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Elementary formulas for propagating information about means and variances through 
mathematical expressions have long been used by analysts. Yet the precise implications 
of such information are rarely articulated. This paper explores distribution-free techniques 
for risk analysis that do not require simulation, sampling or approximation of any kind. We 
describe best-possible bounds on risks that can be inferred given only information about 
the range, mean and variance of a random variable. These bounds generalise the classi-
cal Chebyshev inequality in an obvious way. We also collect in convenient tables several 
formulas for propagating range and moment information through calculations involving 7 
binary convolutions (addition, subtraction, multiplication, division, powers, minimum, and 
maximum) and 9 unary transformations (scalar multiplication, scalar translation, expo-
nentiation, natural and common logarithms, reciprocal, square, square root and absolute 
value) commonly encountered in risk expressions. These formulas are rigorous rather than 
approximate, and in most cases are either exact or mathematically best-possible. The for-
mulas can be used effectively even when only interval estimates of the moments are 
available. Although most discussions of moment propagation assume stochastic indepen-
dence among variables, this paper shows the assumption to be unnecessary and generalises 
formulas for the case when no assumptions are made about dependence, and when corre-
lations are partially known. Along with partial means and variances, we show how interval 
covariances may be propagated and tracked through expressions.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many authors have suggested propagating means and variances of variables through mathematical expressions as a 
crude form of risk analysis. This approach is sometimes called first-order error analysis, and it is a widely used approach for 
making risk estimates. In traditional probability theory, these calculations are called moment propagation and are considered 
a fundamental part of mathematical statistics (for example, see Wilks [30]). Despite this wide use, there has always been 
a disconnect between moment propagation and what these calculations would imply about risks of extreme values of the 
variable. For instance, after reviewing some moment propagation formulas, Cullen and Frey [7, page 184] gave a rather 
pessimistic conclusion:
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Although the results of [the formulas] are useful in some cases for propagating the mean and variance through a simple 
linear model, they do not imply anything about the shape of the model output distribution. Thus, if we were interested 
in making predictions regarding the 95th percentile of the model output for a linear function of independent random 
variables, we would not have sufficient information based solely on the properties of the mean and variance to do this.

This paper will show how their conclusion is wrong. Their pessimistic view is based on the fact that the well-known 
formulas for moment propagation

• require stochastic independence,
• require moments to be perfectly known (point values), and
• give no information about output distributions without shape assumptions (e.g., normality).

In this paper, we suggest that one can combine the methods of moment propagation with elementary interval analysis to 
obtain results that are better than can be obtained from either analysis separately. Rowe [25] considered the problem of 
computing moments of certain kinds of transformations such as exp, log, sqrt, etc. from sparse structural information such 
as first moments and ranges of the operands. We extend this approach to the context of convolutions between poorly char-
acterised random variables, and provide formulas for moment propagation which require no assumptions about stochastic 
dependence. The combination of Rowe’s methods, together with the present extension, creates what may be characterised 
as a distribution-free risk analysis that lets analysts compute bounds on uncertain expressions without making assumptions 
about the precise distributions of the underlying variables. We also show that information about moments actually does 
enable us to make rigorous conclusions about the shape and, indeed, the percentiles of the output distributions that will be 
useful in many real-world risk assessments (contra Cullen and Frey [7, page 184]).

2. Means and variances always ‘exist’

Mathematically, the distribution of a random variable may fail to have a mean or variance. For instance, Student’s t
distribution with two degrees of freedom theoretically has no variance because its formula does not converge to a finite 
value. Similarly, the quotient of independent unit normals, which follows a Cauchy distribution, has neither a variance nor 
mean. Wiwatanadate and Claycamp [31] suggested that a risk calculation based on simple formulas for means and variances 
can only be applied in situations where the moments all exist.

As a practical matter, however, we do not consider the nonexistence of moments to be of any real significance for risk 
analysts. Infinite means and variances are merely mathematical bêtes noires that need not concern the practically minded. 
All random variables relevant to real-world risk analyses come from bounded distributions. As an example, consider human 
body weight. There are no infinitely massive body weights (despite recent trends in western dietary health). The largest 
recorded human body weight was 635 kg. Although a person could probably exceed this weight, perhaps even substantially, 
there are clearly bounds that human body mass cannot exceed. Therefore, as a practical matter, even a very comprehensive 
risk analysis need never include a mathematically infinite distribution for body weight. Similar arguments apply to other 
variables. Analysts concerned with infinite tails of distributions are addressing mathematical problems, not risk analysis 
problems. All the moments of any bounded distribution are finite and therefore ‘exist’ in the mathematical sense.

On the other hand, just because the moments are finite, does not imply they are determinate. In fact, it may usually be 
the case that only an indeterminate estimate of a mean or variance is available. In such situations, we can use intervals 
to represent the value, whatever it is, in some range. We can then use interval arithmetic [24] to manipulate the estimate 
and propagate it through calculations even though we cannot specify its value precisely. When describing imprecision with 
intervals, we make no statement of how probability is distributed within this interval. We only assume that the quantity 
exists between the two bounds.

3. Propagating range and moment information

In this section, we review formulas for bounds on the range and first two moments (mean and variance) for imprecisely 
specified random variables. Bounds are considered “rigorous” or “true” bounds if they are certain to contain the value (given 
the assumptions). All of the formulas in the tables in this paper are rigorous, so the true moments are guaranteed to be 
inside the given bounds so long as the inputs are within their respective bounds. This means that none of the table entries 
is merely approximate. Bounds are considered “best-possible” if they cannot be any tighter. If a formula in the table is exact 
or best-possible, it is displayed in boldface. Most of the other formulas yield fairly narrow results and are still quite good 
for practical purposes even though they may not be mathematically best-possible.

Table 1 summarises formulas that can be used to estimate the least and greatest possible value of a distribution arising 
from a transformation or convolution. In this and the following tables, X and Y are two random numbers and k is an 
arbitrary constant. X and X denote respectively the least and greatest possible value of X . E X denotes the expectation or 
mean of X , and V X denotes its variance. Following Rowe [25], we define the variance with a denominator of n instead 
of n − 1, and emphasise that the quantities under consideration are moments of finite data populations, which are not 
necessarily samples of anything. In other respects, the random variables are arbitrary except for restrictions implied by the 
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Table 1
Rigorous formulas for least and greatest possible values of 9 transformations and 7 convolutions of random variables (all the formu-
lations in this table are mathematically best-possible).

Least possible value Greatest possible value

k + X (shifting) k+X k+X

kX (rescaling)

{
kX, if 0 ≤ k

kX, if k < 0

{
kX, if 0 ≤ k

kX, if k < 0

exp(X) exp (X) exp (X)

ln(X) for 0 < X ln (X) ln (X)

log10(X) for 0 < X log10(X) log10(X)
1
X for 0 /∈ [X, X] 1/X 1/X

X2

{
0, if 0 ∈ X

min (X2,X
2
), otherwise

max (X2,X
2
)

|X | (absolute value)

{
0, if 0 ∈ X

min (|X|,|X|), otherwise
max (|X|,|X|)

√
X for 0 ≤ X

√
X

√
X

X + Y X+Y X+Y

X − Y X−Y X−Y

X × Y min (XY ,XY ,XY ,X Y ) max (X Y ,X Y ,X Y ,X Y )
X
Y for 0 /∈ [Y , Y ] min (X/Y ,X/Y ,X/Y ,X/Y ) max (X/Y ,X/Y ,X/Y ,X/Y )

X Y for 0 < X or 0 < Y min (X Y ,X Y ,X
Y
,X

Y
) max (X Y ,X Y ,X

Y
,X

Y
)

min(X, Y ) min (X,Y ) min (X,Y )

max(X, Y ) max (X,Y ) max (X,Y )

mathematical operations. For instance, the entries in the square root rows assume X cannot take on negative values, and 
the rows for division assume that the random variable Y does not straddle zero.

The formulas in Table 1 are essentially a synopsis of standard interval arithmetic [24] and, apart from the row for 
subtraction perhaps, are probably not very surprising. Monotone increasing transformations are especially easy, because the 
endpoint of the transformation is just the transformation of the endpoint. For instance, the least possible value of the square 
root of some variable is simply the square root of the least possible value of the variable. The relevant endpoints are reversed 
for monotone decreasing transformations. For instance, the greatest possible value of the reciprocal of some variable is the 
reciprocal of its least possible value. Non-monotone functions, such as absolute value, are more troublesome to account for 
because values inside the range of the variable can play a role in determining the endpoints of the transformation of the 
variable. For instance, the least possible value of the absolute value of some variable that ranges between +2 and −2 is 
zero (which is neither endpoint).

The formulas in Table 2 review the basic arithmetic operations on moments without dependence assumptions. We refer 
to operations which make no dependence assumptions (operations which use all possible dependencies) as Fréchet opera-
tions. These formulas generally yield intervals rather than precise values. In part, the results are indeterminate because we 
are not specifying the stochastic dependence between the random variables X and Y . This is reflected in the occasional 
appearance of the ± operator in the table (which denotes an interval of values). This indeterminism would be present even 
if the estimates of means and variances used as inputs were precise. But, of course, these inputs may well start out as 
intervals, perhaps because they were previously computed using the tabulated formulas or because they were imprecisely 
estimated from statistical evidence or by subjective judgement.

Some of these formulas, such as those in the first two rows, are elementary and can be found in any textbook on 
mathematical statistics (e.g., [30]). Rowe [25] describes several bounds on transformations of random variables that have 
constant-sign derivatives, including exponentiation, logarithms, reciprocal, square and square root. Rowe showed how to 
make use of information about the minimum and maximum values to obtain surprisingly tight bounds on the mean and 
variance with simple closed-form expressions. These expressions do not require approximation and are extremely fast when 
implemented on a computer. In the table, we use rowe (Rowe’s mean estimate) and rowevar (Rowe’s variance estimate) to 
denote his functional templates

rowe (t) = env

(
Pt

(
X
) + (1 − P ) t

(
E X + V X

E X − X

)
, Q t

(
X
) + (1 − Q ) t

(
E X + V X

E X − X

))
, (1)

rowevar (t) = env

(
t
(
ν
) − t

(
X
)

(
ν − X

)2

(
V X + (

ν − E X
)2

)
,

t (ν) − t(X)(
ν − X

)2

(
V X + (ν − E X)2

))
(2)

where t denotes one of the transformations exp, ln, log10, square root or reciprocal so that, for example, t(x) = exp(x), and 
where env denotes the interval envelope
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Table 2
Rigorous formulas for the mean and variance for 9 transformations and 7 convolutions of random variables (best-possible formulations in boldface). Some 
formulas are too large to be shown here but can be found in the text. “Homespun variance” is Equation (19), and “max formula” and “min formula” are 
Equations (20) and (21) respectively.

Mean Variance

k + X (shifting) k+E X V X

kX (rescaling) kE X k2 V X

exp(X) rowe(exp) rowevar(exp)

ln(X) for 0 < X rowe(ln) rowevar(ln)

log10(X) for 0 < X rowe(log10) rowevar(log10)
1
X for 0 /∈ [X, X] rowe(reciprocal) rowevar(reciprocal)

X2 (E X)2+V X rowevar(square)

|X | (absolute value)

⎧⎪⎨
⎪⎩

E X, if 0 ≤ X

−E X, if X ≤ 0

[|E X |, |E X | + √
V X(π − atan(

|E X |√
V X

))], if 0 ∈ X

max(0, E X2 + V X − E[|X |]2)

√
X for 0 ≤ X rowe(√ ) rowevar(√ )

X + Y E X+EY (
√

V X ± √
V Y )2

X − Y E X−EY (
√

V X ± √
V Y )2

X × Y E X EY ± √
V X V Y “Homespun variance”

X
Y for 0 /∈ [Y , Y ] E[X × (1/Y )] V[X × (1/Y )]
X Y for 0 < X or 0 < Y E[exp(ln(X) × Y )] V[exp(ln(X) × Y )]
max(X, Y ) “max formula” env(max(V X, V Y ),0)

min(X, Y ) “min formula” env(max(V X, V Y ),0)

env(a,b) = [min(a,b),max(a,b)]. (3)

P and Q in Equation (1) are

P = 1/(1 + (E X − X)2/V X) (4)

Q = 1/(1 + (E X − X)2/V X) (5)

and ν in Equation (2) is the anti-transformation of the Rowe mean estimate

ν = t−1(rowe(t)) (6)

which generally gives an interval result. For example, the mean of ln(X) would be estimated by

env

(
P ln

(
X
) + (1 − P ) ln

(
E X + V X

E X − X

)
, Q ln

(
X
) + (1 − Q ) ln

(
E X + V X

E X − X

))
, (7)

and the variance would be computed by

env

(
ln(ν) − ln(X)

(ν − X)2

(
V X + (

ν − E X
)2

)
,

ln (ν) − ln
(

X
)

(
ν − X

)2

(
V X + (ν − E X)2

))
, (8)

where ν is the exp (antilog) of the mean estimate. Thus, if X ranges over [10, 30] and has a mean of 15 and a variance of 3, 
then the mean of ln(X) is sure to be within the interval [2.699, 2.704], and the variance is sure to be in [0.006437, 0.02002], 
and it has a range of [2.3025, 3.4012]. Although these templates are a bit complicated for manual calculation, they are very 
amenable to implementation on a computer and require only two dozen elementary floating-point operations and four 
evaluations of the transformation function. Rowe’s approach works for all transformations that have constant-sign first 
derivatives.

The derivation of V[X + Y ] is straightforward and illustrates several important points. It starts with the familiar general 
formulation for the variance of a sum

V[X + Y ] = V X + V Y + 2 Cov[X, Y ]. (9)

Even if we do not know what the covariance between the two variables is, we can still bound it quantitatively. We know 
that, for any pair of random numbers X and Y , their correlation coefficient

ρ = Cov[X, Y ]/√V X V Y , (10)
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surely lies within the interval [−1, +1]. This implies that their covariance is somewhere within the interval [−√
V X V Y ,

+√
V X V Y ]. (For compactness, we can write this in interval expressions as ±√

V X V Y so long as we keep in mind that 
it refers to an entire interval, rather than merely a pair of values.) These bounds can also be found from Cauchy–Schwarz 
inequality |Cov[X, Y ]| ≤ √

V X V Y . This means, then, that

V[X + Y ] = V X + V Y ± 2
√

V X V Y , (11)

which is a perfect square that can be simplified to

(
√

V X ± √
V Y )2. (12)

This is the formula that appears in the table above. As an example, suppose that X has its mean at 10 and a variance 
of 1, and that Y has a mean of 25 and a variance of 5. The variance of the sum X + Y is sure to lie within the interval 
[1.52786, 10.4722], no matter what statistical dependency there might be between X and Y . These bounds are best-possible 
in the sense that they cannot be any tighter given only the stated information about the two moments for each variable.

The rearrangement that changed the perfect square polynomial into the simpler form turns out to have been important. 
The methods of elementary interval analysis can be sensitive to repeated variables that might introduce the (same) uncer-
tainty into an expression multiple times. Rearranging a formulation so that no uncertain variable appears more than once 
assures that the calculation will always yield optimal results when the inputs are intervals. For example, if X has mean of 
[9, 11] and variance [0.8, 1.2], and Y has mean [24, 26] and variance [4, 6], then our best possible estimate for the variance 
of the sum X + Y is the interval [0, 12.5666]. Despite the imprecision of this result, we will see in Section 6 that it actually 
puts a very strict limit on the exceedance risks and other probabilistic statements associated with the imprecisely known 
random variable.

The derivation for V[X − Y ] is the same as for V[X + Y ] beginning from the usual formula

V[X − Y ] = V X + V Y − 2 Cov[X, Y ]. (13)

The derivation for E[XY ] is also straightforward. Beginning from the covariance identity

Cov[X, Y ] = E[XY ] − E X EY (14)

and rearranging for

E[XY ] = E X EY + Cov[XY ], (15)

and bounding the covariance with ±√
V X V Y gives

E[XY ] = E X EY ± √
V X V Y . (16)

Some of the formulas for moment propagation under any dependence are too lengthy to be placed in Table 2. We 
therefore expand them here. Goodman [14] provides a formula for the variance of product as

V[XY ] = (E X)2 V Y + (EY )2 V X + 2E X EY E11 + 2E X E12 + 2EY E21 + E22 − E2
11 (17)

where Eij are the higher bivariate moments: Eij = E[(X − E X)i(Y − EY ) j] (e.g., E11 is covariance). These are generally 
not tracked by our method, however they may be expressed in terms of the marginal moments and the other formulae 
described here. We show this in Appendix A. However a simpler, and tighter, formula for the variance of the product 
under no assumption about the dependence may be derived, which we show now. Beginning with V[X] = E[X2] − E[X]2, 
Cov[X, Y ] = E[XY ] − E X EY and

Cov[X2, Y 2] = E[X2Y 2] − E[X2]E[Y 2], (18)

the variance of V[XY ] is

V[XY ] = E[X2Y 2] − E[XY ]2 (from variance identity)

= Cov[X2, Y 2] + E[X2]E[Y 2] − E[XY ]2 (using (18))

= Cov[X2, Y 2] + E[X2]E[Y 2] − (Cov[X, Y ] + E X EY )2 (covariance identity)

= Cov[X2, Y 2] + (V X + E X2)(V Y + EY 2) − (Cov[X, Y ] + E X EY )2.

The above expression is now written in terms of means, variances and covariances. The covariance may be further expanded 
in terms of the Pearson correlation coefficient:

Cov[X, Y ] = ρXY

√
V X V Y ,
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Table 3
Improved formulas for the mean and variance for convolutions of random variables under an assumption of stochastic independence 
(best-possible formulations in boldface). The equations for “i-max formula” and “i-min formula” are (22) and (23) respectively.

Mean Variance

X + Y E X+EY V X+V Y

X − Y E X−EY V X+V Y

X × Y E X EY (E X)2 V Y +(EY )2 V X+V X V Y
X
Y for 0 /∈ [Y , Y ] E[X × (1/Y )] V[X × (1/Y )]
X Y for 0 < X or 0 < Y E[exp(ln(X) × Y )] V[exp(ln(X) × Y )]

max(X, Y ) “i-max formula”

⎧⎪⎨
⎪⎩

V X, if Y < X

V Y , if X < Y

env(max(V X, V Y ),0), otherwise

min(X, Y ) “i-min formula”

⎧⎪⎨
⎪⎩

V X, if X < Y

V Y , if Y < X

env(max(V X, V Y ),0), otherwise

Cov[X2, Y 2] = ρX2Y 2

√
V[X2]V[Y 2],

and because it is required that ρ ∈ [−1, 1]:

V[XY ] = (V X + E X2)(V Y + EY 2) + [−1,1]
√

V[X2]V[Y 2] − ([−1,1]√V X V Y + E X EY )2, (19)

and where V[X2] and V[Y 2] may be evaluated with rowevar. Note that in the above expression [−1, 1] are intervals, and 
must be evaluated using interval arithmetic, using the formulas in Table 1. The above formula for the variance of the 
product without any dependence assumptions is tight, and we believe has not been described elsewhere. This is what 
we call the “Homespun variance” in Table 2. Note that Equation (19) is not best possible, because we are ignoring the 
potential information on ρX2 Y 2 from knowledge that ρXY ∈ [−1, 1], i.e. ρX2Y 2 may not span the entire interval [−1, 1] in 
all situations. However setting ρX2 Y 2 = [−1, 1] is rigorous and gives a tight and easy-to-evaluate bound.

The formulas for division can be seen as an application of those for reciprocal and multiplication. That is, we define 
X/Y as X ∗ (1/Y ), which is perfectly valid and yields rigorous results so long as [Y , Y ] does not contain zero. Similarly, we 
evaluate X Y as eln(X)∗Y .

The “max formula” and “min formula” are provided by Ferson et al. [11], and are best-possible in the absence of variance 
information. For

p X = E X − X

X − X
, pY = EY − Y

Y − Y
,

“max formula” is

E[max(X, Y )] = max(E X, EY ), (20a)

E[max(X, Y )] = min(p X , pY ) × max(X, Y ) + max(p X − pY ,0) × max(X, Y )+
max(pY − p X ,0) × max(X, Y ) + min(1 − p X ,1 − pY ) × max(X, Y ), (20b)

and “min formula” is

E[min(X, Y )] = max(p X + pY − 1,0) × min(X, Y ) + min(p X ,1 − pY ) × min(X, Y )+
min(1 − p X , pY ) × min(X, Y ) + max(1 − p X − pY ,0) × min(X, Y ), (21a)

E[min(X, Y )] = min(E X, EY ). (21b)

3.1. Independence need not be assumed (but can be)

Unlike the formulations usually given for moments of the sums, products, quotients, etc. of random variables (e.g., [31]), 
the formulas in Table 2 do not assume that X and Y are stochastically independent. Our formulas are guaranteed to give 
correct results whenever their inputs enclose the respective extremes, means and variances. However, if an analyst is willing 
to assume independence, then the formulas in Table 2 can be improved substantially. Table 3 gives the preferred formulas 
for such cases. We hasten to point out that an independence assumption is extremely strong, and it is very widely abused 
in risk analysis. Some uses of the assumption border on the ridiculous, such as the assumption that body weight and skin 
surface area are independent, or the assumption, echoed even in the paper of Wiwatanadate and Claycamp [31], that body 
mass and height are independent. Analysts should take care to use assumptions of independence and the formulas of Table 3
138
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only when justified by theoretical argument or comprehensive empirical information. In contrast, the formulas of Tables 1
and 2 are appropriate for all situations and need not be justified by special argument or evidence.

The “i-max formula” and “i-min formula” in Table 3 come from Ferson et al. [11], which for

p X = E X − X

X − X
, pY = EY − Y

Y − Y
,

are

E[max(X, Y )] = max(E X, EY ) , (22a)

E[max(X, Y )] = p X × pY × max(X, Y ) + p X × (1 − pY ) × max(X, Y )+
(1 − p X ) × pY × max(X, Y ) + (1 − p X ) × (1 − pY ) × max(X, Y ), (22b)

and

E[min(X, Y )] = p X × pY × min(X, Y ) + p X × (1 − pY ) × min(X, Y )+
(1 − p X ) × pY × min(X, Y ) + (1 − p X ) × (1 − pY ) × min(X, Y ), (23a)

E[min(X, Y )] = min(E X, EY ) . (23b)

3.2. Using the formulas with interval inputs

Even if one starts out with point estimates for means and variances, applying the formulas in the tables generally 
yields interval results. Thus, if uncertainty is to be propagated through multiple arithmetic operations, interval estimates 
for the moments must be handled. The above formulas can be readily evaluated with intervals for E X and V X and will 
surely bound the transformed mean and variances; however the tightness of the result depends on the number times a 
variable appears in the expression. If the variable appears just once, then the result will be the tightest possible. But if 
uncertain variables appear multiple times in an expression (for example in the rowe and rowevar templates), then the same 
uncertainty will be introduced multiple times, and the result will be artificially inflated. This is the well known repeated 
variables problem, and has several numerical solutions such as significance arithmetic [20], affine arithmetic [26], Taylor 
models [22] and relation arithmetic [4,15]. Where possible, expressions can be rearranged in such a way that the variables 
appear only once, for example realising that a2 +a = (a + 1

2 )2 − 1
4 . It has been suggested that this process can be automated 

by an uncertainty compiler [18].
A simple-to-implement solution (although often more computationally expensive than the above suggestions) is sub-

intervalisation, where the interval is split into n (usually linearly spaced) sub-intervals, and the expression is evaluated 
n times with each sub-interval. The resulting range is then the union of the propagated sub-intervals. Usually the main 
drawback from this method is that it can suffer from the curse of dimensionality. That is, if a function has m inputs, then 
nm interval calculations can be required. However, because the expressions proposed in this paper usually require 2 variables 
(E X and V X), and at most 4, to be sub-intervalised, this is an appropriate technique here. Around 15 sub-intervals is often 
sufficient to substantially reduce the effect of repeated variables without dramatically impacting the performance of the 
method.

3.3. When some moments are missing

The above formulas may still be applied when some, or both, of the moments are unknown. In such cases, it is possible 
to bound the mean and variance from the range of the random variable. The range X , X provides simple bounds on the 
mean

E X ∈ [X, X].
The variance may also be bounded from the range [10]:

V X ∈
[

0,

(
X − X

)2

4

]
.

That is, it is not possible to find a random variable with range [X, X] and with variance greater than (X − X)2/4. The lower 
bound of the variance is zero, because scalar values are also included. The upper bound on the variance may be further 
tightened when bounds [E X, E X] on the mean are known. Say that m is the mid point of the range m = (X + X)/2 and
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v1 = (X − X)(X − E X) − (X − E X)2

v2 = (X − X)(X − E X) − (X − E X)2

v3 =
{

(X − X)(X − m) − (X − m)2, if m ∈ [E X, E X]
0 otherwise ,

then

V X ∈ [0,max(v1, v2, v3)]. (24)

If E X is known precisely, v1 and v2 are the same, and v3 only plays a role when the interval mean intersects the mid point.
The above formulas are hard theoretical constraints on means and variances, and they can be useful in other ways apart 

from filling in missing information. They can be used as constraints on any initial moment information. For example, if it 
is initially known that E X ∈ [2, 5], V X ∈ [2, 3], and X ∈ [3, 6], the above constraints tighten this information to E X ∈ [3, 5], 
V X ∈ [2, 2.25], and X ∈ [3, 6]. They can also be used to check whether any initial information is inconsistent (outside 
theoretical bounds). For example the mean cannot be outside the range [E X, E X] ∩ [X, X] = ∅, and initial variance must be 
inside the bounds provided by (24).

These constraints can also be applied after any of the propagation formulas. Those formulas which are best-possible will 
not be tighten further, however the Rowe formulas which are not best-possible may sometimes be tightened. The constraints 
also act as a self-verification for the method. It is possible to check that the propagation formulas in this paper will not 
produce answers outside of theoretically possible bounds. Although it is meticulous to apply these constrains by hand after 
every operation, this can easily be done by computer. In an object-orientated or typed programming language, they are 
simple to implement in a variable’s constructor, so that when any new moment variable is created either by user input or 
after an operation, these constraints can automatically check for inconsistencies and tighten answers.

Ferson et al. [11] describe best-possible bounds on the mean of a variety of unary and binary operations involving 
intervals in the absence of variance information, which are distinct to the results presented in Tables 2 and 3. That is, they 
consider transformations and convolutions of random variables only considering range and mean information. Applying the 
formulas in Tables 2 and 3 using the moments implied by the above constrains yields rigorous results, however when 
variance information is entirely missing, the results from Ferson et al. [11] often give tighter bounds. Table 4 summarise the 
main results from Ferson et al. [11]. For proofs of these results, we refer readers to their paper. Note that the table only has 
a mean column, as these bounds consider the case when no variance information is known. Several of the formulas use the 
following notation

p X = E X − X

X − X
, pY = EY − Y

Y − Y
.

The “product formula” provides the range of E[X × Y ] = [
E[X × Y ], E[X × Y ] ], is

E[X × Y ] = max(p X + pY − 1,0) × X × Y + min(p X ,1 − pY ) × X × Y +
min(1 − p X , pY ) × X × Y + max(1 − p X − pY ,0) × X × Y (25a)

E[X × Y ] = min(p X , pY ) × X × Y + max(p X − pY ,0) × X × Y +
max(pY − p X ,0) × X × Y + min(1 − p X ,1 − pY ) × X × Y . (25b)

The “convex formula” is

E[ f (X, Y )] = max(p X + pY − 1,0) × f (X, Y ) + min(p X ,1 − pY ) × f (X, Y )+
min(1 − p X , pY ) × f (X, Y ) + max(1 − p X − pY ,0) × f (X, Y ) , (26a)

E[ f (X, Y )] = f (E X, EY ) . (26b)

The “concave formula” is

E[ f (X, Y )] = f (E X, EY ) , (27a)

E[ f (X, Y )] = min(p X , pY ) × f (X, Y ) + max(p X − pY ,0) × f (X, Y )+
max(pY − p X ,0) × f (X, Y ) + min(1 − p X ,1 − pY ) × f (X, Y ) . (27b)

The formulas in Table 4 are for a precise mean, however Ferson et al. [11] also describe how to extend these results to 
the case where only and interval value for the mean E X, E X is known. When the function f (x) is convex (e.g., exp(x), x2, 
|x|, or 1/x for 0 < x), the lower bound E[ f (X)] of the interval of possible values of E[ f (X)] is the minimum of f (E X) on 
the interval E X ∈ [

E X, E X
]
. For convex functions, the minimum can be computed by a feasible algorithm.
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Table 4
Rigorous formulas for the mean for various transformations and convolutions of random variables 
in the absence of variance information (all formulas best-possible). The “product formula”, “convex 
formula”, and “concave formula” are Equations (25), (26), and (27).

Mean

k + X (shifting) k+E X

kX (rescaling) kE X

f (X) for convex f (x) [ f (E X), p X × f (X)+(1−p X ) × f (X)]
exp(X) [exp (E X), p X × exp (X)+(1−p X ) × exp (X)]
X2 [(E X)2, p X × (X)2+(1−p X ) × (X)2]
|X | (absolute value) [|E X|, p X × |X|+(1−p X ) × |X|]
1

X
for 0 < X

[
1

E X
,

X + X − E X

X − X

]

f (X) for concave f (x) [p X × f (X)+(1−p X ) × f (X), f (E X)]
ln(X) for 0 < X [p X × ln (X)+(1−p X ) × ln (X), ln (E X)]
log10(X) for 0 < X [p X × log10(X)+(1−p X ) × log10(X),log10(E X)]√

X for 0 ≤ X [p X ×
√

X+(1−p X ) × √
X,

√
E X]

1

X
for X < 0

[
X + X − E X

X − X
,

1

E X

]

X + Y E X+EY

X − Y E X−EY

X × Y “product formula”

f (X, Y ) for convex f (x, y) “convex formula”

min(X, Y ) “min formula”

f (X, Y ) for concave f (x, y) “concave formula”

max(X, Y ) “max formula”

The upper bound E[ f (X)] is the maximum value of the quantity

p X × f (X) + (1 − p X ) × f (X) = E X × f
(

X
) − f (X)

X − X
+ X × f (X) − X × f

(
X
)

X − X
.

This expression is linear in E X , so its maximum is attained for E X = E X when f
(

X
) ≥ f (X) and for E X = E X when 

f
(

X
) ≤ f (X). Thus

• when f
(

X
) ≥ f (X)

E[ f (X)] = E X × f
(

X
) − f (X)

X − X
+ X × f (X) − X × f

(
X
)

X − X
;

• when f
(

X
) ≤ f (X)

E[ f (X)] = E X × f
(

X
) − f (X)

X − X
+ X × f (X) − X × f

(
X
)

X − X
.

When f (x) is a concave function (e.g., ln(x), log10(x), 
√

x, or 1/x or x < 0), the upper bound E[ f (X)] of the interval of 
possible values of E[ f (X)] is the maximum of f (E X) on the interval E X ∈ [

E X, E X
]
. For concave functions, the maximum 

can be computed by a feasible algorithm.
The lower bound E[ f (X)] is the minimum value of the quantity

p X × f (X) + (1 − p X ) × f (X) = E X × f
(

X
) − f (X)

X − X
+ X × f (X) − X × f

(
X
)

X − X
.

This expression is linear in E X , so its minimum is attained for E X = E X when f
(

X
) ≥ f (X) and for E X = E X when 

f
(

X
) ≤ f (X). Thus:
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• when f
(

X
) ≥ f (X), we have

E[ f (X)] = E X × f
(

X
) − f (X)

X − X
+ X × f (X) − X × f

(
X
)

X − X
;

• when f
(

X
) ≤ f (X), we have

E[ f (X)] = E X × f
(

X
) − f (X)

X − X
+ X × f (X) − X × f

(
X
)

X − X
.

The above results generally provide tighter bounds on the mean when the variance is unknown compared to the results 
from Table 2. However, if the variance is known then the formulas from Table 2 usually provide tighter results, unless the 
interval value for the variance is wide. The combination of both methods will provide more optimal solutions than either 
alone.

4. Homespun bounds

This section introduces some simple approaches to bound the variance of certain transformations which are different 
from that of Rowe [25].

4.1. Square

Consider the variance of the square of a variable:

V[X2] = E[(X2 − E[X2])2] (by definition)

= E[X4 − 2X2E[X2] + E[X2]2] (expand the square)

= E[X4] − 2E[X2]2 + E[X2]2 (distribute expectation operator)

= E[X4] − E[X2]2 (simplify)

= E[X4] − (E X2 + V X)2 . (use bounds on mean)

Thus, we can bound the variance if we can specify the fourth moment. At first, this might seem like it would not provide 
any improvement. It turns out however, that even the crudest bound on the fourth moment

E[X4] ∈ [0,max(|X, X |)4]
can give force to this simple bound on the variance, so that

V [X2] ∈ max(0, [0,max(|X, X |)4] − (E X2 + V X)2). (28)

These naive bounds on the variance can sometimes be better than those given by Rowe [25], although they are not so 
always. Because both sets of bounds are rigorous, they can be combined straightforwardly via intersection. As Rowe empha-
sises, this simplicity of combination is one of the important advantages of working with rigorous bounds. The composite 
bounds would therefore be

V[X2] = rowevar(X2) ∩ max(0, [0,max(|X, X |)4] − (E X2 + V X)2). (29)

This bound can however be further improved by using the Rowe bound on E[X4] (to be discussed in Section 4.4) using

V[X2] = rowevar(X2) ∩ (rowe(X4) − (E X2 + V X)2). (30)

For instance, if the range of X is [0, 8] and the mean and variance are both 3, the Rowe bounds on the variance are
[38.5846, 422.585]. The homespun bounds on V[X2] are [48, 324.48], which is a significant improvement on both sides.

4.2. Square root

Consider the variance of the square root of a variable:

V[√X] = E[(√X − E[√X])2] (by definition)

= E[X − 2
√

XE[√X] + E[√X]2] (expand the square)

= E X − 2E[√X]E[√X] + E[√X]2 (distribute expectation)
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= E X − 2E[√X]2 + E[√X]2 (simplify)

= E X − E[√X]2 (simplify)

= E X − rowe(
√

X)2 . (use rowe formula)

Therefore, if the range of X is [0, 8] and the mean and variance are both 3, then the Rowe variance bounds are 
[0.1483, 1.584]. The homespun bound on V[√X] is [0.1565, 0.75], which is an improvement on both sides.

4.3. Exponential

Even the bounds on the variance of an exponential can apparently be improved. Using the same approach as above, we 
can show that V[e X ] = E[e2X ] − E[e X ]2.

4.4. Other integer powers

The formulas from Rowe [25] may be readily applied to any unary transformation which have a constant-sign derivative 
in the range of the random variable. Thus, the rowe and rowevar formulas apply to any even powered transformation (e.g., 
X4, X6, X8), because their first derivatives (X3, X5, X7) are monotonic in R. However, the formulas may also be applied to 
odd powers if the variable is completely positive or negative (X ∈ (−∞, 0] or X ∈ [0, ∞)), because the derivative of any 
odd-powered transformation (which is an even powered transformation) has a single minimum at 0 and is monotonic on 
either side. However, in the case where the range of X does extend into both the positive and negative portion of the reals, 
a loose bound on an odd power may still be found by evaluating it as

Xa = Xa−1 × X . (31)

For example, X3 may be evaluated as X2 × X . The multiplication must however be performed using the general (Fréchet) 
formulas from Table 2 and not the independence formulas of Table 3. This is because the variables X2 and X are dependent 
on one another through the squaring transformation, which must be accounted for. Although it must be noted that this 
dependence is not precisely accounted for, since Table 2 allows for all possible dependencies. As a result the bounds may 
be quite loose, but importantly are still rigorous. As an example, the range, expectation and variance,

X ∈ [1,5], E X = 3, V X ∈ [1,3],
give

E[X3] = [33.8,55.8], V[X3] = [227.7,3791.2],
E[X4] = [117.8,271.3], V[X4] = [2820,95597.1].

However if the range of X is extended to the negative portion of the reals, X ∈ [−1, 5], and the moments are kept the same, 
the following is yielded:

E[X3] = [7.4,58], V[X3] = [0,5625],
E[X4] = [104.4,271.3], V[X4] = [631.1,95950.9].

Although all the bounds widened as the range was extended, the bound on the cube widened substantially due to the 
Fréchet multiplication. However, it is not too wide as to be uninformative, especially considering we began with an interval 
for the variance.

A negative integer power X−a may be evaluated using the reciprocal X−a = 1
Xa . Care must be taken that X is either 

completely positive or negative, because 0 ∈ [X, X] would give a division by 0 for which the moments are not defined.

4.5. Other integer roots, real powers and interval powers

All integer roots (e.g. 3√
X, 4√

X, 5√
X) also have constant sign derivatives when X ≥ 0, and therefore the Rowe formulas 

apply here also. For example when X ∈ [2, 6], E X ∈ [3, 3.5], and V X ∈ [2, 3] gives 3√
X ∈ [1.258, 1.818], E[ 3√

X] ∈ [1.38, 1.51], 
and V[ 3√

X] ∈ [0.0288, 0.0768].
Interestingly, the same also applies to any real (including negative) powers (e.g. X1.5, X−3.2, X6.7) when X is posi-

tive. Here we again evaluate a negative power using reciprocation: X−a = 1
Xa . Note however that any negative number 

to the power of a non-integer real number, for example −21.2, will generally give an imaginary number. We therefore 
only define these operations for positive X . Using the same X as the previous example finds X−4.7 ∈ [5 × 10−4, 1.0], 
E[X−4.7] ∈ [0.01, 0.4291] and V[X−4.7] ∈ [2 × 10−5, 0.245].
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Another useful observation is that for any two real (including negative) numbers a1 <= a2 gives Xa1 <= Xa2 in the 
range X ∈ [1, ∞) and gives Xa1 >= Xa2 in [0, 1]. That is, f (x) = xa monotonically increases in a for the range [1, ∞) and 
monotonically decreases in [0, 1], and is equal to 1 when x = 1 for any a. We can use these facts to construct some very 
simple formulas for evaluating interval powers:

X [a1,a2] =
{

env(Xa1 , Xa2 ,1), if 0 ∈ [a1,a2] or 1 ∈ X

env(Xa1 , Xa2), otherwise ,
(32)

E
[

X [a1,a2]] =
{

env(E[Xa1 ],E[Xa2 ],1), if 0 ∈ [a1,a2] or 1 ∈ X

env(E[Xa1 ],E[Xa2 ]), otherwise ,
(33)

V
[

X [a1,a2]] =
{

env(V[Xa1 ],V[Xa2 ],0), if 0 ∈ [a1,a2] or 1 ∈ X

env(V[Xa1 ],V[Xa2 ]), otherwise ,
(34)

where the extremums of the transformed variable can be found through a simple evaluation of the endpoints of the inputs. 
Of course X0 = 1 for any X . As these functions are either convex or concave, the formulas in Table 4 could be used here 
with some care.

5. Using bounds on correlations

In this section we summarise formulas for moment arithmetic which use any general bound on the correlation coefficient 
between variables. The previous sections we have seen how to perform arithmetic between moment variables without any 
dependence assumptions (Fréchet) and an improved arithmetic with independence assumptions. However, the formulas can 
also be improved if some covariance information between variables is known. For example, if it is known that X and Y are 
positively correlated (that their Pearson correlation coefficient is positive ρXY >= 0) the answers provided in Table 2 can be 
tightened. Stochastic dependence plays an important role in arithmetic operations between random variables. The output 
of a function depends not only on what the random variables X and Y are (on their distribution or their moments), but 
also on how they are correlated; sometimes dramatically so. If any correlation information is known about the variables, it 
should be incorporated to tighten answers.

The covariance can always be related to the Pearson correlation coefficient and the variances:

Cov[X, Y ] = ρXY

√
V X V Y .

The above formula also works for interval variances and correlation. For example, if V X ∈ [2, 3] and V Y ∈ [4, 5], ρXY ∈
[−1, −0.5] gives an exact bound on the covariance Cov[X, Y ] ∈ [−3.87299, −1.41421]. Setting the correlation coefficient to 
its maximum bound of ρXY ∈ [−1, 1] gives the widest covariance Cov[X, Y ] ∈ [−3.87299, 3.87299].

For sum and subtraction, the usual formulas for the variance (9) and (13) yield

V[X + Y ] = V X + V Y + 2 ρXY

√
V X V Y ,

and

V[X − Y ] = V X + V Y − 2 ρXY

√
V X V Y .

Equation (15) for the mean of the product gives

E[XY ] = E X EY + ρXY

√
V X V Y ,

and Equation (19) for variance of the product gives

V[XY ] = (V X + E X2)(V Y + EY 2) − (ρXY

√
V X V Y + E X EY )2 ±

√
V[X2]V[Y 2].

Table 5 summarises formulas for moment arithmetic using a correlation coefficient ρXY . Any interval value which is a 
subset or equal to [−1, 1] may be used for the ρXY in these formulas. For example, if E X = EY = 2, V X = V Y = 1, 
and ρXY ∈ [0, 1] (positively correlated), then V[X + Y ] = [2, 4] and V[X − Y ] = [0, 2]. Indeed the previous independence 
and Fréchet formulas may be derived from Table 5, by setting different interval values for the correlation coefficient. For 
example setting ρXY = [−1, 1] gives Fréchet, and ρXY = 0 gives independence. Note that ρXY = 0 gives ρX2,Y 2 = 0, so the 
formula for V[XY ] is simplified further for independence. Further, formulas for perfectly dependent (ρ = 1) and oppositely 
dependent (ρ = −1) random variables may also be derived, and are summarised in Tables 6 and 7 respectively.

We note that care should be taken when using the perfect and opposite formulas in Tables 6 and 7. The maximal (or 
minimal) possible Pearson correlation coefficient may not reach ρ = 1 (= −1) for two particular distributions. Unlike rank 
correlations like Spearman’s ρ or Kendall’s τ , Pearson’s correlation coefficient depends on both the dependence structure 
(i.e. the copula) and the shape of the marginal distributions. For example, the maximum correlation attainable between the 
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Table 5
Improved formulas for the mean and variance for convolutions of random variables using correlation coefficient ρXY (best-possible 
formulations in boldface).

Mean Variance

X + Y E X+EY V X+V Y +2 ρX Y

√
V X V Y

X − Y E X−EY V X+V Y −2 ρX Y

√
V X V Y

X × Y E X EY +ρX Y

√
V X V Y

(V X + E X2)(V Y + EY 2)−
(ρXY

√
V X V Y + E X EY )2 ±

√
V[X2]V[Y 2]

X
Y for 0 /∈ [Y , Y ] E[X × (1/Y )] V[X × (1/Y )]

Table 6
Improved formulas for the mean and variance for convolutions of random variables under an assumption of ρ = 1 (best-possible 
formulations in boldface).

Mean Variance

X + Y E X+EY (
√

V X+√
V Y )2

X − Y E X−EY (
√

V X−√
V Y )2

X × Y E X EY +√
V X V Y

(V X + E X2)(V Y + EY 2)−
(E X EY + √

V X V Y )2 ±
√

V[X2]V[Y 2]
X
Y for 0 /∈ [Y , Y ] E[X × (1/Y )] V[X × (1/Y )]

Table 7
Improved formulas for the mean and variance for convolutions of random variables under an assumption of ρ = −1 (best-possible 
formulations in boldface).

Mean Variance

X + Y E X+EY (
√

V X−√
V Y )2

X − Y E X−EY (
√

V X+√
V Y )2

X × Y E X EY −√
V X V Y

(V X + E X2)(V Y + EY 2)−
(E X EY − √

V X V Y )2 ±
√

V[X2]V[Y 2]
X
Y for 0 /∈ [Y , Y ] E[X × (1/Y )] V[X × (1/Y )]

following two log-normal distributions X1 ∼ exp(N(0, 1)) and X2 ∼ exp(N(0, 0.1)) is about ρX1 X2 ≈ 0.8, which is far from 
ρ = 1. Pearson’s correlation coefficient can be found from the joint distribution F XY (or a copula C XY and marginals F X , 
FY ) by Schweizer and Wolff [28]

ρ(X, Y ) = 1√
V X V Y

∞∫
−∞

∞∫
−∞

[F XY (x, y) − F X (x)FY (y)] dx dy

= 1√
V X V Y

1∫
0

1∫
0

[C XY (u, v) − uv] dF −1
X (u)dF −1

Y (v) .

Setting the copula C XY in the above expression to M(u, v) = min(u, v) for perfect dependence and W (u, v) = max(u + v −
1, 0) for opposite dependence, bounds on the correlation coefficient can be obtained for two particular marginal distribu-
tions

ρ(X, Y ) = 1√
V X V Y

1∫
0

1∫
0

[M(u, v) − uv] dF −1
X (u)dF −1

Y (v) ,

ρ(X, Y ) = 1√
V X V Y

1∫
0

1∫
0

[W (u, v) − uv] dF −1
X (u)dF −1

Y (v) .

An interesting extension to the presented work would be to derive similar formulas to Table 5 for Spearman’s ρ and Kendal’s 
τ correlation coefficients, as they solely rely on the copula and not the shape of the marginals.
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Fig. 1. Bounds on the cdf of all random variables with mean 0 and variance 1.

6. What do the range and moments say about risks?

What does knowing something about the mean and variance of a random number tell us about the probability distribu-
tion of that variable? Generally, people expect that it is unlikely for a random value to be many standard deviations away 
from the mean. But what exactly is the chance of being, say, 5 standard deviations (or more) larger than the mean? If we 
assume the underlying distribution is standard normal, the risk is roughly 1 in 3.5 million. Such a value seems very small 
and might be considered an acceptable risk by planners and decision makers.

But what can one say about such risks without assuming normality? What inferences can be drawn about the risks 
of exceedance that are free of assumptions about the particular shape of the distribution? This question was posed by 
Chebyshev [6] and answered by Markov [23] for the case when only the mean and variance are known. The answer we 
need for risk analysis is embodied in a version of the classical Chebyshev inequality [9,1].

6.1. Chebyshev bounds

The upper bound on the probability that the variable X will exceed a value as large as x is

P (x ≤ X) ≤
{

1/(1 + (x − E X)2/V X), if E X < x

1, if x ≤ E X
(35)

where E X and V X are the mean and variance of X . The lower bound on the same probability is

P (x ≤ X) ≥
{

1/(1 + V X/(x − E X)2), if x < E X

1, if E X ≤ x .
(36)

The derivation of the two-sided Chebyshev inequality [5] in terms of the absolute value of deviations is an elementary 
exercise in mathematical statistics [2, page 271f]. However, it would be suboptimal in this application. The one-sided ver-
sion used here (without the absolute value function) is optimal, although it is uncommon and maybe unfamiliar to many 
practitioners.

If we use the Chebyshev inequality to ask how large the chance might be without any assumption about the shape of 
the underlying distribution (with mean 0 and variance 1 at 5 standard deviations), we find it is somewhere between zero 
and 1/(1 + (5 − 0)2/1) = 0.03846, or 1 in 26. Omitting the normality assumption causes the risk to go from 0.000000286
to almost [0, 0.04], which represents a potential risk increase of over five orders of magnitude. What engineer designing a 
safety system for a nuclear power plant, or for that matter, the razor burn guard on an electric shaver, would be happy with 
a potential risk of 1 in 26?

The Chebyshev inequality may be used to compute bounds on the cumulative distribution function (cdf) of an imprecisely 
known random variable. Fig. 1 depicts these bounds for a random variable whose mean is zero and whose variance is unity. 
Such a characterisation of an imperfectly known random variable is called a probability box, or p-box [13]. Although the 
area inside the bounds is integrable, the tails extend to infinity in both directions. Nevertheless, the p-box can be used in 
practical risk analyses by truncating the tails at some appropriate percentile.

These bounds are rigorous in the sense that they enclose all distributions, no matter what shape they have, that have 
the prescribed mean and variance. One should be careful to note, however, that not every distribution function enclosed by 
the p-box corresponds to a possible distribution. There are distributions in the p-box which may not be physically realistic, 
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and there are distributions that do not even have the specified mean and variance. In particular, neither the left nor the 
right bound corresponds to a distribution that has the specified mean and variance. It is obvious that the left bound F (red 
curve) describes a distribution whose mean is smaller than zero because it reaches unity when X is zero. It is harder to 
discern, but the variance of the distribution corresponding to the left bound also has variance larger than one. Likewise, the 
right bound F (black curve) describes a distribution with a mean larger than zero and a variance larger than one. In fact, it 
is discrete distributions that force the Chebyshev bounds out so far [21,29]. The bounds are actually the envelope of many 
distributions elbowing out at the edges. Although the Chebyshev bounds are not attainable by any single distribution, they 
are best possible bounds on the risks given the stated constraints. However, these bounds are best-possible. This means 
that the bounds could not be any tighter and still contain all distributions that do have the given mean and variance. The 
breadth of these bounds (grey shaded region) might be surprising to someone who has not considered just how strong 
assumptions about distribution shape really are.

Most of the risk analysis-relevant questions can be asked from the p-box. For example, the probability that the random 
variable falls in some set can be found from the bounding cdfs F and F . However since the p-box characterises an im-
perfectly known random variable, the p-box will return an interval probability instead of a single precise probability. This 
interval probability bounds the contribution to the risk from all of the possible distributions the random variable could have. 
Using the p-boxes two bounding cdfs F and F , the interval probability that the random variable X is less than or equal to 
some value x is

P (X ≤ x) = F (x)

P (X ≤ x) = F (x).

The exceedance probability P (X > x) is

P (X > x) = 1 − F (x)

P (X > x) = 1 − F (x).

The interval probability that the random variable is in some interval U = [a, b] may also be computed as

P (U ) = max(0, F (b) − F (a))

P (U ) = F (b) − F (a).

As an example for the above p-box, P (X ≤ −7.5) = [0, 0.018] (at most 1 in 55), P (X > 2.5) = [0, 0.138] (at most 2 in 15), 
and P ([−1, 1]) = [0.5, 1] (at least 1 in 2).

6.2. Cantelli bounds

The Chebyshev bounds can be tightened substantially in some cases by the addition of knowledge about one endpoint 
of the range, i.e., either the minimum or the maximum of the underlying distribution. This improvement is expressed in 
the classical Cantelli inequalities, which give rigorous and best possible bounds on the distribution function for a non-
negative random variable X having mean E X and variance V X . The Cantelli inequalities are a combination of the Markov 
and Chebyshev inequalities. The upper bound on the probability that the variable X will be no larger than a value x is

P (x ≤ X) ≤

⎧⎪⎨
⎪⎩

0, if x ≤ 0

1/(1 + (x − E X)2/V X), if 0 ≤ x ≤ E X

1, if E X < x.

(37)

This function forms the left side of a p-box for X . The right side is the lower bound on the same probability, which is

P (x ≤ X) ≥

⎧⎪⎨
⎪⎩

0, if x ≤ E X

1 − E X/x, if E X ≤ x ≤ E X + V X/E X

1/(1 + V X/(x − E X)2), if E X + V X/E X < x.

(38)

If the minimum value of X is not zero, we can encode the information in a new variable Y whose minimum value is zero 
with the transformations

Y = X − X,

EY = E X − X,

V Y = V X,
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Fig. 2. Bounds on random variables with (left) X = −1, E X = 0, V X = 3, and (right) X = 2, E X = 0, V X = 1.

then apply the inequalities to obtain the p-box for Y , and finally back-transform this p-box to get the bounds in terms of 
the original variable X by adding X to it. If it is the maximum, rather than the minimum that is known, we can use the 
encoding

Z = −X,

E Z = −E X,

V Z = V X,

and then apply the inequalities (possibly also encoding to make the new minimum zero), and finally negate the resulting 
Z p-box to reexpress it in terms of the original variable. Fig. 2 show bounds on random variables using the mean, variance 
and either a maximum or a minimum, and are an improvement over the Chebyshev p-box.

6.3. Min-max-mean-variance bounds

An obvious generalisation of the Cantelli inequalities would be rigorous and best-possible bounds on a distribution 
function given the mean, variance, and both the minimum and maximum of the underlying random variable. We have 
not seen bounds for this case published before. However, they are obvious enough to have been discovered in prior work 
somewhere, and we would not be surprised to find that they are well known to someone.

Because there are four specifications known about the variable, the distributions defining the maximal and minimal 
cumulative probabilities will be discrete distributions on three points [21], with at least one of the points at an extremum 
of the range. Suppose, to start, that this point is at the smallest possible value X of the random variable X . Call the mass at 
this point p0. Let the other two masses, p1 and p2, be at points x1 and x2. To find the left side of the p-box, i.e., the upper 
bound on the probability, at point x1, we seek to maximise the quantity p1 + p2. Equivalently, we could minimise p2. In 
fact, x2 can be chosen to minimise p2. There are then three constraints over four variables (p0, p1, p2, x2) and we look for 
min(p2) as a function of E X , V X and x1. The constraints are that on the total probability, the mean, and the variance:

p0 + p1 + p2 = 1,

p0 X + p1x1 + p2x2 = E X,

p0(X − E X)2 + p1(x1 − E X)2 + p2(x2 − E X)2 = V X .

Without an unrecoverable loss of generality, we can assume X = 0 and X = 1. (We can always use rescaling to account for 
more general situations.) Solving simultaneous equations yields

p2 = (V X + (E X)2 − x1 E X)/(x2(x2 − x1)).

Minimising p2 with respect to x2 mean (by inspection) that we should make x2 as large as possible. Thus, let x2 = X = 1. 
Then

min(p2) = (V X + (E X)2 − x1 E X)/(1 − x1),

so

max(p0 + p1) = 1 − (V X + (E X)2 − x1 E X)/(1 − x1).
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Fig. 3. Bounds on random variables with [X, X] = [0,100], E X = 50, V X = s2.

Varying x1 gives the limit for every value in [X, X] = [0, 1]. This bound is simultaneous with the Chebyshev and Cantelli 
bounds and should therefore be combined with them.

Here are the resulting general expressions for the min-max-mean-variance bounds. The left side of the p-box, which is 
the upper bound on the cumulative probability, is

P (x ≤ X) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ≤ X

1/(1 + (E X − x)2/V X), if X ≤ x ≤ E X + V X/(E X − X)

1 − (μ2 − μy + σ 2)/(1 − y), if E X + V X/(E X − X) < x < E X + V X/(E X − X)

1, if E X + V X/(E X − X) ≤ x,

(39)

where y = (x − X)/(X − X), μ = (E X − X)/(X − X), and σ 2 = V X/(X − X)2. The right side of the p-box, which is the lower 
bound on the same probability, is

P (x ≤ X) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x ≤ E X + V X/(E X − X)

1 − (μ(1 + y) − σ 2 − μ2)/y, if E X + V X/(E X − X) < x < E X + V X/(E X − X)

1/(1 + V X/(x − E X)2), if E X + V X/(E X − X) ≤ x < X

1, if X ≤ x.

(40)

When specifying p-boxes with the min-max-mean-variance inequalities, analysts must take care to respect feasibility con-
straints, i.e., those discussed in section 3.3. Figs. 3 and 4 shows examples min-max-mean-variance bounds.

Because the Cantelli inequalities are essentially a superimposition of the Markov and Chebyshev inequalities, one might 
expect these min-max-mean-variance inequalities to be a simple extension that superimposes Chebyshev and two Markov 
inequalities (to account for the minimum and for the maximum from different directions). In fact, the Markov inequality 
does not even play a role in the present functions, except at the two cusps where the new functions coincide with both 
Chebyshev and Markov.

These bounds are somewhat tighter than the Cantelli inequalities, with improvements to the upper part of the left 
bound and the lower part of the right bound (i.e., the least important parts for risk analysis). The main significance of 
this result is its comprehensiveness. Indeed, these bounds generalise many of the inequalities we have discussed in this 
paper. If X = ∞ (or if X = −∞), then these bounds become the Cantelli inequalities. If both endpoints of the range are 
infinite, then the Chebyshev inequality is retrieved. If V X is unknown, that is, if its estimate is [0, ∞], then this inequality 
degenerates to Rowe’s inequality based on the minimum, maximum and mean [25]. If both V X is unknown and X = ∞, 
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Fig. 4. Bounds on random variables with [X, X] = [0,100], E X = 10, V X = s2.

then it degenerates to the Markov inequality. And if mean and variance are entirely unknown, it reduces to the interval 
determined by the range.

7. Covariance tracking

Like in interval arithmetic where expressions with multiple repeated occurrences of the same interval will lead to artifi-
cially inflated answers, a dependency problem also exists in moment arithmetic. The extra puffiness in interval and moment 
arithmetic occurs because dependency information is only known between variables at the beginning of expressions, and is 
lost as variables are used in operations. The formulas in Table 2 are still valid and will give a rigorous propagation when 
stochastic dependencies are unknown. However, incorporating and tracking covariance information could be used as a form 
of crude form of dependence tracking in moment arithmetic. This covariance information can be used with the correlated 
formulas in Table 5 to tighten answers. As an example, consider the following simple expression:

Z = (X + Y )X,

where initially the mean, variance, and ranges of X and Y are known, as well as Cov[X, Y ]. The initial sum K1 = X + Y
can be evaluated exactly using the correlated formulas in Table 5, however the product K1 × X must be evaluated with the 
Fréchet formulas in Table 2, since Cov[X + Y , X] is unknown, leading to an artificial inflation of uncertainty. In this section, 
we argue that simple expressions for covariance algebra can be used to calculate and track covariance between variables 
to tighten results from repeated variables. Although covariance tracking would be an intensive task when done by hand, it 
may be easily automated in software, which we discuss in Section 7.2.

The covariance Cov[X + Y , X] can be calculated as

Cov[X + Y , X] = E[((X + Y ) − E[X + Y ])(X − E X)]
= E[(X + Y )X − (X + Y )E X − E[X + Y ]X + E XE[X + Y ]]
= E[X2] + E[XY ] − E[X + Y ]E X − E[X + Y ]E X + E XE[X + Y ]
= E[X2] − (E X)2 + E[XY ] − E X EY .

And since Cov[X, Y ] = E[XY ] − E X EY and V X = E[X2] − (E X)2:

Cov[X + Y , X] = V X + Cov[X, Y ]. (41)
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Fig. 5. Comparison between moment arithmetic with covariance tracking (blue) and without (red), for the expression Z = (X + Y )X . Left shows where 
initial correlation is ρXY = 0.5, and right shows where the initial dependence is unknown ρXY = [−1, 1]. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)

Table 8
Formulas for covariances between operands and outputs of operations (best-possible formulations in boldface).

Operation Covariance Formula

k + X Cov[k + X, X] V X

kX Cov[kX, X] kV X

1/X Cov[1/X, X] 1 − rowe(reciprocal)E X

Xn Cov[Xn, X] E[Xn+1] − E[Xn]E X

X + Y Cov[X + Y , X] V X + Cov[X, Y ]
X − Y Cov[X − Y , X] V X − Cov[X, Y ]
X − Y Cov[X − Y , Y ] Cov[X, Y ] − V Y

X × Y Cov[XY , X] E[X2Y ] − Cov[X, Y ]E X − E X2 EY

X/Y Cov[X/Y , X] E[X2/Y ] − E[X/Y ]E X

X/Y Cov[X/Y , Y ] E X − E[X/Y ]EY

By symmetry we can show that

Cov[X + Y , Y ] = V Y + Cov[X, Y ]. (42)

Beginning with E X = 2, V X = 1, X ∈ [0, 3], EY = 5, V Y = 0.5, Y ∈ [2, 7], and ρXY = 0.5, gives Cov[K1, X] = 1.35355, which 
may then be used in the product K1 × X . Without covariance tracking, the following moments are yielded:

E Z = [12.514,15.486], V Z = [0,196.078],
and covariance tracking leads to the following contraction:

E Z = [15.3535,15.3536], V Z = [0,116.955].
This improvement is best seen in the contraction in the p-boxes, which is shown in the left of Fig. 5. Interestingly, even 

if one begins with a unknown dependence between the initial variables, covariance tracking can still give a contraction. 
Beginning with ρXY = [−1, 1], and the same X and Y as before, gives Cov[K1, X] = [0.2928, 1.70711], which is substantially 
tighter than the widest possible covariance of [−1.70711, 1.70711]. The improvement using covariance tracking in the p-
boxes for the Fréchet case is shown on the right of Fig. 5.

Table 8 summarises formulas for calculating the covariances between inputs and outputs of operations. The derivation 
of these formulas is quite simple, and follows the same reasoning as the derivation of (41). Some of the formulas require a 
Fréchet evaluation, for example in the formula for Cov[XY , X] there exists a E[X2Y ], which can be calculated as X × Y using 
a correlated multiplication, followed by a Fréchet multiplication with X . Because the formulas in Table 8 sometimes yield 
covariances outside the widest possible bound of [−√

V Z V X, +√
V Z V X], the software should always use intersection to 

tighten the results appropriately.
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7.1. Covariances of a third variable

The covariance formulas in Table 8 are defined for inputs and outputs of operations. However, if there exists a third vari-
able in the expression, covariances between newly generated variables and this third variable may also be found. Consider 
for example the following expression:

W = (X + Y )(Z − Y ),

where initially the covariance matrix of X , Y and Z is known, in addition to their moments and ranges. The expression 
can be initially evaluated with a correlated summation K1 = X + Y and subtraction K2 = Z − Y , however to tightly evaluate 
K1 × K2, we need to calculate Cov[K1, K2].

The covariance between a sum X + Y and a different variable Z can be calculated as follows:

Cov[X + Y , Z ] = E[((X + Y ) − E[X + Y ])(Z − E Z)]
= E[(X + Y )Z − (X + Y )E Z − E[X + Y ]Z + E ZE[X + Y ]]
= E[X Z ] + E[Y Z ] − E[X + Y ]E Z − E[X + Y ]E Z + E ZE[X + Y ]
= E[X Z ] + E[Y Z ] − E X E Z − EY E Z .

And since Cov[X, Z ] = E[X Z ] − E X E Z :

Cov[X + Y , Z ] = Cov[X, Z ] + Cov[Y , Z ]. (43)

Following the same reasoning, we can show that

Cov[X − Y , Z ] = Cov[X, Z ] − Cov[Y , Z ]. (44)

Beginning with E X = 2, V X = 1, X ∈ [0, 3], EY = 5, V Y = 0.5, Y ∈ [2, 7], E Z = 12, V Z = 3, Z ∈ [10, 20], and ρXY = ρX Z =
ρY Z = 0.5, the following covarainces can be calculated:

Cov[K1, Y ] = Cov[X + Y , Y ] = V Y + Cov[X, Y ] = 0.8536,

Cov[K1, Z ] = Cov[X + Y , Z ] = Cov[X, Z ] + Cov[Y , Z ] = 1.4784,

Cov[K2, K1] = Cov[Z − Y , K1] = Cov[Z , K1] − Cov[Y , K1] = 0.62484.

The product W = K1 × K2 may then be evaluated with Cov[K1, K2], which gives the following moments:

E W = [49.62484,49.62485], V W = [0,1066.67],
which is a significant improvement of the results without covariance tracking:

E W = [44.836,53.164], V W = [0,2897.8763].
Fig. 6 shows the improvement in the corresponding p-boxes. The p-box bounds may also be further reduced by using 
sub-intervalisation for the range estimate. This additional contraction is shown on the right of Fig. 6.

Table 9 summarises covariance algebra expressions for outputs of operations and another variable. These formulas may 
be derived along the same lines as (43). Note that Cov[XY , Z ] may also be derived from the results of Bohrnstedt and 
Goldberger [3], who provide an exact covariance of the product of three variables.

7.2. Automating covariance tracking

The covariance formulas of Tables 8 and 9 are quick to evaluate, and may be called by software whenever a new variable 
is created either from a unary transformation, or from a binary operation between two moment variables. The formulas 
in Table 8 may be used to calculate the dependence between the operands and outputs of operations, and Table 9 find 
the dependence between any other variable not used in the operation. Whenever the formulas produce bounds outside of 
[−√

V Z V X, +√
V Z V X], software may automatically contract the range to at least this bound. This dependency information 

may be stored in a partially defined covariance matrix, the missing elements of which may be filled using Tables 8 and 9. 
Whenever a new variable is generated after an operation, new entries for this variable can be added to this covariance 
matrix. To illustrate this, consider the previous example W = (X + Y )(Z − Y ). In a computer program, this would be 
evaluated as K1 = X + Y , K2 = Z − Y , followed by W = K1 × K2. Say that initially the covariance matrix of X , Y and Z is 
known
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Fig. 6. Left shows a comparison arithmetic with covariance tracking (blue) and without (red), for W = (X + Y )(Z − Y ). Right shows a further contraction 
when sub-intervalisation is used for the range.

Table 9
Formulas for covariances between results of operations and another variable (best-possible formulations in boldface).

Operation Covariance Formula

k + X Cov[k + X, Z ] Cov[X, Z]
kX Cov[kX, Z ] kCov[X, Z]
1/X Cov[1/X, Z ] E[X/Z ] − E[1/X]E Z

Xn Cov[Xn, Z ] E[Xn Z ] − E[Xn]E Z

X + Y Cov[X + Y , Z ] Cov[X, Z] + Cov[Y , Z]
X − Y Cov[X − Y , Z ] Cov[X, Z] − Cov[Y , Z]
X × Y Cov[XY , Z ] E[XY Z ] − Cov[X, Y ]E Z − E X EY E Z

X/Y Cov[X/Y , Z ] E[X Z/Y ] − E[X/Y ]E Z

⎛
⎝ V X · · · · · ·

Cov[X, Y ] V Y · · ·
Cov[X, Z ] Cov[Y , Z ] V Z

⎞
⎠ .

When the first operation is called K1 = X + Y , the covariance Cov[X, Y ] may be looked-up in the matrix. After the operation 
new rows and columns may be added for K1, with the entries found using the covariance Tables 8 and 9⎛

⎜⎜⎝
V X · · · · · · · · ·

Cov[X, Y ] V Y · · · · · ·
Cov[X, Z ] Cov[Y , Z ] V Z · · ·

V X + Cov[X, Y] V Y + Cov[X, Y] Cov[X, Z ] + Cov[Y , Z ] V K1

⎞
⎟⎟⎠ .

Similarly after the second operation, entries may be added for K2⎛
⎜⎜⎜⎝

V X · · · · · · · · · · · ·
Cov[X, Y ] V Y · · · · · · · · ·
Cov[X, Z ] Cov[Y , Z ] V Z · · · · · ·

Cov[X, K1] Cov[Y , K1] Cov[Z , K1] V K1 · · ·
Cov[X, Z ] − Cov[X, Y ] Cov[Y , Z ] − V Y V Z − Cov[Y , Z ] Cov[Z , K1] − Cov[Y , K1] V K2

⎞
⎟⎟⎟⎠ ,

and so on. This way covariances may always be known between variables in the computer program. One obvious issue 
with this is that as more variables are added, the number of covariances to be calculated rises quickly. However, this can 
be reduced by only calculating the necessary entries, and no more. For example, in the calculation of (X + Y )(Z − Y ), 
the covariances for Cov[K1, X], Cov[K2, X], Cov[K2, Y ] and Cov[K1, Z ] are unused, and may omitted from the calculation. 
In terms of automation, these entries may be left blank in the covariance matrix, and only calculated when required, 
for example if X and W are used in operation later. Whenever a binary operation between two variables is called, their 
covariance may be looked up in the matrix and, if missing, calculated then. This way only the required number of entries is 
calculated.
153



A. Gray, S. Ferson, V. Kreinovich and E. Patelli International Journal of Approximate Reasoning 146 (2022) 133–156
8. Conclusions

The limitations of linearity and independence mentioned by Cullen and Frey [7] are real and serious, but they can be 
relaxed. In this paper we extend moment propagation in several ways. We provide convenient tables for moment propaga-
tion formulas for the case with an unknown dependence, independence, and bounded correlation, and we suggest that one 
can combine the methods of moment propagation with elementary interval analysis to obtain results that are better than 
can be obtained from either analysis separately. We provide a method for bounding distributional information solely from 
moments and ranges, without assumptions about input distributions. Any non-linearity in the underlying model will change 
distributional shape, and in standard moment propagation distributional information is usually only preserved through lin-
ear models, limiting the situations where risks can be reliably calculated. The methods of this paper relax such restrictions. 
Finally, we describe a crude form of dependency tracking based on calculating covariances between newly created and al-
ready existing variables. This covariance tracking, along with formulas for correlated moment propagation, may be used to 
reduce the effect of repeated variables. We show that using covariance tracking, the artificial uncertainty from repeated 
variables can be reduced even when no dependence information is initially known between inputs.

One important application of the methods to be developed in this paper is to the area of risk analysis. In this discipline, 
predictions are made about the magnitudes or probabilities of structural failures or other adverse extreme events such as 
patients receiving toxic doses of therapeutic drugs or endangered species going extinct. These forecasts are often computed 
from limited empirical information. In traditional “worst case” analyses, the elementary methods of interval analysis are 
applied to risk formulations estimating, for instance, the difference between a structure’s strength and some stress acting 
on it, or the delivered dose of a drug, or the population size of the endangered species, and so on. The methods described 
here provide a richer characterisation by the inclusion of the moments information, which may be used to inform risks of 
various kinds, particularly tail risks, which are most relevant in a risk analysis worried about worst-case outcomes.

Another useful application of moment arithmetic is its combination with p-box arithmetic [16]. In p-box arithmetic, cdf 
bounds of random variables are projected through expressions as a form of robust uncertainty propagation. Means and vari-
ances are calculated from p-box bounds, but the estimates are sometimes rather loose. When combined with the methods 
of this paper, means and variances may be tightly projected, which also inform cdf bounds, subsequently tightening p-boxes. 
Where p-box arithmetic provides tighter moments using shape information, the moment estimates from this method may 
also be tightened. Each method may inform and tighten the other, providing a more accurate analysis combined than either 
method alone. A similar argument can be made for rigorous possibilistic arithmetic [19,17], or any other rigorous bounding 
characterisation of an imprecisely known random variable which can be informed from moment and range information.

An interesting and open question is if similar formulas may derived for the case where the intervals are themselves 
dependent [12]. There are two possible generalisations here, one where the three properties (mean, variance and range) are 
represented by dependent intervals, and a second generalisation is to consider arithmetic between two moment variables 
which dependent intervals between the two variables. Considering the first case, sub-intervalisation with moment variables 
isn’t obvious. For example, if you were to sub-intervalise the range, mean and variance following some tri-variate set, not 
all combinations of sub-boxes are valid, i.e. for a small slice of the range [x1, x2], only means within this slice are valid, and 
valid variances are within [0, (x2 − x1)

2/4]. So likely a different approach would be required, perhaps finding the tri-variate 
admissible set and using optimisation, as the authors suggest in [8], although these results may not strickly be rigorous. The 
question of dependent interval arithmetic between variables is likely easier to achieve, as many of the arithmetic formulas 
of this paper could be evaluated with dependent interval arithmetic. In this context however, how interval dependencies 
evolve and are tracked is a complex but interesting problem, both theoretically and computationally.

Software: MomentArithmetic.jl

We provide a Julia implementation of distribution-free risk analysis, https://github .com /AnderGray /MomentArithmetic .jl. 
Included is a custom Julia type which automatically checks the consistency of user provided moment information, and 
tightens it where possible. The package implements all of the formulas of this paper and uses Julia’s multiple dispatch 
to give an easy and automatic propagation of moments through general Julia functions with minimal user effort. After 
an operation, the moments are checked against theoretical bounds for self-verification, and also tightened where possible. 
Sub-intervalisation is used for formulas where variables are repeated and which use intervals. IntervalArithmetic.jl
[27] is used for interval arithmetic, and ProbabilityBoundsAnalysis.jl [16] is used for bounding risks and p-box 
calculations.
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Appendix A. Expansion of Goodman variance

The Goodman formula [14] for the variance of product is

V[XY ] = (E X)2 V Y + (EY )2 V X + 2E X EY E11 + 2E X E12 + 2EY E21 + E22 − E2
11 (45)

where Eij are the higher bivariate moments: Eij = E[(X − E X)i(Y − EY ) j] (e.g. E11 is covariance). These may be expressed 
in terms of the marginal moments and the other formulas described in this paper:

E11 = E[(X − E X)(Y − EY )]
= E[XY − X EY − Y E X + E X EY ]
= E[XY ] − E X EY

E21 = E[(X − E X)2(Y − EY )]
= E[X2Y + E X2Y − X2 EY + 2E X EY X − 2E X XY − E X2 EY ]
= E[X2Y ] + E X2 EY − E[X2]EY + 2E X2 EY − 2E XE[XY ] − E X2 EY

= E[X2Y ] − E[X2]EY + 2E X2 EY − 2E XE[XY ]

E12 = E[(X − E X)(Y − EY )2]
= E[XY 2 + X EY 2 − E XY 2 + 2E XE[Y ]Y − 2E[Y ]XY − E X EY 2]
= E[XY 2] + E X EY 2 − E XE[Y 2] + 2E X EY 2 − 2EY E[XY ] − E X EY 2

= E[XY 2] − E XE[Y 2] + 2E X EY 2 − 2EY E[XY ]

E22 = E[(X − E X)2(Y − EY )2]
= E[E X2 EY 2 − 2E X EY 2 X + EY 2 X2 − 2E X2 EY Y + 4E X EY XY

−2EY X2Y + E X2Y 2 − 2E X XY 2 + X2Y 2]
= E X2 EY 2 − 2E X2 EY 2 + EY 2E[X2] − 2E X2 EY 2 + 4E X EY E[XY ]

−2EY E[X2Y ] + E X2E[Y 2] − 2E XE[XY 2] + E[X2Y 2]
= −3E X2 EY 2 + E[X2]EY 2 + E X2E[Y 2] + 4E X EY E[XY ]

−2EY E[X2Y ] − 2E XE[XY 2] + E[X2Y 2]
The right-hand sides of the above expressions may be evaluated with the formulas described in this paper.
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