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A B S T R A C T   

Sensor technologies will play a key role in the success of Remote Maintenance (RM) systems for future fusion 
reactors. In this paper, three key types of sensor technologies of particular interest in the robotics field at the 
moment are evaluated, namely: Colour-Depth cameras, LIDAR (Light Detection And Ranging), and Millimetre- 
Wave (mmWave) RADAR. The evaluation of the sensors is performed based on the following criteria: the 
types of data they provide, the accuracy at different distances, and the potential environmental resistance of the 
sensor (namely gamma radiation). The authors review the progress in making these three types of sensor capable 
of operating in Fusion facilities and discuss possible mitigations. Experiments are performed to demonstrate the 
pros and cons of each type of sensor by collecting data from radar, colour-depth camera and LIDAR, simulta-
neously. The paper concludes with a performance comparison between sensors, as well as discussing the pos-
sibility of combining them, fostering redundancy in case of failure of any individual sensor device.   

1. Introduction 

Sensor technologies will play a key role in the success of Remote 
Maintenance (RM) systems for future fusion reactors such as ITER (In-
ternational Thermonuclear Experimental Reactor) and EU-DEMO (the 
European Union DEMOnstration fusion power reactor). Large parts of 
these facilities will be completely off-limits to human personnel due to 
the extremely high radiation levels in and around the reactor. This 
means that the vast majority of maintenance operations must be per-
formed remotely. The facilities will be composed of 3 main types of areas 
where RM will be required: In-Vessel, Ex-Vessel and Active Maintenance 
Facilities. The operation of ex-vessel transportation is one of the key 
issues during maintenance, since the mobile platforms of transportation 
have to carry the activated material extracted from the reactor to a 
maintenance facility. 

The nuclear environment has a set of unique challenges compared to 
more traditional industrial environments, which makes the use of mo-
bile robotics with on-board sensing equipment especially challenging. 
The high radiation levels present will degrade the digital components of 
the sensors and any on-board processing devices. In addition, there are 
several other constraints in these scenarios such as residual magnetic 
fields (with a strong impact on electronic devices), cluttered conditions 

for operation, and levels of dust. 
However, these challenges must be overcome in order to ensure the 

successful maintenance of both ITER [1] and DEMO [2,3] since the 
proposed RM solutions both currently rely on independent mobile 
Autonomous Ground Vehicles (AGVs) transferring equipment, tooling 
and components all around the reactor building and maintenance fa-
cilities (Fig. 1). The sensors enabling this transportation work will need 
to be installed on-board the AGVs and are thus exposed to any radiation 
in the environment as well as radiation coming from the transported 
load. 

High reliability will be critical, since in case of sensor failure a re-
covery and rescue operation may need to be triggered. This can lead to 
increased shutdown time of the reactor, which means the costs of the 
maintenance would increase dramatically. Much like other large power- 
generating installations, the cost of downtime for EU-DEMO is expected 
to be in the millions of euros per day [4]. Since one of the goals of the 
EU-DEMO is to prove the cost-effectiveness of Fusion, this means that 
the sensor systems used for RM must be robust to the failure of any one 
device or sensor which could delay the completion of the maintenance 
tasks. 

Traditional mobile robots used in industry, mainly AGVs, have their 
own sensors installed on board [3]. In addition, the principle of 
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operation is mainly based on odometry measured by its internal sensors 
and one external sensing technology (e.g. sonars, LIDAR) [5]. However, 
the scenario conditions found in industry, mainly assembly and storage 
warehouses, where AGVs are used, are different from nuclear facilities. 
In addition, in case of failure, the failed AGV is simply moved aside, 
replaced by an operational one and set to wait for a technician to be 
repaired. This approach cannot be assumed in a nuclear facility, espe-
cially when transporting heavy activated loads. 

In nuclear facilities/scenarios, the radiation effect is by far the most 
important issue for the standard technologies of robotics available for 
industry, even during a machine shutdown. In ITER the rates will be in 
the order of hundreds of Gy/hour [6], and in DEMO they will be a 
minimum of 1 kGy/hour in-vessel [7]. Sensors, the most sensible parts of 
the mobile platforms, are commonly installed onboard and thus exposed 
to the radiation in the environment and especially that of the trans-
ported load (sensors are located close to the radioactive load). There-
fore, in order to mitigate the risk of failure, the most appropriate sensing 
technologies need to be selected and combined. These should operate on 
different principles in order to provide maximum redundancy and 
minimising the risk of simultaneous breakdowns. In [8] , the authors 
present well-known and mature navigation technologies used by AGVs 
in industry: with a physical path (e.g., wire/inductive guidance, optical 
line guidance and magnetic tape guidance) and with a virtual path (e.g., 
laser based, motion capture, inertial, magnetic-gyro) to be followed by 
the AGV during the operations of transportation. For maximum flexi-
bility and reliability, on-board situational awareness sensors should be 
used. Radiation shielding is impractical due to the weight penalty it 
would impose on a mobile robot, so radiation tolerant sensor systems 
must be developed. Even these radiation-hardened sensors will even-
tually fail, so combining the data from multiple different technologies is 
recommended to ensure redundancy. 

Sensing technologies is a changing world, mature sensors are getting 
more sophisticated and new technologies are arising all the time. This is 
true in particular for the sensing technologies related to virtual paths. 
These enable operational scenarios where little to no intervention is 
required, and the technology can even be used beyond just simple path 
following. 

This work is mainly focused on comparing three different technolo-
gies with particular interest in the robotics field at the moment and with 
potential advantages for nuclear facilities. These technologies are based 
on 1) image and depth cameras, 2) LIDAR systems and 3) mmWave 
radars. Other groups have investigated and compared the performance 
of remote sensors - for a general overview, see [9]. For a review focused 
on industrial applications of these technologies, see [10]. It is a common 

approach to combine more than one remote sensing technology (see 
[11] for a LIDAR-depth camera example and [12] for LIDAR-radar), but 
to our knowledge no other paper has evaluated the use of all three of 
these technologies in a nuclear remote maintenance context. In addition, 
we have the focus of making the results intuitively understandable for 
Fusion researchers working outside Remote Maintenance. 

The remainder of the paper is organized as follows. Section 2 pre-
sents the justification for why remote sensing is needed in Nuclear fa-
cilities. Section 3 provides explanations for how the sensing technologies 
in question work. Section 4 compares the performance and environ-
mental sensitivity of the sensor technologies. Section 5 presents the 
comparison tests carried out for this paper. Finally, Section 6 concludes 
the paper with relevant remarks and areas of interest for further work. 

2. Remote sensing needs in nuclear facilities 

Remote sensing is concerned with the perception of the surrounding 
environment by sensors installed on the mobile platform (onboard 
sensors) or installed in the environment (offboard sensors). The most 
commonly used approach is based on onboard sensors, such as in in-
dustries, where the AGV carry the required internal sensors (to measure 
internal signals) and external sensors (to measure environmental values) 
onboard [8]. In some configurations, additional elements can be 
installed in the scenario environment to improve the performance of the 
onboard sensors. These elements are normally passive, such as beacons 
or reflective markers used for optical devices, (detailed later in Section 
3). No matter where the sensors are installed, these devices perform 
acquisitions of physical quantities present in the scenario, and translate 
them into electrical signals that are sent to a central processing unit 
(CPU). The CPU can be installed on the mobile platform or in a remote 
control room, outside of the operation area where human being are not 
allowed, often referred to as the Red Zone. 

The electrical signals collected by the sensors comprises the remote 
sensing of the surrounding scenario, i.e., the sensor data, that can be 
used for different purposes. The sensor data is characterized by the type 
of information acquired, accuracy, precision, resolution, frequency of 
acquisition, time of response, etc. Consequently, each sensor must be 
allocated to specific tasks according to its specifications. 

Once the sensor data reaches the CPU, the CPU will i) compute the 
data to take decisions in real time, and ii) send the data with or without 
pre-processing such as compression, to a remote control room for 
different purposes. This configuration is similar to industrial facilities, 
however the remote sensing can be extended to offboard sensors, i.e., 
sensors installed on the building [13] which send the data directly to a 

Fig. 1. The cask and plug remote handling system of ITER (left image) and the design proposed for the ex-vessel transfer cask for DEMO (right image), [2]. This 
system handles ex-vessel transportation of, amongst other things, activated material extracted from the reactor. 
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control room. The data acquired by different types of onboard and off-
board sensors must satisfy the following sensing needs in particular for 
mobile platforms:  

• must run in autonomous configuration by means of an on-board 
control system under monitoring of the supervisory control system;  

• must follow predefined computed trajectories and avoid collision 
with other equipment to prevent damage [14];  

• must provide localization in the scenario, with a pose (position and 
orientation) estimation, identifying the level of confidence[13] [15];  

• must provide alignment and feedback during docking;  
• must provide information required to feed a Digital Twin system to 

simulate all the RM system to optimize logistics procedures and 
mitigate the risks of failure; and  

• must provide support for remote and rescue operation, when and 
where necessary. 

The sensing technologies used to satisfy the needs presented above, 
in particular the offboard sensors, can also be applied to other purposes 
beyond the mobile platform. For instance, they can be used to supervise 
static robotic manipulators, to perform inspections in the scenario and to 
perform surveillance of unexpected issues, such as leakage detection. 

3. Three key sensing technologies 

In this section, we introduce three key types of sensing technologies 
which are often used for mobile robot navigation in the robotics field at 
the moment. Each technology is illustrated by a Commercial off-the- 
shelf (COTS) sensor, as depicted in Fig. 2c. The key types of sensing 
technologies are:  

1. Colour-depth/RGB-D cameras such as the Microsoft Kinect, Intel 
RealSense (Fig. 2a) and similar devices  

2. LIDAR (Light Detection And Ranging) such as the VLP-16 (Fig. 2b)  
3. Millimetre-Wave RADAR such as the TI AWR 1443 (Fig. 2c) 

3.1. Colour-depth cameras 

Colour-depth cameras, also referred to as RGB-D cameras, are well 
established for use in mobile robotics applications. They are made up of 
two main components: 1) a standard digital camera capturing RGB-data 
and 2) a projector-sensor system capturing depth data. This depth sys-
tem can function in different ways, one of which is projecting a grid of 
structured light in a non-visible spectrum onto a scene, and then inter-
pret the distortions of this grid/pattern to determine the distance to - and 
shape of - any object which is in front of it. This is the reason RGB-D 
cameras are sometimes referred to as Structured Light Cameras. This 
data is then combined with the feed from a standard digital camera to 
produce a coloured 3D point cloud. The technology is affordable, 

lightweight, requires low power and it is quite mature. However, one 
major drawback with this technology is the short range of the depth 
sensor – it relies on a light projection and the effective range is between 
1 and 8  m, typically no more than 10 m. 

For a comprehensive review of the use of these sensors in robotics, 
see, for instance, [16]. In addition, a first study of applying colour-depth 
cameras was performed in 2013 regarding the localization of Cask and 
Plug Remote Handling System in ITER using multiple video cameras for 
motion Capture [14]. 

3.2. LIDAR 

LIDAR sensors work by utilising one or more laser distance mea-
surement sensor(s) to bounce a laser beam off of surrounding objects to 
rapidly scan a scene, sometimes in a focused area and sometimes by 
scanning, i.e., rotating the laser emitter and receiver around an interval 
angle (e.g. full 360 degrees) and varying the angle of the internal dis-
tance measurement sensor. LIDAR sensing is very mature technology (in 
use since the late 80s) and is often used in the automotive and industrial 
sectors to measure distances and provide situational awareness. 

Several approaches have been developed considering the LIDAR 
sensors as onboard sensors. However, motivated by the acute charac-
teristics of transported loads, the authors have previously investigated 
the use of laser range finders as off-board sensors for mobile robotic 
vehicle localization in ITER ex-vessel (see [13] and [15]). In addition, 
we have also tested LIDAR scanners for use as on-board sensors inside 
the Joint European Torus tokamak during its 2016-17 shutdown (see 
[17] and [18]). This work combined sequential 2D LIDAR scans with a 
digital RGB camera data to create a coloured point cloud. 

3.3. Millimetre-Wave RADAR 

The millimetre-Wave RADAR works similarly to more traditional 
RADAR technology in that electromagnetic signals are sent out from an 
antenna and bounced off of obstacles, returning an echo which is 
detected. This echo is timed, and this provides a measurement of dis-
tance. More recently, this technology has been miniaturised to the point 
where the whole RADAR fits on a small circuit board with integrated 
send and receive antennas, and the way these signals are generated is 
based on a frequency modulation continuous wave (FMCW) principle 
where a chirp with rapidly changing frequency is emitted by the radar. 
Like LIDAR, it has pulsed time-of-flight and continuous-wave variants, 
including FMCW. This measures the frequencies returning from a 
continuous frequency-modulated beam rather than a pulse. The emitted 
signal is modulated with a sinusoidal or square wave with a frequency in 
the range of 10–100  Mhz. 

Sensors based on millimetre-Wave RADAR have become increasingly 
compact and well-performing during the last few years, and are 
increasingly used for obstacle detection and avoidance in the fields of 
mobile robotics and automotive sensing due to their small footprint, low 

Fig. 2. Example sensors of each type being compared; also the sensors used in Section 5 for comparison.  
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weight, lack of moving parts, and the fact that the radar signals are not 
typically affected by rain, snow or smoke. For an example of a dataset 
including radar data collected and made available for autonomous car 
research, see [19]. For an evaluation of the potential of creating navi-
gation maps using mmWave radar, see [20]. A recent development in 
the field is milliMap, a single-chip mmWave radar based indoor mapping 
system targeted towards low-visibility environments to assist in emer-
gency response [12]. This utilises the AWR1443 sensor in order to create 
a map of an indoor scenario with smoke (the same sensor which we use 
in our own experiments, see Section 5). For an illustration of the types of 
data returned by these sensors, cf. Fig. 3. 

In summary, all three sensing technologies presented above have 
potential to be used in nuclear facilities. However, their way of working, 
as well as the type of data collected by them, are considerately different 
from each other. 

The next section compares these sensing technologies in detail. 

4. Comparisons between sensing technologies 

In this section, we highlight the differences between the technologies 
introduced in Section 3 as well as the effect this has on their performance 
and durability. 

The sensing technologies are necessary in the following three sce-
narios of Nuclear Fusion facilities:  

1. In-Vessel (high rad), inspection by generating 3D reconstructions 
(ambitious, long-term)  

2. Ex-vessel (lower rad), Mobile robotics to help when navigating 
around, transporting tools, components, radioactive materials etc.  

3. Repair/Maintenance Facility etc., this will be a lot like the ex-vessel 
and more like traditional Decommissioning 

At present, none of these sensing technologies would survive a large 
radiation dose. Therefore, the comparison is mainly focused on ex-vessel 
scenarios, where the lower levels of radiation are expected. However, 
work to create radiation tolerant versions of these sensors are ongoing, 
and by investigating the complimentary nature of these technologies we 
can fully understand which technology is most appropriate for what 
application once more rugged versions become available, and how these 
technologies can best compliment each other. Besides radiation levels, 
nuclear scenarios include additional constraints not common in in-
dustries, such as residual magnetic fields, dust (especially contaminated 
dust), bad lighting conditions, as well as the restriction that human 
beings are not able to enter the area in most of the cases, even in the 
situation of equipment failure. The individual specification of each type 
of technology is important to evaluate its applicability in a nuclear 
scenario. 

Table 1 summarizes the main criteria of comparison used to evaluate 
the sensing technologies:  

• type of information gathered in the operation scenario;  
• maximum range expected in conditions of nuclear galleries;  
• data density or equivalent to resolution;  
• post-processing of data required for use;  
• the progress in radiation hardening of the sensor (gamma radiation);  
• severity to dust expected in nuclear scenarios;  
• field of view;  
• data rate or frequency;  
• measurement per second. 

In the next subsection we review the expected accuracy achievable in 
realistic scenarios with these three types of sensors, as well as the 
progress in making these three types of sensor capable of operating in 
Fusion facilities and discuss possible mitigation. 

Fig. 3. Illustration of data provided by two different types of RADAR sensor as 
well as a LIDAR. Image from [12]. 

Table 1 
Comparison of sensor features.  

Technology 
type 

RGB-D/Depth sensor LIDAR RADAR 

Sensor 
example 

Intel RealSense Velodyne VLP- 
16 

TI AWR 1443 
mmWave 

Type of 
information 

Light collection and 
projected structured 
light 

Laser signal 
bounced off 
target and 
measured 

Millimetre-Wave 
radio signals 
emitted and 
received 

Range Low High Medium 
Data density High (colour and 

depth data) 
Medium Low 

Required Post- 
processing 

Medium High Low 

Progress in 
radiation 
hardening 

Medium (RGB) Medium Low 

Sensitivity to 
dust 

High Medium Low 

Field of view 70∘ x 60∘  360∘ x 30∘  90∘ x 45∘  

Data rate Color: 1920 x 1080 
pixels, up to 60 fps 
Depth: 720 x 720 
pixels, up to 30 fps 

200MB/min 
point clouds 

several KB/min 
(adjustable 
number of 
strongest returns) 

Sampling 30 FPS 5–20 Hz 6M-12M samples 
per second  

Fig. 4. Chart showing accuracy at different distances for Kinect version 1 and 2 
[21]. Data for Intel RealSense extrapolated from official datasheet [22]. 
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4.1. Colour-depth cameras 

The Microsoft Kinect v1, released in 2011, helped to kick-start the 
usage of Colour-Depth Cameras for mobile robotics. The Kinect version 2 
was released in 2014 and uses a slightly different technology for its 
depth perception. As such, many papers have investigated the accuracy 
of one or both of these sensors, for example [21]. The range of the 
Version 1 is given as 0.7  m–6.0  m, and the range of the Version 2 is 0,8 
m–4.2  m. In [23], the authors examine the accuracy over the full range 
of both sensors. This data can be seen in Fig. 4. Other colour-depth 
cameras appeared in the market, such as the Structure Sensor 3D [24]. 
Work was done combining this camera with a radiological sensor and 
both installed on a COTS UAV for 3D reconstruction of a scenario and 
radiological hotspots detection and localization, [25]. The initial version 
of this sensor only included depth and greyscale images. The most recent 
version also included colour. One of the most popular colour-depth 
camera at the moment is the Intel RealSense, which has a range up to 
10m, an error rate of 2% of distance (according to the manufacturer), 
and provides high resolution coloured images. The accuracy of the most 
used cameras (Kinect versions 1 and 2 and RealSense) is plotted in Fig. 4. 

Since colour-depth cameras are effectively made up of two separate 
sensors which are combined, both parts (RGB and Depth) have to be 
radiation hardened. Work carried out for ITER Remote Maintenance has 
suggested digital CMOS cameras could be developed with several MGy 
of lifetime tolerance [26], demonstrating the feasibility of designing a 
CMOS RGB camera-on-a-chip with a lifetime tolerance above 6 MGy. 
This leaves the Depth sensor portion and the on-board processing CPU of 
the sensor needing radiation hardening. These components remains the 
biggest challenge for utilising this type of sensor in a nuclear 
environment. 

4.2. LIDAR 

LIDAR sensors operate over a large range, and unlike Colour-Depth 
cameras, the distance error does not vary appreciably over this range. 
For example, the accuracy of the VLP-16 has been reported to be +-2 cm 
over most of its 100  m range [9]. Indeed, onboard LIDAR systems has 

been demonstrated to be capable of localising a mobile robot in oil-gas 
environment, with 1–2  cm accuracy [27]. In another piece of work, a 
co-located LIDAR and Camera both implemented in the same hardware 
achieved a resolution of 3.5cm over a 5m range when being used for 
AGV navigation [28]. 

Steps are also being taken to improve the tolerance of LIDAR scan-
ners. LIDAR scanner components such as Time-to-Digital converters 
have been created with a radiation tolerance of 5 MGy [29], and 
Time-to-Digital converters which can be used for LIDAR receivers have 
been created with 1 MGy radiation tolerance [30]. While the achievable 
radiation tolerance levels for a full LIDAR system are not yet known, this 
raises the real possibility that such sensors could become available for 
high-radiation environments. Commercial off the shelf LIDAR sensors 
have also been radiation tested, and in one test the STMicroelectronics 
VL53L0X LIDAR mudule was tested to 5.8 kGy without issue, once the 
on-board DC voltage regulator was replaced with an external supply 
[31]. 

4.3. MmmWave radar 

Though FMCW radars are very compact and versatile, extracting 
useful location and velocity data from the raw signals requires a fair bit 
of processing. This is normally done on-board the device itself and so 
does not need to concern the user, but this does limit the performance 
compared to other types of radar [32]. 

Radar sensors have other problems not faced by lasers or cameras. 
The beams are less focused, allowing for coverage of a wide area in a 
single pulse, but making spatial accuracy poor. Systems with multiple 
antennas, or a more focused steered beam, can help mitigate this. 
Regarding depth accuracy, phase evaluation algorithms have been 
developed which enable a range accuracy of within about 5 m over a 
measurement range of at least 0.035 to 2 m [33] [34]. This shows the 
achievable accuracy in a laboratory setting and the promise of the 
technology in theory. 

In real-world settings using portable devices, the accuracy is much 
lower, and there is a limit on how well different targets can be distin-
guished from each other. The authors in [35] found a minimum distin-
guishable range difference of 0.3m, below which two targets could not 
be separated and appeared as a single radar ”peak”. 

In summary, mmWave radar accuracy performance can be difficult 
to quantify. On one hand, extremely impressive performance using a 
custom 80 MHz radar has been achieved in the lab but on the other, real- 
world performance is still a challenge. 

The sensing element on the radar (antenna) is inherently rad-hard 
since it is just a piece of metal, though the on-board processing 
required is a hindrance in terms of making the sensor work in a high- 
radiation environment. One potential option would be to place the de-
vice in a shielded box with only the antenna on the outside of this box - 
this is a solution which the radar is much better suited for than the other 
sensors evaluated here. 

4.4. Combining sensor data 

The technologies described in Section 3 all provide reasonably reli-
able distance measurements in indoor or industrial environments. 
However, the way the data is collected and processed is very different, 
leading to a range of different strengths and weaknesses for each sensor. 
This means that often, combining two or more differing types of sensor 
can produce a more accurate or otherwise robust measurement value 
than only using one single sensor would allow. 

Combining the output from several complimentary sensors is 
certainly nothing new. There is a range of publications available de-
tailing the efforts made by other researches in combining these sensor 
technologies, both with each other and occasionally with other types of 
sensor. For example [9], lists and compares performance of different 
LIDAR scanners and colour-depth cameras based on Time-of-Flight 

Fig. 5. Three-sensor setup used to perform the experiments.  
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methods. In[11], combined LIDAR and RGB-D data enables navigation 
around uneven indoor environments. The authors of [36]combined 
radar odometry as well as Visual Odometry, and found that radar per-
forms better on flat featureless areas such as well, whereas visual sensors 
perform better in cluttered environments. In [37],it was found that 
mapping using both LIDAR and RGB-D point clouds combines the ben-
efits of LIDAR for measurement accuracy and RGB-D for feature 
extraction. In [38], a mm-wave portable scanner concept is combined 
with a depth camera for people scanning. Thedata is merged to show 
both the external layer of the object (global point cloud) and the second 
layer related to global reflectivity. 

Since all sensors have benefits and drawbacks, it is likely the best 
solution will come from deploying a range of different sensors based on 
different principles in order to minimise the effect of any one techno-
logical failure or issue causing catastrophic results. 

5. Experiments 

In order to further explain and highlight the differences between the 
3 technologies which this paper focuses on, we designed an experiment 
which combined all three on a single platform. In this, our goal was not 
to achieve an especially high level of accuracy, but to produce a basic 

Fig. 6. Indoor test scenario. The top image is facing the direction of movement during the trial. The bottom image shows the opposite view.  

Fig. 7. A single frame from each one of the sensors.  
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demonstration of what can be done with currently available off-the-shelf 
sensors which can be obtained by most researchers, and to present the 
results in a way which allows non-specialists to get an intuitive under-
standing of the differences between the data which each of these types of 
sensor produces. 

We selected the following sensors, since they are commonly used for 
research and reasonably priced compared to other sensors of their type:  

• Colour-Depth Camera: Intel RealSense d435  
• LIDAR: Velodyne VLP-16  
• mmWave radar: TI mmWave Demo AWR 1443 BOOST 

For photographs of these sensors, see Fig. 2. 

5.1. Experimental setup 

In Fig. 5, one can see the setup of the three sensors. All the sensors 
were secured on an aluminium case, which enclosed the power source 
and CPU. This case was designed to be robust enough to secure heavy 
sensors such as the LIDAR, even on rough terrain. 

During the experiment, the setup was carried by a person at waist 
height (1m), but the apparatus can also be transported by ground ve-
hicles or even a drone. The colour-depth camera and the radar are facing 
forward and as such the person carrying the case does not compromise 
the collected samples. On the other hand, the LIDAR collects information 
all around 360 degrees, therefore all points at short range (<1m) were 

removed from the dataset. 
The LIDAR was powered directly by a 3S Lipo battery (12V), while 

the radar was powered by a 12V DC/5V DC power converter. The CPU in 
use was an Nvidia Jetson Nano, powered by the same DC/DC unit. The 
colour-depth camera was powered via USB from the Nano. 

The Jetson runs Ubuntu 18.04 and had ROS Melodic installed. Offical 
ROS Packages for all three sensors were installed, and nodes published 
timestamped point clouds periodically to individual topics. All samples 
were collected into ROS Bag files, and later analyzed, transformed and 
visualized using the PCL 1.8 library. The coding language used was 
C++. 

5.2. Methodology 

Since the LIDAR is the de facto standard for 3D reconstruction and it 
is known to provide the greatest precision when compared to the other 
technologies, we considered the LIDAR to be our ground-truth. 

Once the data had been collected, the second step was to reconstruct 
the 3D scenario using LIDAR data and a SLAM algorithm (ALOAM [39]). 
We have tested other methods in the past, such as LOAM and 
HDL-SLAM, but in general ALOAM is sufficient for the task of generating 
a meaningful 3D scenario, namely a thin floor plane and flat walls. Be-
sides registering LIDAR frames into a fixed referential, ALOAM also 
computes the estimated path (pose and position). 

Later, both radar and RGB-D frames were transformed (rotations and 
translation) according to their pose and position relative to the LIDAR. 

Fig. 8. Isometric like views of the data of each sensor individually – a),b) and c), and all data merged – d).  
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Finally, these point clouds were registered into the world fixed refer-
ential using the ALOAM generated path, and at the end saved into PCD 
files. 

5.3. Experimental results 

We show the point clouds, from one of the trials inside a university 
campus building corridor. Multiple trials were performed along the 
same corridor, all with very similar results. This is a representative 

Fig. 9. Topview of the corridor, selecting different sensor datasets.  

Fig. 10. Detail of a metal engine on the corridor, shown using different sensor datasets.  
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environment since large corridors are a common feature in most nuclear 
installations, including nuclear fusion installations [14]. This location 
encompasses multiple metal objects namely decorative airplane engines, 
and is surrounded by metal doors and windows. Other objects such as 
wood benches are also present. These features can be seen in Fig. 6. The 
top photograph was taken close by the assumed origin of the (world) 
fixed referential. 

The output from each sensor provides a very different set of infor-
mation about the scene. As a matter of reference, in this particular trial 
we collected data for 49s, overall producing 1GB of compressed data 
(ROS lz4 compression). While the LIDAR and RGB-D camera generated 
around 1.5 million points, the radar output produced only around 18k 
points. Overall, RGB-D data utilizes more space than the LIDAR since 
RGB color is also stored. 

In Fig. 7, one can compare the major differences of the datasets of a 
single frame, where we can define a frame as a single point cloud we 
collect at a given time. The LIDAR has a great range and detail; it is able 
to detect the end of the corridor event at the start. The Radar produces 
only data close to the sensor which is hard to comprehend without the 
LIDAR as a reference. RGB-D generates a detailed view of the nearby 
area, but with a limited field of view, barely reaching both walls at the 
same time. 

When considering all data collected while moving the sensing plat-
form along the corridor, we obtain a better picture of the sensors per-
formance. In Fig. 8, we show an isometric view of the corridor and in 
Fig. 9 we can see the same data from a top-down view. The pink line 
represents the motion along the corridor, starting at the top-right corner 
and ending at the bottom-left corner of the view. It is present in all views 
for orientation of the reader. The point clouds from LIDAR and RGB-D 
provide plenty of 3D detail. It is clear that the LIDAR provides supe-
rior performance regarding precision and better coverage (higher FoV). 
RGB-D is able to grasp the true colors of the environment as well as a 
good 3D structure, but only provides data at a very short range. The 
radar dataset is noisier, but nevertheless able to detect major features 
such as the floor directly in front to the sensor, the walls and windows 
metal frames, and lastly the two big airplane engines on site. In addition, 
the fact that the radar dataset is very sparse can provide an advantage in 
that less processing is required to handle the data. 

In Fig. 10, one can see in detail one of the airplane engines, namely 
the one shown in the top photograph of Fig. 6. It is clear that all sensors 
can see it. 

Note that while the LIDAR has 360∘ FoV, the other sensors had to be 
facing such features to guarantee they were not missed. That is the 
reason why the bottom-left view of Fig. 9 (a) and Fig. 9 (c) are missing 
information. The LIDAR also missed some floor in the beginning and at 
the end of the path, due to its vertical FoV limitations (see Fig. 9 (b)). 

6. Conclusion 

The challenge of how to provide adequate remote sensing in nuclear 
environments such as Fusion remote maintenance, decommissioning or 
other nuclear applications will not be solved by a single technology. For 
reasons of redundancy and robustness to unexpected errors, it is desir-
able to utilise several sensors based on differing sensing modalities and 
implementation technologies. This will ensure that no single techno-
logical weakness or situation will cause the whole system to fail. 

Our experiments highlight the varying amounts of data provided 
from different sensors in order to extract required information for a task 
such as obstacle avoidance: the radar information displayed in Fig. 9 (c) 
can be used to avoid obstacles with a much smaller number of points 
being processed by the system. However, the low data density provides a 
less comprehensive view of the environment, limiting the capabilities to 
produce a robust map and contextual information such as clear object 
shapes. Color/RGB-D sensors also provides high data density and high 
levels of environmental awareness, but are hampered by the require-
ment for consistent lighting levels for quality RGB images as well as the 

short range of their depth camera elements. This highlights the value of 
utilising multiple sensors for remote sensing tasks. 

The results from our experiments combining LIDAR and radar data 
can be seen in Fig. 9 (d). This is a clear example of the different data 
densities highlighted in Table 1. 

It was also our goal to provide an intuitive understanding of the 
differences (including pros and con) between the types of data provided 
by these different sensor technologies to researchers in the Fusion field 
who may not be knowledgeable about robotics. We believe the sensor 
data figures provided accomplishes this task, since they provide a clear 
indication as to how a particular sensor sees its surroundings. 

The most sensible part of each one of the three technologies pre-
sented herein, are exposed to radiation. Therefore, none of these tech-
nologies would survive a large radiation dose. The LIDAR is probably the 
best candidate technology to protect the sensor by a set of mirrors. The 
same approach can be used for the cameras, but probably only for the 
RGB part and not for the depth, since the mirror glass affects the per-
formance of light project and, hence, the estimation of distances. The 
radar could have its antenna placed outside of a shielded box with the 
processing part inside, but shielding would only add a limited amount of 
lifetime unless prohibitively thick and heavy shielding is used. In sum-
mary, the expected time life of these technologies are similar. 
Combining different sensors working in parallel, rather than improve 
the quality of the data, provides the ability to understand when one of 
the sensors started to malfunctioning. A recovery operation can be 
triggered and a rescue operation is avoided, which is an important 
benefit in terms of costs and interruption during a maintenance of a 
power reactor. 

Future work will include further testing of different combinations of 
the sensor technologies presented here in differing scenarios in order to 
better characterise their performance. We could also look at the different 
types of robot expected in fusion ex-vessel and which sensor fits which 
type of robot. 
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