × to the simulations compared to the global implementation. This approximately scales with the number 
of dislocation segments in the simulation box, so that a local treatment of emission incurs in an extra cost associated with a linear 
sweeping over all dislocation segments. This knowledge can guide further simulation campaigns when CPU time is of the essence.  
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Fig. A.11. Ratio of CPU time to simulated time for local and global vacancy emission implementations as a function of simulated temperature and 
pressure (with Cv = C0). 

Appendix B. Second-order stress effects on the osmotic force 

Starting from the general expression for the osmotic force in eq. (20): 

f os =
bkT
Ωa

log
Cv

C0
(B.1)  

one can refer Cv and C0 to the local and remote concentrations near a dislocation core, such that the logarithmic term is expressed as 
log(Clocal/Cremote). This converts the spatial uniformity of Cv and C0 to the level of proximity to a dislocation where stress gradients can 
be felt by vacancies. 

Clocal and Cremote can be replaced by their time dependent solutions (see eq. (8)): 

Clocal(x, t) =
1

(4πDt)1/2 exp
{

−
(x − ut)2

4Dt

}

and 

Cremote(x, t) =
1

(4πDt)1/2 exp
{

−
x2

4Dt

}

Here we have assumed that vacancies near dislocations cores feel stress gradients and are subjected to a drift, while far away from them 
they do not. Inserting the above expressions into eq. (B.1) and operating: 

f os =
bkT
Ωa

log
Clocal

Cremote
=

bkT
Ωa

log
exp

{

−
(x− ut)2

4Dt

}

exp
{

− x2

4Dt

} =
bkT
Ωa

[
− (x − ut)2

+ x2

4Dt

]

=
bkT
Ωa

ux
2D

(B.2)  

where second order terms in time have been discarded. Replacing u by its expression in eq. (14), and assuming that ‖x‖≈ δx: 

u ≈
DΩa

3kT
∇Tr(σ) (B.3)  

leads to: 

f os ≈
b2

3
∂σ
∂x

(B.4)  

where it has been further assumed that the vacancy diffusion length is on the order of the Burgers vector’s modulus. 
Using the steady-state solution of the drift-diffusion equation leads to the same expression, assuming perfect vacancy absorbance at 

the dislocation core, and a uniform remote vacancy concentration of C0, i.e. (Heald and Speight, 1975): 
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Ccore(x) = C0

⎛

⎜
⎝

exp
{

ux
D

}
− 1

exp
{

uℓ
D

}
− 1

⎞

⎟
⎠

Accordingly, the osmotic force becomes: 

f os =
bkT
Ωa

(1 − Ccore/C0) ≈
bkT
Ωrel

⎛

⎜
⎝

exp
{

ux
D

}
− 1

exp
{

uℓ
D

}
− 1

⎞

⎟
⎠ =

bkT
Ωa

⎛

⎜
⎝1 −

ux/D

exp
{

uℓ
D

}
− 1

⎞

⎟
⎠ (B.5)  

where we have used a first-order expansion of the exponential, x ≡ δx ≈ 0, and ℓ is a screening distance. This results in the expression: 

f os =
bkT
Ωa

u
D
(ℓ − δx) (B.6)  

which is identically equivalent to eq. (B.4) when δx ≈ b and ℓ ≈ 2b, both reasonable values for both parameters. This shows that when 
stress gradients are operative, the osmotic force is also subjected to a mechanical bias. 
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