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A B S T R A C T

Present inspection techniques in place at the Joint European Torus (JET), as well as some of those planned for
ITER make use of robotically deployed inspection systems, which typically collect data for offline analysis. This
can be a slow, laborious process with subjective or error-prone results. There are significant benefits to be gained
through automation or user assistance, for example through prioritisation of samples for analysis.

Automated visual anomaly detection is a highly challenging problem due to high dimensionality of the input
data, meaning that the normal statistical distribution cannot be directly modelled. We provide a robotic and
algorithmic framework that utilizes Generative Adversarial Ngenerative adversarial networks (GANs) to in-
directly model this distribution, and hence provide a mechanism to quantify the anomalousness of given image
data samples from a tokamak environment.

This paper presents an approach to visual anomaly detection that combines multiple deep neural network
architectures in order to extract individual components and then classify anomalies. An overview of the ar-
chitecture and algorithms employed as well as quantitative and qualitative assessments of the performance
against data from both a benchmark dataset, and real data gathered from JET components is provided.

1. Introduction

Visual anomaly detection is a task which is of significant relevance
to quality control processes and inspection tasks in various domains.
Anomaly detection can be described as the identification of the pre-
sence of out-of-the-ordinary content in a given data sample. In visual
anomaly detection, data samples are typically images, and anomalies
typically represent features present in the scene which are not normally
expected or occur with relatively low frequency.

In industrial applications, anomaly detection is important for de-
tecting defects in products, machines, and infrastructure such as cracks
in concrete, delamination in steels, or corrosion on metal surfaces.

A common application of computer vision techniques in industrial
inspection is in quality control through the automated detection of
surface defects. Surface defect detection is, however, not only invalu-
able for manufacturing quality control, but also in inspection of
equipment in operation. Surface defect detection has been applied to
wood surfaces [1], metallic surfaces [2,3]. Common techniques include
frequency analysis methods, Gabor filters [4], and more recently,
methods based on deep learning techniques [5].

A large volume of research has been directed towards techniques for

detection of cracks in concrete [6,7], steel, and other structures [8].
This is of obvious importance for a wide range of civil infrastructure
inspection tasks, including bridges, tunnels [9,10], and pipelines [11].

One machine inspection task that is of particular importance to
regulatory aspects of machine build and operation is that of weld in-
spection. Pressure vessels and pipelines are usually required to conform
to codes and standards such as ASME B31 [12], which involve in-
spection prior to first use as well as routine inspection during the life-
time of the equipment. Elements of the problem include detection of the
weld bead [13], and detection of weld seam profiles [14], as well as the
subsequent characterisation of weld quality. Sometimes these tasks are
required to be carried out in confined spaces with limited scope for
access. As such there is an active interest in development of robotic
systems that can deploy sensors into challenging environments for weld
inspection [15,16] and development of crawlers for in-pipe inspection
[17]. Other work has looked at inspection of various types of machines
and components such as storage tanks [18], solar power plant equip-
ment [19], railway equipment [20], and ship structures [21]. In the
world of nuclear fusion inspection, although there have been several
experimental studies in automated inspection, e.g. [22], the large ma-
jority of in-vessel inspections are conducted manually which can be
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extremely slow, laborious, and error-prone (Fig. 2).
Numerous examples can be found in the literature of industrial in-

spection and visual anomaly detection for identification of specific
defects, however the identification of unspecified, general defects is
somewhat more challenging. Anomaly detection in other domains often
relies on modelling the probability distribution of normal data samples,
and detecting where query samples fall outside this normal distribution.
With visual data, directly modelling this distribution is computationally
intractable, however deep learning techniques such as GANs [23] may
allow us to indirectly model this distribution by providing a mapping
from a simple, uniform random distribution, into the complex struc-
tured domain of real-world images [24].

This work looks at applying GAN-based techniques to general visual
anomaly detection Fig. 1 , and enhancing the techniques through a
novel workflow. This is illustrated with both a reproducible dataset and
an example industrial datasets.

2. GAN-based anomaly detection

GANs [23] are a recent approach to training generative models
based on an unsupervised, adversarial approach. They have been de-
monstrated to have capability in generating complex natural images
[25].

GANs consist of two main elements, the Generator G, and a
Discriminator D. The role of the discriminator is to estimate the prob-
ability that a given data sample (e.g. an image) is a natural image as
opposed to an artificial generated image. The role of the generator is to

attempt to randomly generate realistic data samples that are able to fool
the discriminator. As such, the Generator and the Discriminator are
playing adversarial roles in a 2-player game, which can be described in
the minimax function:
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The Generator G operates on a simple random prior, z∼ pz, and
implicitly defines a probability distribution pg of generated samples
G(z). In order for the generated samples to match the real-world data, it
is desirable for pg to converge to pdata, the distribution of natural
training samples.

With D(x), the output of the Discriminator being defined as the
probability that sample x came from the data (as opposed to being
generated), the optimisation problem can be defined as back-
propagation by ascending the gradient:
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In other words, maximising the log probability that x(i) is marked as
coming from the training data plus the log probability that z(i) is flagged
as being generated by adjusting the Discriminator parameters, whilst
simultaneously minimising the log probability that z(i) is marked as
being artificially generated by adjusting the Generator parameters.

GAN-based anomaly detection can be considered as directly
equivalent to standard probability distribution-based anomaly detec-
tion methods, where low-probability samples represent likely anoma-
lies. With natural images, the dimensionality of the data is so high that
directly modelling the distribution is computationally intractable,
however GANs provide a means for indirectly modelling the complex
structured distribution as a highly nonlinear function, which maps from
a smaller, simple, latent distribution, into the target domain.

GANs have been used in [24] for anomaly detection in medical
imaging data. A GAN was first trained on healthy samples, and then
used to predict anomalies based on methods in [26] for finding the
closest Generated data to the real, query data.

Anomalies are then detected by adapting the coefficients of the la-
tent distribution from which images are generated (z) by back-
propagation [26], and an anomaly score A(x) is produced, which can be
used for detection of anomalous regions within an image. The final

Fig. 1. The GAN is first trained in a standard configuration (top), to simulta-
neously discriminate real from generated samples whilst predicting z through a
latent regressor. At runtime, the network is inverted (bottom), the discriminator
becoming an encoder, predicting the latent representation which is then used to
regenerate the sample image based on the learned generative model.

Fig. 2. Common types of damage that occur (Images taken from the Joint European Torus, JET.)
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residual image can be used to identify anomalous regions. The back-
propagation process, however requires many iterations and is extremely
slow.

Our work applies GAN models, with the capability of predicting
latent representations for the task of image regeneration, giving a much
closer starting point for backpropagation than a random initial starting
point. Regenerations are compared with original images in a number of
different ways, assessing the resulting anomaly detection performance.
Methods of comparison include a residual score, summing absolute
differences in pixel values between the two images, Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity (SSIM) score, and the
AnoGAN metric.

Previous attempts [27] at using GANs for industrial anomaly de-
tection have tried using randomly cropped and centred images to avoid
the computational or operational complexity associated with finding
components of interest and then automatically performing these op-
erations. However, historic work involving GANs, for example in gen-
eration of new realistic images have focused on datasets containing
relatively well-structured images, centred about the object of interest,
and cropped to the region containing that object in a consistent manner.
Typical datasets such as MNIST [28] and CelebA Celebrity Faces [29]
comprise images which are centred and cropped about the object or
type of object in question.

In order to simplify the visual problem, this work similarly operates
on data which is centred and cropped about individual objects, in our
case, individual components from within the JET tokamak. To facilitate
the use of this in real-world scenarios, a method is presented for au-
tomatically centering and cropping query images such that they are
suitable for this process.

Additionally, previous work in GAN-based anomaly detection has
made use of either backpropagation to find a close approximation to z,
or alternatively used some kind of encoder or latent regressor. Our work
combines the two methods in order to seed the optimisation process
with a very good starting point.

In summary, the novel contribution of this work are twofold:

• Combining object detection with GAN-based anomaly detection for
effective in-component anomaly detection.

• Combining latent space prediction using an encoder or latent re-
gressor with backpropagation for refinement.

3. Object detection of in-vessel component in fusion facilities

In order to identify sub-images relating to individual components,
an object detector network is employed as the first stage of the in-
component anomaly detection pipeline. In this work we used the YOLO
[30,31] network as the object detector, which is used to create multiple
proposed object bounding boxes within each given query image relating
to individual components. Our YOLO network was trained on an an-
notated dataset taken from a collection of high resolution full vessel
survey images, taken in 2014.

The training data consists of an augmented set of 969 images,
containing 7372 annotated components in 25 classes. The classes were
selected from some of the more common component types that are
visible in the JET vessel including 7 types of divertor tile, 9 other types
of tile, various antennas, and other components.

Training was conducted over 22 epochs of the dataset. Average time
for regression of bounding boxes at run time on CPU was 0.23 seconds
per image, or 4.44 images per second.

4. Combining object detection with anomaly detection

The automated centring and cropping process makes use of the
object detection pipeline described above in order to identify compo-
nents of interest in new images, and provide bounding boxes for each
detected component in the image. The object detector is used to pro-
pose multiple component bounding boxes within each given query
image. The bounding boxes are then used to create multiple sub-images
which each correspond to a detected object, in our case, tokamak
components. Each sub-image is created by taking the x, y coordinates of
the bounding box, sampling a new image centred about these co-
ordinates, with width and height as detected, and then reshaping this
sub-image to a 128× 128 square image compatible with the GAN re-
generator This entire pipeline is illustrated in Fig. 3.

The GAN is used firstly in latent encoder-regenerator mode, and
then regenerated images are subsequently refined using 1000 iterations
of backpropagation. The entire process for optimising the estimate of
the latent space representation is provided in Algorithm 1.

Once the query image has been regenerated, three methods are used
to compare the original component sub-image with the regenerated
version. These include taking the direct residual between the two
images, taking the Peak Signal-to-Noise Ratio (PSNR), and using the

Fig. 3. Architecture of the combined object detector and anomaly detector. Firstly, individual components are identified by the object detector (top). These object
detections are then used to make a new set of sub-images, each of which corresponds to an individual component. The component sub-images are then fed into the
discriminator network, which operated in Encoder mode in order to estimate the latent space representation. The generator is subsequently used to regenerate the
component image based on the learned semantic model of typical component images, in order that anomalies can be identified by comparison between the query
(component) sub-image, and its regeneration. Regenerated images are further improved by backpropagation.
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Structural Similarity index (SSIM). An optimal threshold is then applied
to this anomalousness score, based on the highest validation set f1
score, which is used to classify components into anomalous or not-
anomalous categories. The scores can similarly be used to rank or
prioritise components.

Algorithm 1. Latent space optimisation using contextual and
perceptual losses and backpropagation, give a trained generator, G,
and query image x.
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The gradient-based updates can use any standard gradient-based learning rule.

5. Performance evaluation and results

The component-centric GAN-based anomaly detector was trained on
a dataset which simulates outputs of the component detector sub-
system. Bounding boxes from the object detection training set were
extracted from the training set annotations, and used to automatically
generate sub-images corresponding to components within the system.
This provided a simple and effective method for generating training
data in a fully automated way. Training data consisted entirely of non-
anomalous samples (in this case, samples that did not include any
maintenance equipment or other non-native objects).

Once the GAN was trained, 64 non-anomalous test samples and 28
anomalous test samples were regenerated using the above described
process, and compared with the original query test samples using each
of the three metrics in order to produce anomalousness scores for each
component image.

Anomaly detection performance is evaluated using standard classi-
fication metrics, including the classification accuracy, precision and
recall, and associated F1 score, specificity, and areas under the ROC
curve and Precision-Recall curves Fig. 5. The scores for each of the three
comparison methods is provided in Table 1.

If accuracy scores for the residual, PSNR, and SSIM metrics are
compared with those of the previous work, where randomly cropped

and centred images have been used, the accuracy improvement through
use of object detection is significant, indicating that the centering and
cropping of query images about detected components plays a significant
role in the GANs ability to distinguish anomalous components from
non-anomalous components.

One interesting observation from the results is that the highest
scoring metric has actually changed from residual score to SSIM, be-
tween previous results and the present work. This could perhaps be
explained by the inability of the Generator to find a suitable re-
presentation resulting in a bias towards the numerical optimisation
process in the regeneration stage. This would lead to regenerations
being closer in terms of pixel-wise distance to the query image than in
terms of semantic distance. As this new method is able to better
leverage the GANs generative capability, resulting regenerations are
more structurally representative, and therefore the SSIM metric is more
appropriate.

Fig. 5. Precision-Recall curves for each of the three methods.

Fig. 4. Anomaly detection example results for images containing anomalies.
From left-to-right, the columns show: 1. The original query image, 2. The GAN
regeneration, 3. The resulting residual image, 4. A thresholded residual image
overlaid over the original query image in red. The images clearly show suc-
cessful detection of the anomalies at pixel-level. Note, in row 3, the component
that has been detected (a camera) is itself an anomaly as it is not part of the in-
vessel component set. It is successfully detected as such by the GAN system.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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5.1. Example failure cases

A small selection of noteworthy failure cases including both false-
positives, and false-negatives can be seen in Fig. 6. In the case of false
positives, or incorrectly classified non-anomalous images, the examples
can be seen to indicate that the high anomalousness score results from a
failure to regenerate the original image. This may be as a result of the
optimisation algorithm reaching a local minimum, or a failure of the
Generator to learn generalisable mappings (e.g. through mode collapse,
or biased training data).

In the case of the three examples of false negatives, or incorrectly
classified images containing anomalies, it can clearly be seen that the
regeneration process has worked well. As expected, the generator has
successfully regenerated the component image elements, without the
anomalous items in the foreground. One clear limitation of this work is
that the anomalousness scores for images are all based on the sums of
pixel-wise scores. This means that the size of the anomaly within the
image will directly impact the likelihood of detection. Further work is
required in order to determine better methods of decoupling the
anomalousness scoring of the image from the pixel-size of the anomaly.

5.2. Pixel-wise anomaly segmentation

Although not quantitatively assessed here, the various anomalous-
ness scores can be used to classify individual pixels within the image
using the same method as for entire sub-images. This results in a pixel-
wise delineation of the anomalous element. Fig. 4 shows some examples
of this being applied with the residual score.

6. Conclusions

It has been shown, not only that GANs are a powerful tool for visual
inspection and anomaly detection in machine components, but also that

this can be greatly enhanced by using component-centric, cropped data
to reinforce the statistical strengths of the GAN. This can be achieved in
run-time practice through the combination of an object detector net-
work with the regenerative GAN in order to produce a real-time auto-
mated process for doing so.

It is worth noting that whilst there is still room for improvement and
optimisation of the presented techniques, this work can already add
value in terms of automatically scoring and prioritising test cases for
human examination. In this case, we are not so concerned about false-
positives, and so the F1 score is suitable. When considering a more fully
automated anomaly detection and alert system, there is clearly a trade-
off to be considered between false positives and false negatives. In this
case, different threshold values (e.g. highest F0.5 score) may be more
appropriate. This is clearly a topic for further studies involving human
experts.

The GAN-based method employed in this work made use of a single
network trained across all sub-images. A possible future direction of
this work might be to investigate the performance differences between
per-class regenerators and across-all-class regenerators.
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