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a b s t r a c t

We devise a new type of feedforward neural network. It is equivariant with respect to the unitary group
U(n). The input and output can be vectors in Cn with arbitrary dimension n. No convolution layer is
required in our implementation. We avoid errors due to truncated higher order terms in Fourier-like
transformation. The implementation of each layer can be done efficiently using simple calculations.
As a proof of concept, we have given empirical results on the prediction of the dynamics of atomic
motion to demonstrate the practicality of our approach.

© 2023 Published by Elsevier Ltd.
1. Introduction

Neural Networks (NN) have gained popularity in many differ-
nt areas because of its universal approximator property (Sonoda
Murata, 2017). In recent years, equivariant NN (ENN) in dif-

erent architectures have been applied in various areas, such as
D object recognition (Esteves et al., 2020; Thomas et al., 2018),
olecule classification (Weiler et al., 2018), interatomic potential
evelopment (Batzner et al., 2022; Kondor, 2018), and medical
mages diagnosis (Müller et al., 2021; Winkels & Cohen, 2018;
orrall & Brostow, 2018).
When NNs are employed to model some physical phenomena,

hey should obey certain physical symmetry rules. For example,
f an NN is intended to return some potential function between
articles, the output should be invariant with respect to rotation
f input particles’ coordinates. On the other hand, for an NN
redicting particle movements, the output should be equivariant
ith respect to rotation, i.e., if a rotation operator is applied to the

nput particles’ coordinates, the effect is the same as applying the
ame rotation operator to the output.
In some works (Brandstetter et al., 2022), equivariance is

chieved through data augmentation, i.e., additional training data
re created by transforming existing training data (e.g., create
dditional copies by rotation). However, if equivariance is imple-
ented in an NN, one can avoid the need of data augmentation,
hich reduces the demand on storage and improves sampling
fficiency. This is especially important if one is working on data
n continuous space. For example, if input data are points in

∗ Corresponding author.
E-mail addresses: Leo.Ma@ukaea.uk (P.-W. Ma), Hubert@cs.hku.hk

T.-H.H. Chan).
https://doi.org/10.1016/j.neunet.2023.01.042
0893-6080/© 2023 Published by Elsevier Ltd.
Euclidean space and the output data are translational and/or
rotational equivariance or invariance, it is not practical to create
too many copies of data.

Previous works have achieved equivariance via higher or-
der representations for intermediate network layers. For ex-
ample, the implementation of spherical symmetry, such as S2
or SO(3), can be achieved through a layer with kernel performi-
ng a 3D convolution with spherical harmonics or Wigner
D-matrices (Gerken et al., 2021; Thomas et al., 2018). This is
analogous to Fourier transforms in linear space. However, these
kinds of implementation are computationally expensive (Cobb
et al., 2021).

In physical systems, although they can in principle be de-
scribed by physical rules, analytical methods are not always
feasible when the analytical form (such as the Hamiltonian) is
unknown. On the other hand, an NN consists of many compu-
tationally simple components that can operate in parallel, and
hence, they are suitable for large scale complicated simulations,
as long as there is enough training data.

Our contributions. We have designed a new framework for
feedforward neural networks. Specifically, it has the following
properties.

1. The inputs and outputs are vectors in Cn with a com-
plex number in each coordinate. Our neural networks are
equivariant with respect to the unitary group U(n).

2. In each layer, in addition to a linear combination of vectors
from the previous layer, we have an extra term that is a
linear combination of the normalized vectors as well. This
extra term acts like the bias term in an affine transforma-
tion.

3. Each layer has an activation function that acts on vectors in
Cn and is also equivariant with respect to unitary operators.

https://doi.org/10.1016/j.neunet.2023.01.042
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.01.042&domain=pdf
mailto:Leo.Ma@ukaea.uk
mailto:Hubert@cs.hku.hk
https://doi.org/10.1016/j.neunet.2023.01.042
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4. Equivariance is achieved in a feedforward neural network
without any convolution layer.

Moreover, in Section 4, we have performed numerical exper-
iments on the simulation of a physical system using our ENN
framework in the scenario when the rules governing the system
might be unknown.

2. Related works

We compare our framework with previous approaches on
equivariant neural networks.

Kondor and Trivedi (2018) proved analytically that convolu-
tional structure is a necessary and sufficient condition for equiv-
ariance to the action of a compact group. Therefore, many works
designed the architecture of their NN based on this theorem,
where convolution layer is introduced. Cohen and Welling (2016)
introduced group equivariant convolution network. They used
features map functions on discrete group, and so it only works
with respect to finite symmetry groups.

Cohen et al. (2018) considered convolution NN for spherical
images through Fourier analysis using Wigner D-matrices. Kondor
et al. (2018) improved the implementation using Clebsch–Gordan
decomposition, where the NN is operated in Fourier space only.
It avoids the need of switching back and forth between Fourier
and real spaces.

Thomas et al. (2018) shows if the input and output of each
layer is a finite set of points in R3 and a vector in a representation
f SO(3), one can decompose this into irreducible representation
hrough convolution with spherical harmonics and Wigner D-
atrices. Esteves et al. (2020) implements exact convolutions on

he sphere using spherical harmonics. It maps spherical features
f a layer to the spherical features of another layers.
Convolution using spherical harmonics is analogous to Fourier

ransform in signal processing. In practice, it only preserves the
ost significant coefficients. Error is inherently introduced due to

runcated higher order terms. It is also computation demanding
ue to the need of performing integration or summation.
Our newly designed feedforward neural network guarantees

quivariance without any convolution layer. We should note our
NN has a structure in vector form which is different from the
onventional NN structure in scalar form that was considered
y Kondor and Trivedi (2018). Besides, our implementation is
uch simpler than previous works.
Satorras et al. (2021) devised an equivariant graph NN (GNN)

ith respect to E(n) operators (that include rotation, reflection
nd translation). Similar to our approach, it does not contain
onvolution layer. The input spatial coordinates are vectors. Due
o the construction of a GNN, their spatial coordinates are not
iltered by activation functions. Their spatial coordinates are up-
ated through averaging with respect to neighbors. The number
f nodes in each layer is restricted to be the same, where our
pproach is general enough to allow different numbers of nodes
n different layers. In addition to the spatial coordinates on which
he operators act, their GNN contains feature vectors which do
ot fall under the equivariant aspect. We will also discuss how to
dd these extra features in our approach.

. Our framework for ENNs

.1. Equivariance with respect to unitary operators

In general, given a function φ : X → Y (where the domain
and the co-domain Y might be different) and a group G, we

ssume that each element g ∈ G induces group actions Tg : X →ˆ
and Tg : Y → Y on X and Y , respectively. Then, the function

155
is equivariant under G if for all g ∈ G and x ∈ X , the following
olds:

(Tg (x)) = T̂g (φ(x)). (1)

ormally, a group action needs to satisfy Tg1g2 = Tg1 ◦ Tg2 for all
1, g2 ∈ G.
Invariant is the special case when for all g ∈ G, the group

ction T̂g is the identity function on Y .
In this paper, we consider domains of the form Cn×M , which

e interpret as M points in Cn. C is the set of complex num-
er. We consider the unitary group U(n), where each element
orresponds to a unitary operator U on Cn. An n × n matrix U
s said to be unitary if its column vectors form an orthonormal
et in Cn. The unitary group contains the orthogonal group O(n)
that corresponds to rotations and reflections) and SO(n) (that
orresponds to rotations only).
Given a unitary operator U : Cn

→ Cn, the group action on M
oints are defined by

x(1), x(2), . . . , x(M)) ↦→ (Ux(1),Ux(2), . . . ,Ux(M)). (2)

.2. Structure of our ENN

We construct a feedforward neural network with L−1 hidden
ayers. The input layer is labeled as the 0th layer, and the output
ayer is the Lth layer. For the (k+ 1)th layer, its input is from the
th layer:

k ∈ Cn×Mk , (3)

here Mk is the number of vector elements of

k = {x(1)k , x(2)k , . . . , x(Mk)
k }. (4)

ach vector element x(α)k ∈ Cn is an n-dimensional vector. Simi-
arly, we have the output

k+1 ∈ Cn×Mk+1 . (5)

e define a variable

k = xkWk + ekbk. (6)

he weight and bias parameters matrices

k ∈ CMk×Mk+1 (7)
bk ∈ CMk×Mk+1 (8)

and

ek =

{
x(1)k

∥x(1)k ∥
,

x(2)k

∥x(2)k ∥
, . . . ,

x(Mk)
k

∥x(Mk)
k ∥

}
, (9)

where ∥.∥ is the norm of an n-dimensional vector.
This definition is different from conventional feedforward NN.

irst, the xk is a matrix and is put on the left-hand side of the
eight parameter. Second, a new matrix variable ek is introduced.
hese two changes are crucial steps to avoid the need to perform
onvolution. It allows the unitary operator getting out naturally
rom the left-hand side of xk and ek. This is critical because matrix
ultiplication is in general non-commuting. If xk is put on the

ight-hand side of Wk, since WkUxk ̸= UWkxk, our proof below
ecomes invalid.
Observe that for any unitary operator U , it holds that

x(α)k ∥ = ∥Ux(α)k ∥. (10)

For all α ∈ {1, 2, . . . ,Mk}, we can obtain

k(Uxk) = UxkWk + Uekbk = Uyk(xk), (11)

here U is applied element-wise on each x(α).
k
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Then, we define an activation function

σk+1(yk) = xk+1. (12)

or the (k+1)th layer. The activation function acts on each vector
y(α)k ∈ Cn in element-wise manner. We note yk has the same
dimension of xk+1.

We shall find an activation function that satisfies the follow-
ing:

σk+1(Uyk) = Uσk+1(yk). (13)

his completes the construction of our feedforward equivariant
eural network for unitary transformations.
Observe that each layer is equivariant with respect to uni-

ary operators in the sense of Eq. (1). The reason is that if we
ransform the input xk → Uxk, then its output will undergo the
ransformation xk+1 → Uxk+1; in this case, the unitary operator
an act element-wise on both the input and the output spaces.
herefore, when we apply the group action, which is now the
nitary operator U , on the 0th layer input x0, the same operator
ill propagate to the final layer output xL. It means if we put
0 → Ux0, the output will become xL → UxL. This completes
he proof.

We note that if we consider the transposes of all variables and
arameters from Eqs. (6) to (13), one can write yTk = WT

kx
T
k +bT

ke
T
k .

his resembles the form in conventional neural network, noting
he difference in the bias term. In this case, one should apply
he transpose of the unitary operator UT on the right-hand side.
inally, UT will come out on the right-hand side of Eq. (13).
lthough the application of an operator on either side is a matter
f preference, it is more common to consider an operator on
he left-hand side in physical sciences. For example, in quantum
echanics, a quantum state is more often to be written in a ket

Ψ ⟩ form, rather than in a bra ⟨Ψ | form, within the Dirac notation.
herefore, when describing an operation on a quantum state, it is
ore common to write U|Ψ ⟩.
A possible choice of the activation function for each element

an be a softsign function with a small residue, that is

(u) =
u

1 + ∥u∥
+ u × a, (14)

here a is a (small) scalar constant, and u ∈ Cn. The small residue
is to avoid vanishing gradient of loss function when u is large. We
used this activation function in our numerical experiments and
a = 0.1.

Alternatively, one may choose the identity function, that is

σ(u) = u, (15)

which in scalar form is a popular choice of activation function for
the output layer.

ReLu function and Leaky ReLu function in vector forms can
also be equivariant with respect to unitary operators, but their
conditionals may require adjustments. Assuming u ∈ Cn, the
Leaky ReLu function can be defined as

σ(u) =

{
u if ∥u∥ ≥ c,
ku otherwise,

(16)

where 1 > k ∈ R≥0 and c ∈ R≥0 are positive scalar constants. If
k = 0, it is a ReLu function. Since identity function is equivariant,
ReLu and Leaky ReLu functions in vector forms are equivariant
functions. We should note the norm ∥u∥ is always non-negative.
If c = 0, it essentially is an identity function. If one wants to have
‘‘otherwise’’ output with variable u other than u = 0, a positive
value c can be chosen.
156
3.3. Including local scalar features

We can introduce extra scalar features into our ENN, in ad-
dition to vector elements. The idea is that we will increase the
number of coordinates from n to n + m, and we only consider
unitary operations that do not change the extra m coordinates.

Formally, for each input x(α)0 , we assume that it has m corre-
sponding scalar features which can be written as a vector h(α)

0 =

{h(α)
0,1, h

(α)
0,2, . . . , h

(α)
0,m}, we can rewrite the input vector element

into

x′(α)
0 = {x(α)0 ,h(α)

0 } ∈ C(n+m), (17)

and the unit vector

e′(α)
k = {e(α)k , 1}, (18)

where 1 is a vector withm elements and all equal 1. (Observe that
in the actual implementation, we can reduce 1 and the associated
weights in the model to a single scalar bias term.)

The operator can be rewritten in matrix form such that

U ′
=

(
U 0
0 I

)
, (19)

where I is an identity m × m matrix. Plugging them back to
equations in previous subsection, they all hold, provided that the
definition of norm can fulfill, i.e.

∥x′(α)
k ∥ = ∥U ′x′(α)

k ∥. (20)

It essentially means we only apply the group action on part of
the input vectors, and keep the features part of the vectors fixed.
Features can be anything that are quantifiable, such as color,
brightness, contrast, electronic charge, mass, humidity, level of
pollutant, and etc.

Although at the output layer, we will get outputs x′
L ∈

C(n+m)×ML , the loss function can be defined only using part of it.
We also need to be careful that x′

L does not need to have the same
unit or meaning as x′

0. For example, if we considers a system
of molecules, we may use positions as the vector elements, and
charges and masses as features. It means we have vector inputs in
R(3+2)×M0 . Even we have vector outputs R(3+2)×ML , the prediction
can be forces, atomic energy, and a dummy value that does not
enter the loss function. On the other hand, one can also add
dummy input features to make each element in x′

0 and x′
L longer.

3.4. Backpropagation

We can derive an algorithm similar to the commonly known
backpropagation. The essence of backpropagation is to reuse the
information of the gradient of the loss function with respect to
the elements in weight and bias parameters. First, we define our
loss function:

L = C (T, σL(yL−1)) , (21)

where T ∈ Cn×ML is the target data, and C is a non-negative
real value function being differentiable with respect to σL. For
convenient, we write a combined representation of the weight
and bias parameters, such that zk = {Wk, bk}. For each element
in zL−1, the derivative

∂L
∂zL−1,pq

= δL−1
∂yL−1

∂zL−1,pq
, (22)

where

δL−1 =
∂C ∂σL

. (23)

∂σL ∂yL−1
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or other layers, in general, we can write

∂L
∂zL−k,pq

= δL−k
∂yL−k

∂zL−k,pq
, (24)

here

L−k−1 = δL−k
∂yL−k

∂xL−k

∂σL−k

∂yL−k−1
. (25)

his allows us to reuse the information of δL−k in δL−k−1. However,
it is different from the conventional backpropogation, where the
whole derivative of the deeper layer is reused. We only use a part
of the derivative in our backpropagation procedure.

3.5. Permutation symmetry

The above construction of ENN has no permutation symmetry
yet. We say that a function φ having n inputs achieves permuta-
tion symmetry, if for any permutation π on {1, 2, . . . , n} and any
(x1, . . . , xn),

φ(x1, . . . , xn) = φ(xπ (1), . . . , xπ (n)). (26)

The order and the number of inputs of φ are fixed. In some appli-
cations, we may partition the inputs and consider permutations
within each part. For instance, we can partition the inputs into
Sa = {1, 2, . . . ,m} and Sb = {m + 1, . . . , n} such that for any
permutations πa and πb on the corresponding parts, permutation
symmetry means:

φ(x1, . . . , xn) = φ(xπa(1), . . . , xπa(m), xπb(m+1), . . . , xπb(n)). (27)

Permutation symmetry should hold in some physical systems.
For example, if we have a molecular composed of H, C and O
atoms, then each input corresponds to an atom and the inputs
can be partitioned according to the type of atom. Then, atoms in
each part can be permuted without affecting the output.

One way to achieve permutation symmetry is to introduce a
pre-processing step in the first layer. Suppose there are N0 input
vectors denoted by (u(ξ )

∈ Cn
: ξ ∈ {1, 2, . . . ,N0}). This step

produces M0 vectors via a collection of functions D(α)
: Cn×N0 →

Cn for each α ∈ {1, 2, . . . ,M0}. Since our final neural network
achieves equivariance, we require that for any unitary operator
U , the following holds:

UD(α)({u(ξ )
}) = D(α)({Uu(ξ )

}). (28)

In addition to being equivariant for unitary operators, we
describe how each D(α) also achieves permutation symmetry.
Achieving Permutation Symmetry by Summation. Even though
the functions implemented in a layer can look complicated, the
principle behind them to achieve permutation symmetry is very
simple. An example for φ in Eq. (27) can be:

φ(x1, . . . , xn) =

n∑
i=1

xiw, (29)

where w is a trainable weight. The key observation is that w

does not depend on the index i, which is subject to permutation.
Hence, when the indices i are permuted, the value of the function
does not change.

We can also express the idea of partitioning the n inputs and
consider permutation symmetry within each part. For example,
each part is indexed by δ (also known as a feature), and an index i
having feature δ can be represented by viδ = 1 and 0, otherwise.
Then, we can consider the following function:

φ(x1, . . . , xn) =

∑ n∑
xiviδwδ, (30)
δ i=1 f

157
where the trainable weights wδ again does not depend on the
index i. Observe that if indices i having the same feature δ are
permuted, the value of the function does not change.
Graph Neural Network Example. Applying the above principles
for permutation symmetry, we may consider adding a layer of
GNN to our ENN. First, we can write a set of scalar functions for
node i,

D(α)
i = v′

iα = σ

⎛⎝∑
j,β,δ

eβ

ijvjδwβδα

⎞⎠ (31)

where β are features of edge E, δ are features of node V, α are
features of node V′, σ is the activation function, and wβδα is a
trainable rank-3 tensor weight between features β , δ and α. eβ

ij ,
vjδ , and v′

iα are elements in E, V and V′, respectively. We can
see such scalar functions hold permutation symmetry, and are
rotational invariant. However, they are not in vector equivariant
form. We may resolve the issue by devising a set of equivariant
vector functions

D(α)
i = v′

iα = σ

⎛⎝∑
j,β,δ

uij

uij
eβ

ijvjδwβδα

⎞⎠ , (32)

provided that eβ

ij is invariant with respect to the application of
group action on ui and uj, where uij = uj − ui. The vector
activation function σ is also required to be a vector equivariant
function.

If we now consider a system of atoms, for atom i, it has N0
neighbors within a cut-off distance rc . {rj ∈ R3

|rij < rc} is the
set of positions of neighboring atoms of atom i. We may consider
each atom as a node. As a special case, one can put

eβ

ij =

{
exp(−η(β)(rij − r (β)s )2)fc(rij), if i ̸= j
0, if i = j

(33)

where the interatomic distance between atom i and j is rij =

|rij| = |rj − ri|. The fc is a scalar smooth-out function such
that at the cut-off distance rc , fc(rc) = 0, and is continuous and
differentiable up to at least second derivatives. This is similar to
the implementation in SchNet (Schütt et al., 2018).

We further assume there is only one feature corresponding
to δ, where vj1 = 1, the weight is a Kronecker delta function
wβ1α = δβα , and the activation function is an identity function.
Eq. (31) becomes:

D(α)
i ({rj}) =

∑
j,j̸=i

exp(−η(α)(rij − r (α)s )2)fc(rij), (34)

where α ∈ {1, 2, . . . ,M0}. The set of hyper-parameters {η(α), r (α)s }

are predetermined values. Interestingly, this is in the same func-
tional form as suggested by Behler and Parrinello (2007) who
mapped the local atomic environment to a set of atom-centered
symmetry functions (or called spatial descriptors) and used them
to develop machine-learned (ML) interatomic potential.

Following similar logic, one may devise a set of vector function
by augmenting above scalar spatial descriptor, such that

D(α)
i ({rj}) =

∑
j,j̸=i

rij
rij

exp(−η(α)(rij − r (α)s )2)fc(rij). (35)

t is straightforward to check

D(α)
i ({rj}) = D(α)

i ({Urj}), (36)

hich resembles Eq. (28). The subscribe j here is corresponding
o the superscribe (ξ ) of u in Eq. (28). We will present an example
sing the vector spatial descriptors below.
We show theoretically that one can introduce permutation

ymmetry by adding an extra layer of properly designed vector
orm GNN to our ENN.
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.6. Limitations of our ENN

Our implementation has the limitation that the group action
n the input data is the same group action on the output data, and
he group action is restricted to unitary transformation. There-
ore, if one applies the unitary operator on the input data, but
he target data does not experience the same transformation, our
ethod does not apply.
For example, in physical systems, quantities can have odd or

ven parity symmetry, e.g., consider the parity transformation
: (x, y, z) ↦→ (−x, −y, −z). For quantities with odd parity

symmetry, they will have sign change according to the parity
transformation. Our ENN can be applied to predict these quan-
tities. However, for vector quantities with even parity symmetry,
our ENN does not apply. For example, in classical mechanics, the
angular momentum

L = r × p. (37)

f we apply the parity transformation, we get r → −r and p →

p, but we still get

= −r × −p. (38)

f we use r and p as the input data, we cannot use our ENN to
redict L. A possible solution is to manually apply sign change to
he output data according to the input data.

For scalar quantities with even parity symmetry, it can be
emedied by converting xk at arbitrary k layers, where xk ∈
n×Mk , to invariant scalar quantities. For example we can set wp
s a function of xk, where wp ∈ CMp , and plug wp into other
mplementations of neural networks with Mp scalar inputs. An
bvious example is the scalar spatial descriptors for predicting
he interatomic potential energy (Behler & Parrinello, 2007) as
entioned in previous subsection, where energy has even parity
ymmetry.

. Empirical experiments

When the governing rules of a physical system are unknown,
t is hard to apply any analytical method to study the evolution
f a system. A viable method nowadays is to adopt an ML model
upplied with a substantial amount of data. After proper training,
he model will attain certain predictive power.

In atomic scale simulations, there are many developments on
he interatomic potentials using different ML methods, such as
aussian process (Bartók et al., 2010), neural network (Batzner
t al., 2022; Behler & Parrinello, 2007; Kondor, 2018) and moment
ensor (Shapeev, 2016). Atomic positions and atomic energies
re used as the input and output data, respectively. The atomic
nergies are usually obtained from density function theory (DFT)
alculations (Hohenberg & Kohn, 1964; Kohn & Sham, 1965).
tomic forces are then calculated as the derivative of the total
nergy (or Hamiltonian). This approach is viable only if energy
an be calculated. Unfortunately, in many observations, energy is
ot an included quantity.
We ask two questions here. First, can we predict forces directly

rom positions, without knowing the energies explicitly? This
uestion is not limited to atomic scale modeling. We can ask
imilar questions in meteorology and cosmology. Second, can we
redict multiple forces in a single calculation? In conventional
L interatomic potential, only one force vector is calculated from
n ML model. We are going to use our ENN to demonstrate the
ossibility of answering ‘‘yes’’ to both questions.
In addition, we demonstrate our ENN is capable of predicting

he atomic forces of a system with a large number of particles
hough the vector spatial descriptors.
158
Fig. 1. A plot of the Lennard-Jones potential for Argon according to Eq. (39).

4.1. Model and data

We simulate a system of 4-body motion governed by a Hamil-
tonian model. Our aim is to predict the forces when atoms are
locating at different positions, and simulate the dynamics. We
generate data using a well defined physical model, which allows
us to examine the errors.

We adopt a pair-wise Lennard-Jones potential for Argon (Rah-
man, 1964):

Uij = 4ϵ

((
r0
rij

)12

−

(
r0
rij

)6
)

, (39)

here ϵ/kB = 120 Kelvin, r0 = 3.4 Å, and kB is the Boltzmann
onstant. A plot of the potential energy is shown in Fig. 1.
The interatomic potential energy of the system is written as a

um of pair-wise interaction energies:

=

∑
i,j,i>j

Uij(rij), (40)

here rij = |ri − rj|. The force acting on atom i is

i = −
∂U
∂ri

. (41)

We generate 100,000 set of positions in three dimensional
space. Each set contains the positions of 4 atoms. The x, y, and
z coordinates of each atom is generated randomly according to
the Gaussian distribution with mean equals zero and standard
deviation equals 3 Å. Then, we calculate the interatomic distance
of each pair of atoms. If any of them smaller than rmin = 2.8 Å, we
discard this set of positions and generate a new one. We repeat
this procedure until no interatomic distance is small than rmin.
This is to avoid the occurrence of very large atomic force due
to small separation. We can readily understand it by inspecting
Fig. 1. The energy have a drastic increase at around 3 Å. Atoms
can hardly be in such small separation in dynamic simulations.
Using these positions, we can obtain a set of four atomic forces
for each set of positions using the Lennard-Jones potential.

Instead of using the positions as inputs directly, we use the
relative positions as inputs:

x0 = {r12, r13, r14, r23, r24, r34}. (42)

This takes care of the translational symmetry.
The target data are simply the atomic forces:
T = {F1, F2, F3, F4}. (43)
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Fig. 2. The value of the loss function (unitless) calculated using the training and
validation data as a function of iterative steps using FIRE algorithm.

We rescale both the input and output data by their standard
deviations before we use them to train an ENN. Data are split,
where 60% is for training, 20% is for validation, and 20% for
testing.

4.2. Learning and errors

The relationship between the input and output data is learned
y an ENN, which has five hidden layers. The number of nodes
n each layers counting from input to output layers are 6, 50,
0, 100, 80, 50, and 4. In total, there are 52,000 variables. The
etermination of the number of nodes in each layer is based on
ntuition. We did not optimize over the choice of the number of
odes in each layer, other than making sure that we have enough
emory; this shows that our method is robust and we do not
eed to spend too much time to tune the model. It is also to
emonstrate the difference between feedforward NN and GNN
hat one can easily adjust the feedforward NN by changing, not
nly the depth, but also the number of nodes according to need.
e should note the total number of parameters is significantly

ess than the training data to avoid overfitting.
The loss function is the mean-squared error, which is defined

s

=
1

Ndata

∑
data

(T − xL)2, (44)

here Ndata is the number of used data and xL is the output data.
The weight parameters W are initialized according to normalized
Xavier method (Glorot & Bengio, 2010). The bias parameters b are
initialized to zeros.

The training of ENN is performed through minimizing the
loss function with respect to {W, b}. We used the FIRE algo-
ithm (Bitzek et al., 2006). It is a minimization method commonly
sed for relaxing atomic structures. It is similar to the Nesterov
omentum method (Nesterov, 1983), and has fast convergence
ehavior in practice. We briefly discuss the method and our
daptation in Appendix.
Fig. 2 shows the change of the value of the loss function

alculated using the training data and the validation data. We
erformed 10 million iterations. We see that both of them drop
ignificantly. As expected, the training loss drops faster than
alidation loss. However, it seems that the model does not suffer
rom overfitting. We stop the iteration process as soon as we
bserve fluctuations in the training loss, i.e., further iterations
ight actually increase the training loss.
159
Fig. 3. Each component of the atomic forces calculated analytically using the
Lennard-Jones potential versus the predictions calculated using the trained ENN.
They are calculated using the testing data.

Using testing data, we can calculate the atomic forces analyt-
ically according to the Lennard-Jones potential and predict them
by our trained ENN. In Fig. 3, the analytical and predicted values
are plotted against each others. We plotted all the x, y, and z
components of the data. The root mean square deviation (RMSD)
is 0.00118 eV/Å. Observe that the training data are in the order of
0.1 to 1 eV/Å, and the average error is in the order of 0.001 eV/Å,
which is fairly satisfactory.

4.3. Non-equivariant feedforward neural network

We compared our ENN with the conventional scalar feedfor-
ward NN, which is not equivariant. The same set of data is used.
We flattened the input and output layers into column vectors, so
they have 6 × 3 = 18 and 4 × 3 = 12 components, respectively.
Even though we use the same number of nodes in each layers,
since the bias bk is a vector, not a matrix, the total number of
variables in the conventional model is not the same as in our ENN.

For better comparison, we trained two conventional scalar
feedforward NNs. We labeled them as model (A), with 18, 50, 90,
100, 80, 50, and 12 nodes from input to output layers, in total
27,382 variables, and model (B), with 18, 75, 120, 150, 110, 70,
and 12 nodes, in total 53,927 variables. The number of hidden
nodes in each layer of model (A) is the same as we used in
previous ENN, where the number of variables in model (B) is
comparable.

In Fig. 4, it shows the loss function as a function of iteration
steps up to 100,000 steps. An additional difference from the
previous training on ENN is that the maximum step size in FIRE
algorithm is half in (A) and one third in (B), because we found
that the models do not converge if the original maximum step
size was used.

The training losses of both model (A) and (B) drop comparing
to initial values and keep almost constant after 60,000 steps.
The training loss of model (B) is lower. We can understand that
model (B) has more variables, so it is more flexible to learn
the training data. However, we can clearly observe that the two
validation losses increase, after a small drop up to about 10,000
iterative steps. A clear generalization gap can be observed. It is
a typical indication that the model cannot generalize the data.
We should also note that the training losses do not drop further.
Comparing the values of training losses with the values in Fig. 2,
we can conclude the two conventional feedforward NNs cannot
be trained successfully.
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Fig. 4. The value of the loss function calculated using the same training and
validation data in Fig. 2, as a function of iterative steps, where a conventional
feedforward neural network is used. Label (A) and (B) are models described in
text.

We demonstrate that having the symmetry being properly
uilt in the NN is important for the current data set. The total
umber of variables and number of nodes in each layer are not
he key of getting a good learning result.

.4. Dynamic simulations

We use the forces predicted by our trained ENN to drive
he evolution of a system of four Argon atoms using molecu-
ar dynamics (MD). We will also compare our predictions with
nalytical solutions. Note that our ENN was not trained to any
rajectory of atomic motion. All training data are static. No history
ependent information was involved in the training.
The motion of atoms are governed by the Newton’s equations

dpi

dt
= Fi, (45)

dri
dt

=
pi

mi
, (46)

here the position and momentum of atom i are ri ∈ R3, pi ∈ R3

and the atomic mass is mi.
Using our trained ENN, we can predict the atomic forces {Fi}.

n the other hand, if the analytical form of a Hamiltonian is
nown, the atomic force is

i = −
∂H
∂ri

, (47)

where the Hamiltonian is:

H =

∑
i

pi
2

2mi
+ U({ri}). (48)

ithout introducing perturbation and dissipation, this dynamic
ystem is a closed system, and so the total energy should con-
erve.
We initialized ten samples. The positions of Argon atoms are

nitialized at (3, 0, 0.1), (−3, −0.1, 0), (0.1, 2.5, 0), and (0, −2.5,
0.1), where unit is in Å. Velocities are generated randomly
ith kinetic energy corresponding to a temperature of 10 Kelvin.
he mass of an Argon atom is 39.948u. We integrated Newton’s
quation using velocity Verlet algorithm. We used a time step of
fs, which is a conventional value for MD simulations.
160
Fig. 5. The root-mean-square-derivation (RMSD) of positions with respect to
analytical solution and prediction by our trained ENN. The RMSD is calculated
across 10 samples. Each sample contains 4 atoms.

Fig. 6. The x component of the position of atom 1 in sample 1. Analytical
olution and prediction are shown.

We calculated the RMSD of the positions of atoms. It is defined
s:

MSD({ri}) =

√
1

NsNat

∑
samples,atoms

(rai − rpi )2, (49)

where Ns = 10 is the number of sample, Nat = 4 is the number
atoms in a sample, rai is the position of atom i calculated according
to analytical solution, and rpi is the position calculated using
forces predicted by ENN.

Fig. 5 shows the RMSD of positions as a function of MD steps.
As expected, they deviate more and more as a function of steps,
because the error is accumulating throughout the simulation. We
may inspect the real trajectory of an atom in Fig. 6. It shows
the x component of atom 1 in sample 1. We see the initial 1500
MD steps predictions are fairly good, and up to 4000 MD steps
are acceptable. Our ENN shows certain predictive power, and the
predictions are three dimensional vectors.

We calculated the RMSD of the system energies. It is defined
as:

RMSD(E) =

√
1
Ns

∑
(Ea − Ep)2, (50)
samples
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Fig. 7. The RMSD of energy calculated using the positions calculated analytically
r using ENN.

Fig. 8. The system energy of sample 1. Analytical solution and prediction are
shown.

where Ea and Ep are the total energy calculated using Eq. (48). The
potential energy are calculated using the positions of atoms that
evolve according to forces calculated analytically or by prediction
using ENN.

Fig. 7 shows the RMSD of energy across ten samples. Again,
we can see the deviation accumulates. However, we should re-
member that in the training of ENN, we did not provide any
information about energy to the training. If we look at around
4000 steps, the RMSD is less than about 4 × 10−4 eV, which is
about 2 order of magnitude smaller than the system energy. Our
results are encouraging. It shows that even if we do not know the
system total energy (or Hamiltonian), we can still predict forces,
which are vectors, using our ENN. We can also predict multiple
forces at the same time. Fig. 8 even shows the prediction of the
energy of a sample is fairly good.

4.5. Many particles case

In many physical systems, we need to consider a large number
of objects that can be ranging from a few hundreds to the order
of the Avogadro number (6.02 × 1023), or even larger. However,
in reality, the features of an object can be a result of contri-
butions from all other objects, and it is not always tractable to
161
Fig. 9. The value of the loss function calculated using the training and validation
data of the many particles case as a function of iterative steps.

consider such a large number of interactions. Instead, one can
assume that the neighborhood of nearby objects contribute the
most and the remaining further objects are negligible. This allows
spatial descriptors (Behler & Parrinello, 2007) to describe the local
atomic environment and predict atomic energy. Since prediction
is based on a fixed neighborhood, the calculation time becomes
proportional to the number of objects, which essentially is O(N)
calculation, instead of O(N2).

In Section 3.5, we discuss a viable way to write down vector
spatial descriptors. We demonstrate that it is feasible to predict
a vector feature in practice, and use them to predict the atomic
forces of an ensemble of atoms according to their neighborhood.

We write our vector spatial descriptors of atom i as:
(α)
i ({rj}) =

∑
j,j̸=i

rij
rij

exp(−η(rij − r (α)s )2)fc(rij), (51)

hich are vector functions depending on the relative position
ectors rij. In total, we use 73 vector spatial descriptors to de-
cribe the atomic environment of a particular atom. We set η =

.1−2Å−2, r (α)s = 2.8 + α × 0.1 Å, where α = 0, 1, 2, . . . , 72. The
cut-off function is chosen as:

fc(rij) =
1
2

(
cos

(
πrij
rc

)
+ 1

)
Θ(rc − rij) (52)

here Θ is a Heaviside step function and the cut-off distance is
c = 10 Å.

We create data for training, validation and testing by randomly
utting Argon atoms in cubic boxes with side lengths of 45, 50,
5, 60, 65, 70, 75, 80, 85, and 90 Å. We insert up to 4000 atoms in
ach box. However, as we discussed before, atoms in general do
ot come very close in dynamic simulations, we set a minimum
istance of 2.8 Å between each pair of atoms. For each insertion,
f one cannot put an atom, according to the minimum distance
riteria, after 50 trials, we give up. Therefore, some boxes with
maller side lengths may have less atoms. Then, we calculate the
tomic forces analytically using Eq. (39). We create 10 sets of data
ith different random seeds. We use 6 sets as training data, 2 sets
s validation data, and 2 sets as testing data.
Then, we create an ENN with 73, 200, 100, 50, 10, and 1 nodes

rom the input to output layers. The inputs are descriptors divided
y their standard deviations across all data, and the target is the
tomic force divided by its standard deviation across all data.
We train our ENN using the training data and monitor the

hange of training loss and validation loss as defined in Eq. (44).
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Fig. 10. Each component of the atomic forces calculated analytically using the
Lennard-Jones potential versus the predictions calculated using the trained ENN
with input using spatial descriptors. They are calculated using the testing data
of the many particles case.

We can observe in Fig. 9 that both the training loss and validation
loss drop steadily until about 105 steps. No significant changes
an be observed afterwards, and so we stop the iteration at 106

teps.
We examine the trained ENN using our testing data set, which

as 74,506 atoms. Since each force vector has three compo-
ents, we have in total 223,518 points plotted in Fig. 10. Each
omponent of a predicted force is plotted against its analytical
alue. We observe fairly good prediction from the figure. The
MSD is 0.00588 eV/Å. We found that the results are encouraging,
ccording to the spread of data from about −2 to 2 eV/Å.
Finally, we use our ENN to drive a dynamic simulations. First,

e created a simulation box with Argon atoms using 50 × 50 × 50
ace-centered cubic unit cells. Each unit cell contains 4 atoms and
as a lattice constant of 5.24411 Å. In total, there are 500,000
toms. Then, we thermalize the system to 60 K for 10 ps. At the
ame time, the box can change volume, so that the internal pres-
ure can attain zero. Once it is done, we fix the simulation box,
nd cut the final configuration into a 3-dimensional cross shape,
s shown in Fig. 11. Such configuration contains 26,679 atoms.
ll these manipulations are performed using LAMMPS (Thompson
t al., 2022). The visualization of the atomic configuration is done
y OVITO (Stukowski, 2010).
Using this as the starting configuration, we perform MD simu-

ations using the predicted forces and analytical forces according
o the Newton’s equation. We integrate 20,000 MD time steps,
here each time step is 1 fs. Fig. 12 shows the RMSD of the
ositions of atoms. We observe that the value becomes larger and
arger as expected. It is because the trajectory of each individual
tom can deviate more whenever there is a slight difference on
he analytical and predicted forces.

However, if we inspect the overall picture in Fig. 13, the
hange of the shapes in both cases are similar. It is more sur-
rising if we look at the change of the system temperature in
ig. 14, which is calculated from the kinetic energy. We observe
airly good prediction. We should note that temperature is a
hermodynamic quantity that describes the overall state of a
ystem, instead of individual atoms.
162
Fig. 11. We thermalize a system of Argon atoms in face-centered cubic structure
to 60 K. Then, we cut out a 3-dimensional cross shape, which contains 26,679
atoms. It is used as the initial configuration for further dynamic simulations.

Fig. 12. The root mean square deviation (RMSD) of the positions with respect
to analytical solution and prediction by our trained ENN. It is calculated using
the positions of all atoms of the many particles case.

As a proof of concept, we show that our ENN is applicable
to molecular dynamics simulations and our ENN can predict
reasonably well the atomic forces and vector features of a large
system.

5. Conclusion

We have designed a new feedfoward ENN for unitary trans-
formations. It does not involve convolution with higher order
representation, such as spherical harmonics and Wigner matrices.
Moreover, our model works for vectors in arbitrary dimensions.
Our ENNs can be trained by efficient backpropagation and an ex-
tra layer of GNN can be added to achieve permutation symmetry.
Examples on the dynamics of Argon atoms are given showing the
practicality of our architecture via empirical simulations.



P.-W. Ma and T.-H.H. Chan Neural Networks 161 (2023) 154–164

o
c

D

c
t

D

A

E
E
1
[

v

v

∆

Fig. 13. After running for 20,000 time steps, where each time step is 1 fs, we
bserve that the change of the shapes of the two simulations with atomic forces
alculated analytically or predicted using a trained ENN. They look similar.
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Appendix. FIRE minimization algorithm

FIRE (fast inertial relaxation engine) (Bitzek et al., 2006) is a
minimization algorithm commonly used in atomic scale simula-
tions for structural relaxation. We are going to briefly mention
the algorithm below and discuss our adaptation.

Assuming we have a system of atoms governed by the Hamil-
tonian H, we may find a configuration with potential energy at
local minimum through following steps.

Step 1: Define parameters Nmin, finc , fdec , αstart , fα , ∆t , ∆tmax,
and imax. Set α = αstart , N = 0, and i = 0.

Step 2: Set the initial positions x and atomic mass m. Initialize
elocities v = 0.
Step 3: Calculate the atomic forces F = −∇H(x).
Step 4: Put

x(t + ∆t) = x(t) + v∆t,

v(t + ∆t) = v(t) +
F
m

∆t.

Step 5: Calculate P = F · v.
Step 6: Put N → N + 1 and set

→ (1 − α)v + α|v|
F
|F|

. (A.1)

Step 7: if P > 0 and N > Nmin, set

∆t → min(∆tfinc, ∆tmax)
α → αfα
Step 8: if P ≤ 0, set

t → ∆tfdec
v → 0
α → αstart

N → 0

Step 9: Set i → i + 1. Go to Step 3, or end if i > i .
max
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In our case, we are minimizing the loss function with respect
to the weight and bias parameters {W, b}. We flattened {W, b} to
column vector and treated it as x. We also flattened the gradient
f the loss function and treated it as the negative of F. After some
rials and errors, we used a pseudo mass m = 0.1, ∆t = 0.001,
and ∆tmax = 0.01. For other parameters, we follow the original
suggestions (Bitzek et al., 2006), Nmin = 5, finc = 1.1, fdec = 0.5,
αstart = 0.1, and fα = 0.99.
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