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A B S T R A C T

In the present magnetically confined plasmas, the prediction of particle loading on material surfaces is a primary
concern in view of the protection of plasma facing components for next step devices. Thus, an understanding of
filament dynamics is needed. In this context, this work aims to develop an automatic detector for filaments
arising in the MAST-U plasma. The identification of the filaments has been done starting from 2D images ac-
quired with a fast visible camera. Therefore, it can be faced as an image object recognition problem. Currently,
the object recognition is a key output of deep learning and machine learning algorithms. In this paper, a database
of several thousands of images generated by a synthetic diagnostic, which reproduces the statistical properties of
experimental filaments in terms of position, size and intensity has been used. The synthetic images are pre-
processed by mapping them onto the toroidal midplane of the machine. Then a Faster R-CNN is customized to
the problem of identifying the filaments. In particular, in order to enhance the performance of the detector, a
suitable definition of the target-boxes defining the filament positions and sizes is adopted with good results.

1. Introduction

Plasma behavior in the scrap-off layer (SOL) of tokamaks is driven
by turbulence in the edge region where density and temperature gra-
dients are large. This generates intermittent structures of increased
density and temperature known as filaments, which extend along the
magnetic field lines. The protection of plasma facing components in the
next step devices is a primary concern. In this context, the identification
of the filaments, for the understanding of their generation and propa-
gation schemes, is a main issue.

The goal of this work is to develop an automatic detector for fila-
ments arising in the Mega Amp Spherical Tokamak Upgrade (MAST-U)
plasmas. The identification of the filaments has been addressed as an
object recognition issue in computer vision. In this context, the po-
tentiality of the Faster Region-based Convolutional Neural Networks
(Faster R-CNN) [1], which are suitable for image classification and
object recognition, is deployed to detect filament size and position.
Training a Deep Neural Network (DNN), by feeding it with prescribed
positions and widths, is the only possible way to help with the actual
measurements in the machine. In fact, the network will give back the
same precious information for the experimental filaments during the
machine operation.

In [2] the authors proved the suitability of the deep learning for the

filaments detection. A Faster R-CNN was trained to identify position
and size of gaussian objects whose amplitudes, positions and spreads
were randomly generated from statistical distributions reproducing the
statistical properties of experimentally observed filaments. These ob-
jects, representative of the filaments, were generated on a 2-dimen-
sional (2D) grid, representing the radial and the toroidal direction of
the tokamak at the midplane. Moreover, random noise was added to the
amplitude in order to simulate experimental conditions. This first at-
tempt showed very high precision performance but limited recall index.
This was due to the difficulty in identifying filaments with low pixels
intensity or located on the edges of the frames.

In the present paper, a Faster R-CNN is trained with a database
generated by a synthetic fast-visible camera which simulates the fast-
visible camera images. Currently, not large enough data base of ex-
perimental filaments, providing information about size and position, is
available to train a – DNN algorithm. Thus, deploying a synthetic image
database is a need. The simulated filaments reproduce the statistical
properties of experimental filaments in terms of position, size and in-
tensity. To overcome the limitations raised by a first training attempt,
resulting in a large number of false detections (both positive and ne-
gative), a suitable definition of the training-target, taking into account
both the filament size and intensity, has been adopted. This customi-
zation allows ambiguous information, introduced by the filament pixel
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intensities close to the background, to be excluded from the training set.

2. Database

The used dataset was created through a synthetic diagnostic, able to
reproduce images with filaments, with prescribed position, size and
intensity, from the mid-plane fast-visible camera [3]. In the synthetic
diagnostic, filaments have been generated randomly, by varying posi-
tion, size and intensity, to reproduce the statistical properties of ex-
perimental filaments, observed on measurements made with fast cam-
eras and probes during MAST experimental campaign in 2013 [4]. In
Table 1, the parameters of the probability distribution functions (PDF)
of the properties of the synthetically generated filaments are reported
[5]. In particular, the radial position, and radial and toroidal widths
follow a log-normal distribution with σ standard deviation and μ mean
of the natural logarithm of the statistical variables. Whereas, the fila-
ments amplitude follows an exponential PDF, with exponential rate λ.
Finally, the toroidal angles are uniformly distributed from 0 to 2π.

To the images generated by the synthetic diagnostic a salt noise has
been added, randomly sampling from a positive definite half-Gaussian
distribution with a width 5% of the image depth.

The position and the size of each filament is defined in a 2D grid,
whose coordinates are the radial (R) and toroidal (tor) position in the
midplane. In fact, each point of this grid corresponds to the intersection
of a 3D field line with the toroidal midplane. After the camera images
are generated by the synthetic diagnostic (see Fig. 1a), a projection of
the 3D field line on the (R, tor) plane is made by means of the proce-
dure proposed in [6], creating the so called “pseudo-inverted” images
(see Fig. 1b). To each pixel of the pseudo-inverted image, the integral of
intensities in the camera image along its related field line is assigned. It
is with these inverted images that the neural network is trained to
detect the filaments. The 2D mapping determines an image distortion
resulting in a small variation in filament position and size with respect
to those generated by the synthetic diagnostic.

Each filament appears in the pseudo-inverted image as a tilted el-
liptical object, with a certain position and size. The intensity behavior
of each filament is approximated as a 2D gaussian function. Even if the
synthetic filaments are generated uniformly at all toroidal locations, the

limited camera field of view means only a subset is visible to the
camera. Thus, only a subset of generated filaments is visible in the (R,
tor) plane.

The synthetic dataset consists of inversion of 5000 frames, each with
a size of 71× 161, with radial and toroidal resolutions of 2mm/pxl and
10mm/pxl, respectively.

3. Deep convolutional neural network for object detection

In recent years, deep convolutional neural networks (CNNs) have
been able to outperform previous state-of-the-art machine learning
techniques in computer vision, because of their capability to directly
learn important features from images at different scales, eliminating the
need for manual feature extraction. The main applications of CNNs in
computer vision include solving image classification problems, as well
as object detection and tracking problems in images and videos [7].

Regarding object detection problems, region-based CNN detection
techniques have become the main paradigm. In this paradigm, by
means of a sliding-window procedure, a classifier is applied to search
for objects at multiple scales and aspect ratios. It is such a rapidly de-
veloping area that different detectors have been proposed in the last
few years, with increasingly higher accuracy and faster processing
speeds. These detectors can be subdivided in two different categories:
one-stage detectors and two-stage detectors. In one-stage detectors, the
classifier is applied to a dense set of windows, with different positions,
scales and aspect ratios. In two-stage detectors, a Region Proposal
Network (RPN) is firstly used to generate a sparse set of candidate
proposals that should filter out the majority of negative locations, while
the second stage classifies the proposals into foreground and back-
ground. A very promising one-stage detector is the so called RetinaNet
[8], which is able to overcome the accuracy problems of one-stage
detectors due to the disparity in frequency between foreground and
background classes. Different two-stages region-based CNN detectors
have been proposed in the last few years, from the Region-based Con-
volutional Neural Networks (R-CNN) [9], to the Fast R-CNN [10], and
finally to the Faster R-CNN [1].

3.1. Faster R-CNN

In this section, we briefly introduce the key aspects of the im-
plemented Faster R-CNN. The architecture of the used Faster R-CNN is
shown in Fig. 2. The input image is processed by a feature extractor
composed by a cascade of two convolutional blocks, each one composed
by a convolutional layer (conv1/conv2) and a Rectified Linear Unit
(ReLU) layer. This feature extractor produces a feature map, used in the
first stage by a RPN to predict bounding box proposals. In order to feed
the RPN, a sliding-window is scrolled in the output feature map. At each
sliding-window location, the RPN predicts up to a fixed number of box
proposals, by using different scales and aspect ratios, each one related
to a reference target box during the training phase. To do this, the
feature map is processed by another convolutional block, composed of a
convolutional layer (conv3) and a ReLU layer, which feeds two other

Table 1
PDF of generated filaments properties.

Filament property Distribution

Radial position Log-normal
μ=0.04, σ=0.5, offset= 1.36

Toroidal angle Uniform
a=0, b= 2π

Radial width Log-normal
μ=0.01, σ=0.35

Toroidal width Log-normal
μ=0.8, σ=0.4

Maximum intensity Exponential
1/λ=1.28∙105

Fig. 1. a) Fast-visible camera frame generated by means of the synthetic di-
agnostic. b) Pseudo-inverted image in the (R, tor) plane. Fig. 2. Faster R-CNN architecture.
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convolutional layers, one for classification (conv_cls) and one for re-
gression (conv_reg).

During the second stage, the box proposals are used to crop features
from the feature map, which are subsequently fed to the Fast R-CNN for
classification and bounding box regression. The Fast R-CNN is com-
posed by a Region Of Interest (ROI) max pooling layer, which extracts a
fixed length feature vector for each proposal from the feature maps,
followed by a fully connected layer (fc) and a ReLU layer, which feeds
two sibling fully connected layers: one layer (fc_cls) produces softmax
probability estimates over filament class, plus a catch-all “background”
class; another layer (fc_reg) provides four real-valued numbers that
encode the refined bounding-box position for each filament.

4. Filament detection

4.1. Faster R-CNN architecture

In the following, the hyperparameters used in the filament detector
are described. The convolutional layers, conv1, conv2 and conv3 have 32
filters of size 3×3 each. The dimension of the sliding window used in
the RPN is ×7 7, and for each location of the sliding window, up to a
maximum of =k 27 proposals per location are predicted, by using 9
different scales and 3 aspect ratios (1:1, 1:2, 2:1). The two convolu-
tional layer outputs of the RPN have ×k2 1 1 output filters for classi-
fication and ×k4 1 1 output filters for regression, respectively. The
classifier gives a separate score for the classification as background and
for the classification as foreground (filament). Finally, the fully-con-
nected layer fc is composed of 64 neurons.

The training procedure is made of four different steps, which opti-
mize the detector performance: the first two steps train the RPN and
detection networks used in the Faster R-CNN.

During the last two steps, the weights of the network obtained by
the previous steps are used to retrain the RPN and the Fast R-CNN,
while keeping the weights of convolutional layers belonging to the
feature extractor fixed.

4.2. Detection performance metrics

The detection criterion adopted in this work considers a filament as
correctly detected if its center lies inside at least one box created by the
filament detector. In this case, the filament detector produces a True
Positive (TP) response. On the other hand, a filament is considered
missed if its center does not lie inside any of the boxes created by the
filament detector, and a False Negative (FN) response is produced.
Finally, if a box created by the filament detector does not contain the
center of any actual filament, it is considered as a False Positive (FP).

In order to evaluate the performance of the filament detector, some
global performance indices have been considered:

• Precision: Pr = TPs/(TPs+ FPs), is the fraction of correctly de-
tected items among all the detected ones.

• Recall: Re = TPs/(TPs+ FNs), is the fraction of items that are
correctly detected.

• F1 score: F1=2(Pr∙Re)/(Pr+Re), gives an estimate of the accuracy
of the system under test.

5. Results

As in [1], a first attempt has been made training a Faster R-CNN
filament detector with the target-boxes only related to the filament size.
In particular, the size and the position of each target-box depends on
the size and position of the corresponding filament as generated by the
synthetic diagnostic (before mapping them onto the toroidal midplane).
The results showed poor performance on the test set, resulting in Pr of
56.69% and Re of 50.42%. A statistical analysis on the test set showed
that the leading causes of the high false detection rate is the ambiguous

information given by the filament pixels with low intensity, which can
trigger both FNs and FPs. This is corroborated by Fig. 3, where the
behaviour of the TP fraction as a function of the box area and the
normalized filament intensity is reported. The diagram highlights that
the TP fraction increases with increasing filament intensity with little
dependence on filament size, so that the largest filaments are not de-
tected at all if their intensity is lower than a certain threshold.

Because of the image normalization and quantization in the inver-
sion images in the (R, tor) plane, filaments with the same size but
different intensity result in objects of different size. In particular, high-
intensity filaments appear as big blobs, while low-intensity filaments
cover smaller regions. Since the definition of the target-box considered
only the filament as generated by the synthetic diagnostic, pixels be-
longing to the tails of the filaments may get conflicting labels. In par-
ticular, in case of intense filaments, pixels of tails falling outside the
target-boxes are labelled as background. By contrast, for the low-in-
tensity filaments, the tails are included into the target-boxes and their
pixels labelled as filaments, even if not visible. Thus, tailoring the
target-box on the 2D mapping, according to the filament intensity, as
well as its size, a more accurate definition of the background can be
achieved.

For each filament, the target box width w and height h have been
defined as

= =w dR I
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[ ] [ ]
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where IM is the maximum value of intensity of the considered filament,
dR and dtor are the spread in the R and tor directions respectively, and
Ith=0.01 is an intensity threshold value. In this way, filaments having
equal size but higher intensity have larger boxes, whereas filament
pixels with intensity lower than Ith are labelled as background. The Ith
value was set in order to maintain at least 99% of the filaments.

Considering the new dataset, a new training section has been per-
formed using a set of 4500 images, with 36743 filaments. A test set of
500 images, with 4143 filaments, has been used. Table 2 summarizes
the obtained results, in terms of TPs, FNs and FPs for the training and
test sets. Table 3 reports the overall performance indexes of the filament
detector, showing very good performance in terms of both Pr and Re.

Fig. 4 shows two examples belonging to the test set. For each ex-
ample, the target and the output boxes are plotted with green and red
lines, respectively. In the image on the left side all filaments are de-
tected by the Faster R-CNN. The image on the right contains seven fi-
laments: two of them, with the lowest intensity, are not identified by

Fig. 3. TP fraction as function of the normalized intensity and the box area.

Table 2
Detection performance in terms of True Positive (TP), False Negative (FN), and
False Positive (FP).

# Actual Filaments TPs FNs FPs

Training Set 36743 26791 9952 1988
Test Set 4143 3019 1124 213
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the detector; four filaments on the top are detected as one, due to the
overlapping of target-boxes; the one on the boundary is not detected at
all.

6. Conclusions

This paper proposes a Faster R-CNN as filament detector for MAST-
U. A data base of several tens of thousands of filaments generated by a
synthetic diagnostic have been considered. The data set reproduces the
statistical properties of experimental filaments in terms of position and

intensity. The Faster R-CNN has been suitable customized for the de-
tection of the filaments from the (R, tor) plane. A performance en-
hancement is obtained relaying the target box definition on the filament
intensity as well as the size. The achieved performance is good, with a
Pr of 93.3% and Re of 73%. The resulting network, trained with syn-
thetic data, can operate during the next experimental campaigns giving
back unknown position and width of real filaments.
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