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This paper introduces an analytical model for the propagation of collisionless neutral particles in neutral beam 
injection (NBI) systems. The model incorporates a novel approach using composite Gaussian basis functions 
to represent non-Gaussian source distributions and extends to two-dimensional source configurations under 
orthogonal separability assumptions. The method efficiently computes particle velocity and spatial distributions 
along beam trajectories, accounting for truncation effects due to transmission losses. The model has been 
implemented as a computational module in the Minerva framework and interfaced with the ITER Integrated 
Modelling & Analysis Suite (IMAS).
A case study of the MAST Upgrade NBI system demonstrates the model’s ability to predict particle distributions 
from the source grid to the plasma cavity while accommodating detailed baffle geometries and calculating 
transmission factors. Comparisons reveal that reduced Gaussian basis representations can achieve an order-of
magnitude reduction in computational time with negligible impact on accuracy. The proposed model provides a 
fast and rigorous alternative to Monte Carlo simulations, enabling enhanced diagnostic modelling and efficient 
integration with Bayesian inference frameworks.

1. Introduction

High-energy neutral beam systems play a vital role in the cur
rent generation of tokamak and stellarator magnetic confinement de
vices, serving both as a key mechanism for plasma heating and current 
drive [1] and as a valuable diagnostic tool for plasma quantities [2,3]. In 
this paper we consider the propagation of a collisionless particle beam 
distribution as a precursor to its modification by collisions with popula
tions of neutrals and ions. Here the challenge lies in achieving a fast and 
accurate analysis involving integrals over 6-dimensional phase space 
(i.e. three spatial and three in velocity) whilst simultaneously includ
ing details of a realistic geometrical configuration.

High accuracy codes generally use Monte-Carlo techniques to evolve 
trajectories of individual particles, for example FREYA [4], NFREYA [5], 
TRANSP [6], NUBEAM [7], MSESIM [8], BBNBI [9] and FIDASIM [10]. 
These codes couple the collisionless treatment of the high energy neu
trals with collisional models of the beam deposition in the plasma cavity. 
The most significant issue with these codes is that execution time tends 
to be long as a large number of particles need to be followed to re
duce statistical fluctuations. However, through simplifications in the 
beam formulation, codes such as PENCIL [11] and SUPERCODE [12] 
are capable of generating faster approximating solutions. The SINBAD 
code [13] offers improvements over these earlier first-generation ap
proximate methods. Based on a so-called narrow beam model the ap
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proach in SINBAD assumes the beam source is planar with a small 
cross-sectional area compared to the length of the beam-line. Results 
from SINBAD provide reasonable matches to FREYA, TRANSP and to 
measured NBI data [13]. The NEMO code [14] is a modernised version 
of the SINBAD code enabling it to be included in the CRONOS integrated 
modelling suite [15] and to be used by the European Integrated Toka
mak Modelling Task Force (ITM-TF) [16]. The NEBULA code [17] also 
uses the narrow beam model proposed by SINBAD. A similar but not iden
tical approach has been recently described by Bannmann et al. [18,19] 
to model neutral beam injection and halo formation using a set of Gaus
sian pencil (Gausscil) beams, formed by dividing the source grid into 
a set of rectangular areas. The results of the model are shown to be in 
good agreement with FIDASIM.

Whilst earlier approaches (for example PENCIL) treated the beam 
as a single entity, later models provided the capability of sub-dividing 
the beam and summing the contributions; it was found that the number 
of subdivided beams required is less than the total number of Positive 
Ion Neutral Injector (PINI) beamlets and as low as 2x5 [18] which is 
an advantage for computational speed. The main hypothesis for the ap
plication of these simplified approaches is that the plasma conditions 
are sufficiently homogeneous across the constituent beamlets in planes 
parallel to the beam source; this sets a condition on the minimum num
ber of beamlets and ultimately limits the applicability for using a non 
Monte-Carlo method.
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Fig. 1. Schematic of the neutral beam system on MAST Upgrade illustrating the 
salient features of a generic system. (figure is based on [20]).

Fig. 1 shows a schematic of the beam system on MAST Upgrade. The 
first stage is the generation of ions. These are subsequently accelerated, 
shaped and focussed via an electric field generated by a cascade of grids 
held at fixed potentials. The final grid is at tokamak (or device) earth po
tential and particles emerge into a neutralisation chamber. Following 
this, remaining ions are diverted off to a beam dump with an applied 
magnetic field, whilst the neutral particles stream down a duct into the 
plasma (tokamak or stellarator) cavity. During the final transit a propor
tion of the neutral particles may be reionised due to interactions with the 
background neutral gas. Furthermore, the presence of baffles or other 
fixed components may scrape off part of the streaming neutral particle 
beam; these are collectively referred to as transmission losses.

The usual approach for computing the neutral beam distribution ar
riving into the plasma cavity is to start with the flux of fast ions exiting 
the final earthed acceleration grid into the neutraliser chamber. The 
salient features relevant for determining the downstream beam distri
bution are as follows:

1. The velocity distribution of the neutralised ions in the neutraliser cham

ber matches the distribution of the source ions exiting the final accelera

tor grid. Evidence to support this is contained in a recently published 
computational model for space charge neutralisation of positive ion 
beams, Holmes and McAdams [21] who show that for a Deuterium 
beam of 120 kV, 60 A the role of space charge forces is inconse
quential in the beam transport at least until the bend magnet is 
reached. Similar evidence is available for ITER negative ion beams 
from simulations using the OPERA code [22].

2. The neutraliser efficiency is known. The overall neutraliser efficiency 
is generally obtained by a combination of measurements taken 
within the beamline during dedicated calibration exercises and sim
ulation [23--25]. Typical values on JET for deuterium injection 
range from 30-60% depending on precise details of beam species 
mix produced by the ion source and acceleration voltage.

3. The transmission factor is known. The beam transmission factor ac
counts for ``baffle losses'': particles lost by interactions with struc
tures at the edge of the beam. The transmission factor cannot be 
obtained by direct measurement and thus is estimated. On JET, this 
is achieved by combining neutral beam test bed data with ray trac
ing simulations giving a value of 75% [25]. This factor therefore 
accounts for one of the largest uncertainties in the overall beam 
power delivered to the plasma which, combined with other uncer
tainties results in a total uncertainty of 10% in power delivered 
to JET. The PINI simulator code [26] takes full account of baffle 
losses as do other codes, for example BBNBI which has been used 
to model JET and AUG tokamaks [9]. Another factor included in the 
PINI simulator code is transmission losses due to reionisation of the 
beam with the background gas in the duct between the neutraliser 
chamber and the tokamak plasma cavity.

4. Spatial variations in the beam flux and velocity divergence on the beam 
source grid are known. For the JET PINI ion source design, detailed 
measurements of the ion-source non-uniformity were made on the 

NB test-bed(NBTB) [27--29]. Measurements of the beam profile 
with high spatial resolution and accurate electrical measurements 
at the PINI accelerator grids were then combined with detailed 
modelling to infer the beam divergence characteristics. For each 
JET PINI, following initial construction and again after any sig
nificant engineering work on the PINI, a detailed characterisation 
exercise was executed on the NBTB recording the beam profile over 
a wide range of voltages and perveance values. (These characteri
sations are kept as internal reports and are not generally available 
to the public). Lacking dedicated test-bed measurements as is the 
case for JET PINIs, the MAST Upgrade beams rely on the fact that 
the construction of its PINIs is very similar to the JET PINIs.

In this paper we describe a new analytical approach to calculate 
the propagation of a probability density function (PDF) of collisionless 
neutral particles with a Maxwellian velocity distribution and arbitrary 
spatial distribution emitted from a surface towards a fixed focus. In com
parison with previous approaches based on the narrow beam model of 
SINBAD or the Gaussian pencil beams of Bannmann, the methodology 
presented in this paper is mathematically rigorous relating the PDF at 
the source with the PDF at any point beyond the source. This is achieved 
by a change of variables enabling a 1:1 mapping of particles between 
the source and points beyond. The model takes into account transmis
sion losses, expressed as a truncation in the velocity component of the 
PDF. An outcome of the model is that the PDF at any point both on the 
source or elsewhere can be expressed as the product of two PDFs for the 
spatial and velocity distributions. Furthermore, contrary to the assump
tion of constant velocity variance employed in other simplified models, 
the velocity variance changes with distance from the source.

Section 2 considers the case of a spatially truncated 1-D source with 
normal distribution, and with a normally distributed angular velocity 
(pitch). Expressions for the full distribution at a fixed normal distance 
from the source are expressed as the product of two constituent dis
tributions in pitch and in spatial position. Sections 3 compares results 
from the new analytic model with the model used in [18] and from 1-D 
ray-tracing calculations. Section 4 includes the effects of baffle losses on 
the particle distribution and obtains the transmission factor. Section 5
considers non-Gaussian source distributions. This is accomplished by 
expressing the distribution in terms of a set of overlapping Gaussian 
distributions whose magnitude are computed such that on aggregate 
they match the source distribution. Section 6 extends the model to a 
2-D source distribution. Finally section 7 presents results of the model 
applied to the MAST Upgrade tokamak.

2. 1-D source distribution

This section derives an analytical expression for the particle distri
bution at an arbitrary point ahead of a distributed particle source. Fig. 2
illustrates the geometry, aligned with the right-handed Cartesian coor
dinates 𝑢,𝑣,𝑤 and unit vectors 𝑢̂, 𝑣̂, 𝑤̂. The particle source lies on the 
vertical line through points 𝑂 and 𝑄 extending from 𝑞𝑚𝑖𝑛 to 𝑞𝑚𝑎𝑥 with 
peak density at 𝑂 and is directed towards a focal point 𝐹 . The dashed
dotted line through 𝑂 and 𝐹 represents the locus of peak density. While 
most of the beam is constrained within the dashed lines, velocity diver
gence causes some particles to deviate beyond these boundaries. Point 
𝑃 is situated on line 𝑋 −𝑋, parallel to the source. The mapping 𝑄→ 𝑃

represents particles with pitch angle 𝜃 emitted from 𝑄 and arriving at 
𝑃 on line 𝑋 −𝑋.

The positions of points 𝑃 , 𝑄 and 𝐹 are defined as follows:

𝑃 =𝑂 + 𝑝𝑢𝑢̂+ 𝑝𝑣𝑣̂ (1)

𝑄 =𝑂 + 𝑞𝑣̂ (2)

𝐹 =𝑂 + 𝑓𝑢𝑢̂+ 𝑓𝑣𝑣̂ (3)
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Fig. 2. Configuration of problem with a 1-D source. The point B is a single baffle 
point creating an obstruction (see section 4).

The PDF of particles at the source based on position 𝑞 and pitch angle 
𝜃 is defined as:

𝑔(𝑞, 𝜃) =

⎧⎪⎪⎨⎪⎪⎩
𝐴 
𝑛2

exp

(
− 𝑞2

2𝜎2
−

(𝜃 − 𝜃𝜇)2

2𝛿2

)
if 𝑞min ≤ 𝑞 ≤ 𝑞max and − 𝜋

2 ≤ 𝜃 ≤ 𝜋

2 
0 otherwise

(4)

where 𝜃𝜇 denotes the counter-clockwise angle between the normal to 
the source (𝑢̂) and 𝑄𝐹 , while 𝜃 is the counter-clockwise angle between 
𝑢̂ and 𝑄𝑃 . The normalisation constant 𝐴 and the terms 𝑛1, 𝑛2 are given 
by:

𝐴 = 1 
2𝜋𝜎𝛿𝑛1

(5)

𝑛1 =Φ
( 𝑞𝑚𝑎𝑥

𝜎

)
−Φ

( 𝑞𝑚𝑖𝑛
𝜎

)
(6)

𝑛2 =Φ
(
𝜋∕2 − 𝜃𝜇

𝛿

)
−Φ

(−𝜋∕2 − 𝜃𝜇

𝛿

)
(7)

where Φ(𝑥) is the cumulative distribution function (CDF) of the standard 
normal distribution:

Φ(𝑥) =1
2

(
1 + erf(𝑥∕

√
2)
)

(8)

with erf(⋅) denoting the error function.
The PDF 𝑔(𝑞, 𝜃) characterises the source distribution as a spatially 

truncated normal distribution centred about the point 𝑂 and truncated 
normal velocity distribution directed towards focus 𝐹 . In the next sec
tion we derive expressions to map this distribution to the line X-X 
which is parallel to the source and located a distance 𝑝𝑢 from it, i.e. 
𝑔(𝑞, 𝜃)→ 𝑔𝛼(𝑝𝑣, 𝜃). To facilitate this mapping, we derive expressions re
lating the coordinates and angles involved. By computing the scalar and 
cross products of vectors 𝐹𝑄 and 𝑃𝑄 with 𝑢̂ we obtain:

sin𝜃 =𝑃 −𝑄|𝑃𝑄| ⋅ 𝑣̂ (9)

cos𝜃 =𝑃 −𝑄|𝑃𝑄| ⋅ 𝑢̂ (10)

sin𝜃𝜇 =
𝐹 −𝑄|𝐹𝑄| ⋅ 𝑣̂ (11)

cos𝜃𝜇 =
𝐹 −𝑄|𝐹𝑄| ⋅ 𝑢̂ (12)

Combining these relations, we find:

(𝑃 −𝑄) ⋅ 𝑢̂ tan𝜃 =(𝑃 −𝑄) ⋅ 𝑣̂ (13)

(𝐹 −𝑄) ⋅ 𝑢̂ tan𝜃𝜇 =(𝐹 −𝑄) ⋅ 𝑣̂ (14)

Substituting equations (1), (2) and (3) for 𝑃 , 𝑄 and 𝐹 respectively 
yields:

𝑞 =− 𝑝𝑢 tan𝜃 + 𝑝𝑣 (15)

tan𝜃𝜇 =
𝑓𝑣 − 𝑞

𝑓𝑢
(16)

In the limit 𝑓𝑢 ≫ 𝑓𝑣 − 𝑞, the small-angle approximation tan𝜃𝜇 ∼ 𝜃𝜇
holds. Furthermore equation (4) indicates that significant values of 
𝑔(𝑞, 𝜃, 𝜃𝜇) occur when (𝜃 − 𝜃𝜇)∕𝛿 ∼ 1, implying 𝜃 ∼ 𝛿+𝜃𝜇 if 𝛿 ≪ 1. Com
bining these approximations yields tan 𝜃 ∼ 𝜃. These approximations are 
satisfied in the JET and ITER neutral beamlines [30,31]. Under these 
conditions, equations (15) and (16) simplify to:

𝑞 =− 𝑝𝑢𝜃 + 𝑝𝑣 (17)

𝜃𝜇 =
𝑓𝑣 − 𝑞

𝑓𝑢
(18)

Rearranging these equations yields:

𝜃 =
𝑝𝑣 − 𝑞

𝑝𝑢
(19)

𝜃𝜇 =
𝑝𝑢𝜃 − 𝑝𝑣 + 𝑓𝑣

𝑓𝑢
(20)

The following section uses these small-angle approximations as ex
pressed in equations (17) to (20).

2.1. Transformation of PDF

In this section we obtain the mapping 𝑔(𝑞, 𝜃)→ 𝑔𝛼(𝑝𝑣, 𝜃), expressed 
in separable form as the product of two component PDFs:

𝑔𝛼(𝑝𝑣, 𝜃;𝑝𝑢) = 𝑔1(𝜃;𝑝𝑢, 𝑝𝑣)𝑔2(𝑝𝑣;𝑝𝑢) (21)

where the notation 𝑎, 𝑏; 𝑐 indicates that a PDF is a function of vari
ables {𝑎, 𝑏} and 𝑐 is an additional parameter (i.e. ∫ 𝑔𝑥(𝑎, 𝑏; 𝑐)𝑑𝑎 𝑑𝑏 = 1). 
Whereas 𝑔𝛼 describes the total mapped PDF in an arbitrary position in 
phase space, the components 𝑔1 and 𝑔2 each express distinct aspects 
of 𝑔𝛼 . The PDF 𝑔1 is the velocity distribution at a single spatial point 
(𝑝𝑢, 𝑝𝑣) and the PDF 𝑔2 is the spatial distribution evaluated on the sec
tion 𝑋 −𝑋 located at 𝑝𝑢 shown in Fig. 2. Substituting equations (17) 
and (20) into (4) to eliminate 𝑞 and 𝜃𝜇 , the PDF 𝑔𝛼 defined in equation 
(21) can be expressed as:

𝑔𝛼(𝑝𝑣, 𝜃;𝑝𝑢) =𝐴𝐽 exp(−𝑎𝜃2 − 𝑏𝜃 − 𝑐) (22)

where

𝑎 =
𝑝2
𝑢
𝑓 2
𝑢
𝛿2 + 𝜎2(𝑓𝑢 − 𝑝𝑢)2

2𝜎2𝑓 2
𝑢
𝛿2

(23)

𝑏 =−
𝑝𝑢𝑝𝑣𝑓

2
𝑢
𝛿2 + 𝜎2(𝑝𝑢 − 𝑓𝑢)(𝑝𝑣 − 𝑓𝑣)

𝜎2𝑓 2
𝑢
𝛿2

(24)

𝑐 =
𝑝2
𝑣
𝑓 2
𝑢
𝛿2 + 𝜎2(𝑓𝑣 − 𝑝𝑣)2

2𝜎2𝑓 2
𝑢
𝛿2

(25)

and

𝐽 =

|||||||||
𝜕𝑞 
𝜕𝑝𝑣

||||𝜃 𝜕𝑞 
𝜕𝜃

||||𝑝𝑣
𝜕𝜃 
𝜕𝑝𝑣

||||𝜃 𝜕𝜃

𝜕𝜃

||||𝑝𝑣
|||||||||
= 1 (26)

Computer Physics Communications 312 (2025) 109610 

3 



L. Appel 

is the Jacobian determinant accounting for the change of variable from 
{𝑞, 𝜃} to {𝑝𝑣, 𝜃}. Completing the square for 𝜃, equation (22) can be writ
ten as a product of two PDF functions as shown in equation (21) with

𝑔1(𝜃;𝑝𝑢, 𝑝𝑣) =

⎧⎪⎪⎨⎪⎪⎩
1 √

2𝜋𝜎∗𝑛2
exp

(
−
(𝜃 − 𝜇∗)2

2𝜎2∗

)
𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥

0 𝜃 < 𝜃𝑚𝑖𝑛
0 𝜃 > 𝜃𝑚𝑎𝑥

(27)

𝑔2(𝑝𝑣;𝑝𝑢) =𝐵𝑛2(𝑝𝑢, 𝑝𝑣) exp

(
−
(𝑝𝑣 − 𝜇𝑟)2

2𝜎2
𝑟

)
(28)

where

𝜇∗(𝑝𝑢, 𝑝𝑣) =
−𝑏
2𝑎 

=
ℎ𝑝𝑣(ℎ𝑝𝑢 − 𝑓𝑢) + ℎ𝑓𝑣(𝑓𝑢 − 𝑝𝑢)

𝑘 
(29)

𝜎∗(𝑝𝑢)2 =
1 
2𝑎

=
𝑓 2
𝑢
𝛿2ℎ

𝑘 
(30)

𝜇𝑟(𝑝𝑢) =
𝑓𝑣𝑝𝑢

𝑓𝑢
(31)

𝜎2
𝑟
(𝑝𝑢) = 𝜎2

(
(ℎ𝑝𝑢 − 𝑓𝑢)2

ℎ𝑓 2
𝑢

+ ℎ− 1
ℎ 

)
(32)

𝜃min(𝑝𝑢, 𝑝𝑣) =

⎧⎪⎪⎨⎪⎪⎩
tan−1

(
𝑝𝑣 − 𝑞max

𝑝𝑢

)
, 𝑝𝑢 > 0

−𝜋

2 
, 𝑝𝑢 = 0 and 𝑞min < 𝑝𝑣 < 𝑞max

0 otherwise

(33)

𝜃max(𝑝𝑢, 𝑝𝑣) =

⎧⎪⎪⎨⎪⎪⎩
tan−1

(
𝑝𝑣 − 𝑞min

𝑝𝑢

)
, 𝑝𝑢 > 0

+𝜋

2 
, 𝑝𝑢 = 0 and 𝑞min < 𝑝𝑣 < 𝑞max

0 otherwise

(34)

𝑛2(𝑝𝑢, 𝑝𝑣) = Φ
(
𝜃max − 𝜇∗

𝜎∗

)
−Φ

(
𝜃min − 𝜇∗

𝜎∗

)
(35)

𝐵(𝑝𝑢) =𝐴
√
2𝜋𝜎∗ (36)

in which

ℎ =1 +
𝛿2𝑓 2

𝑢

𝜎2
(37)

𝑘(𝑝𝑢) =(ℎ𝑝𝑢 − 𝑓𝑢)2 + (ℎ− 1)𝑓 2
𝑢

(38)

In the limits |𝑝𝑣 − 𝑞𝑚𝑖𝑛|≪ 𝑝𝑢 and |𝑝𝑣 − 𝑞𝑚𝑎𝑥|≪ 𝑝𝑢, equations (33) and 
(34) become:

𝜃𝑚𝑖𝑛(𝑝𝑢, 𝑝𝑣) ≈
𝑝𝑣 − 𝑞𝑚𝑎𝑥

𝑝𝑢
(39)

𝜃𝑚𝑎𝑥(𝑝𝑢, 𝑝𝑣) ≈
𝑝𝑣 − 𝑞𝑚𝑖𝑛

𝑝𝑢
(40)

In this limit, substituting for 𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥, 𝜇∗, the arguments of the Φ(⋅)
terms appearing in equation (35) are:
𝜃𝑚𝑖𝑛 − 𝜇∗

𝜎∗
= −

ℎ(𝑓𝑢𝑝𝑣 + 𝑓𝑣𝑝𝑢)(𝑓𝑢 − 𝑝𝑢) + 𝑘𝑞𝑚𝑎𝑥

𝜎∗𝑝𝑢𝑘 
(41)

𝜃𝑚𝑎𝑥 − 𝜇∗
𝜎∗

= −
ℎ(𝑓𝑢𝑝𝑣 + 𝑓𝑣𝑝𝑢)(𝑓𝑢 − 𝑝𝑢) + 𝑘𝑞𝑚𝑖𝑛)

𝜎∗𝑝𝑢𝑘 
(42)

When 𝑝𝑢 = 𝑓𝑢, these simplify to:

𝜃𝑚𝑖𝑛 − 𝜇 ∗
𝜎∗

||||𝑝𝑢=𝑓𝑢 =−
𝑞𝑚𝑎𝑥

𝜎∗𝑝𝑢
(43)

𝜃𝑚𝑎𝑥 − 𝜇∗
𝜎∗

||||𝑝𝑢=𝑓𝑢 =−
𝑞𝑚𝑖𝑛

𝜎∗𝑝𝑢
(44)

and 𝑛2 is independent of 𝑝𝑣.

From equations (27) to (44), we observe that by considering a fixed 
focus (𝑓𝑢, 𝑓𝑣):

1. 𝑔1(𝜃;𝑝𝑢, 𝑝𝑣) is a truncated normal distribution whereas 𝑔2(𝑝𝑣;𝑝𝑢) is 
a truncated normal distribution at 𝑝𝑢 = 0 (this is consistent with 
equation (4)) and an unbounded distribution for 𝑝𝑢 > 0.

2. The parameters of the normal distribution 𝑔1(𝜃;𝑝𝑢, 𝑝𝑣) are 𝜎∗, 𝜇∗
and 𝑛2. The parameter 𝑛2 expresses the truncation of the normal 
distribution; 𝜎∗ is independent of both 𝑝𝑣 and 𝑓𝑣, whereas for a 
given value of 𝑝𝑢, 𝜇∗ varies linearly with 𝑝𝑣. The characteristics are 
plotted in Fig. 3.
At specific limits,
(a) when 𝑝𝑢 = 0 (at the source plane), 𝜇∗ = (𝑓𝑣 − 𝑝𝑣)∕𝑓𝑢, 𝜎∗ = 𝛿

(i.e. 𝛿 is consistent with equation (4)).
(b) when 𝑝𝑢 = 𝑓𝑢 (at the focal plane), 𝜇∗ = 𝑝𝑣∕𝑓𝑢, 𝜎∗ = 𝜎∕𝑓𝑢. (i.e. 

at longer focal distances the beam becomes more collimated 
and with a reduced standard deviation in velocity.)

(c) when 𝑝𝑢 = 𝑓𝑢∕ℎ, 𝜇∗ = 𝑓𝑣∕𝑓𝑢, i.e. 𝜇∗ is independent of 𝑝𝑣; and 
𝜎∗ =

√
𝛿2 + (𝜎∕𝑓𝑢)2, increasing from 𝜎∗ = 𝛿 at 𝑝𝑢 = 0, and 

thereafter decreasing with 𝜎∗ = 0 as 𝑝𝑢 →∞.
(d) in the limit 𝑝𝑢∕𝑓𝑢 →∞, 𝜇∗ = 𝑝𝑣(1 − 𝑓𝑣) and 𝜎∗ = 0 i.e. at dis

tances well beyond the focus, the mean velocity direction varies 
linearly with 𝑝𝑣 and its variance is zero.

(e) in the limit 𝑓𝑢∕𝑝𝑢 →∞, 𝜇∗ = 𝑝𝑣(ℎ𝑓𝑣 − 1) and 𝜎∗ = 𝛿 i.e. as the 
focal point moves towards ∞ at finite distances from the source 
the mean velocity direction varies linearly and its variance is 𝛿2 .

3. The parameters of 𝑔2(𝑝𝑣;𝑝𝑢) are 𝐵, 𝑛2, 𝜇𝑟 and 𝜎𝑟. The parameter 𝐵
is a normalising factor to ensure that ∫ 𝑔2(𝑝𝑣;𝑝𝑢)𝑑𝑝𝑣 = 1. Fig. 4(a) 
plots the variation of 𝑛2; at 𝑝𝑢 = 𝑓𝑢 the variation in 𝑛2 with re
spect to 𝑝𝑣 reduces to zero and 𝑔2(𝑝𝑣;𝑝𝑢) is a normal distribution. 
Fig. 4(b) plots the variation of 𝜎𝑟. Although 𝑔2(𝑝𝑣;𝑝𝑢) is not in gen
eral a Gaussian distribution, 𝜎𝑟 provides an approximation to the 
standard deviation fit to a normal distribution.
At specific limits,
(a) when 𝑝𝑢 = 0 (at the source plane), 𝜇𝑟 = 0, 𝜎𝑟 = 𝜎 (i.e. 𝜎𝑟 is 

consistent with equation (4)).
(b) when 𝑝𝑢 = 𝑓𝑢 (at the focal plane), 𝜇𝑟 = 𝑓𝑣, and 𝜎𝑟 = 𝛿𝑓𝑢. In 

the limit |𝑝𝑣 − 𝑞𝑚𝑖𝑛|≪ 𝑝𝑢 and |𝑝𝑣 − 𝑞𝑚𝑎𝑥|≪ 𝑝𝑢, 𝑔2(𝑝𝑣;𝑝𝑢) is a 
truncated Gaussian.

(c) when 𝑝𝑢 = 𝑓𝑢∕ℎ, 𝜎2
𝑟
= ℎ𝜎2∕𝑓 2

𝑢
, 𝜇𝑟 = 𝑓𝑣.

(d) in the limit 𝑝𝑢∕𝑓𝑢 →∞, 𝜎𝑟 =∞ and
• if 𝑓𝑣 = 0 then 𝜇𝑟 = 0
• if 𝑓𝑣 > 0 then 𝜇𝑟 = +∞
• if 𝑓𝑣 < 0 then 𝜇𝑟 = −∞
i.e. at distances well beyond the focus, the radial variance tends 
to ∞ whereas its mean value dependence on whether 𝑓𝑣 is non
zero, and also its sign if non-zero.

(e) in the limit 𝑓𝑢∕𝑝𝑢 →∞, 𝜇𝑟 = 0 and 𝜎𝑟 = 𝜎 i.e. as the focal point 
moves towards ∞ at finite distances from the source the radial 
variance tends to 𝜎 and its mean velocity is zero.

4. The 𝑝𝑢-value where 𝜎𝑟 and 𝜎∗ reach their extreme points and where 
𝜇∗ is independent of 𝑝𝑣 are all coincident at 𝑝𝑢 = 𝑓𝑢∕ℎ. Since in 
general ℎ > 1 (see equation (37)) this position always lies between 
the beam source (𝑝𝑢 = 0) and the focal plane (𝑝𝑢 = 𝑓𝑢).

3. Model validation

In this section we compare the results of the 1-D model described in 
section 2 with a 1-D ray-tracing model and with the Bannmann model 
for a single Gausscil Beam. The parameters are based on the neutral 
beam assembly installed on MAST Upgrade [31] that has a beam half
width=82.5 mm, focus = 12 m, and beam divergence of 0.6 degrees. 
The line joining the mid-point of the source and focal point is taken 
to be perpendicular to the source. Specific details of the models are as 
follows:
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Fig. 3. (a) Variation of 𝜇∗ with 𝑝𝑢 and 𝑝𝑣. (b) Variation of 𝜎∗ with 𝑝𝑢. The lines shown are at 𝑝𝑢 = 0 (orange line) and 𝑝𝑢 = 𝑓𝑢 (magenta line). The red line is at the 
value of 𝑝𝑢 where 𝜇∗ is independent of 𝑝𝑣, 𝜎∗ reaches its maximum value and 𝜎𝑟 (see Fig. 4b) reaches it minimum value. (Beam parameters are 𝜎 = 82.5 mm, 𝛿 = 0.6
degrees, 𝑂 = (0,0), 𝐹 = (12𝑚,0), 𝑞𝑚𝑖𝑛 = −𝜎, 𝑞𝑚𝑎𝑥 = +𝜎). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. (a) Variation of 𝑛2 with 𝑝𝑢 and 𝑝𝑣. (b) Variation of 𝜎𝑟 with 𝑝𝑢. The lines shown are at 𝑝𝑢 = 0 (orange line) and 𝑝𝑢 = 𝑓𝑢 (magenta line). The red line is at the 
value of 𝑝𝑢 where both 𝜇∗ is constant and 𝜎∗ reaches its minimum value. (Beam parameters are 𝜎 = 82.5 mm, 𝛿 = 0.6 degrees, 𝑂 = (0,0), 𝐹 = (12𝑚,0), 𝑞𝑚𝑖𝑛 = −𝜎, 
𝑞𝑚𝑎𝑥 = +𝜎).

Monte-Carlo model

For the purpose of validating the model described in section 2, a 1-D 
ray tracing code was written in Python. The geometry is as shown in 
Fig. 2. A set of rays (𝑛 = 108), spatially distributed according to a trun
cated normal distribution about 𝑞 = 0 with standard deviation 82.5 mm 
were launched from the source within the range 𝑞𝑚𝑖𝑛 < 𝑞 < 𝑞𝑚𝑎𝑥. The 
orientation of each ray emanating from a given point was sampled from 
a normal distribution with a mean orientation directed towards the fo
cal point and with angular standard deviation 0.6 degrees. The rays 
were projected a distance 𝑢 from the source, and results presented as 
histograms.

Bannmann model

The Bannmann model represents the beam source by a set of Gausscil 
beams. Fig. 5 illustrates a single Gausscil for the case 𝛿 < 𝛾 on orthogo
nal axes 𝑢𝑣. The geometrical details are taken from its implementation 
in the Minerva Bayesian framework [32]. The beam source, located at 
𝑢 = 0 on the left side of the figure, follows a normal distribution  (0, 𝜎2)
about the point 𝑂 = (0,0) with 𝜎 =𝑤∕2 = 82.5 mm, truncated at 𝑣 = ±𝜎. 
Particles are emitted from all points at the source in the positive 𝑢

Fig. 5. Geometrical depiction of a single Gausscil beam (𝛾 > 𝛿) [18]. 

direction towards the focus 𝐹 with a divergence angle 𝛿. The solid lines 
in the figure show the trajectory of two particles launched with zero 
divergence from the extreme edges of the source converging at the fo
cal point 𝐹 = (𝑓𝑢,0). Neglecting velocity divergence, all particles would 
converge at 𝐹 . However, velocity divergence causes the majority of par
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ticles launched at the source to miss 𝐹 . To account for this, the model 
introduces an ad hoc assumption: particles pass through one of two ``vir
tual'' focal points, depending on their observed position. These virtual 
focal points, 𝐹𝑓 = (𝑓𝑓 ,0) and 𝐹𝑏 = (𝑓𝑏,0), are defined by the trajecto
ries of particles emitted from the source’s edges at an angle 𝛿 relative 
to the optimum focus angle 𝛾 shown by the dashed lines in the figure. 
Particles in front of 𝐹 (𝑢 ≥ 𝑓𝑢) are focused at 𝐹𝑓 , while those behind 
𝐹 (𝑢 < 𝑓𝑢) are focused at 𝐹𝑏. Although this ad hoc approach provides 
a practical framework for modelling, it may not accurately reflect the 
physical trajectories of particles emitted from the source.

Expressions for the geometrical angles 𝜙, 𝜉; focal positions 𝑓𝑓 and 
𝑓𝑏, and beam width (standard deviation) 𝜎𝑓 at a point 𝑃 = (𝑝𝑢, 𝑝𝑣) are:

𝛾 =tan−1 𝜎

𝑓𝑢
(45)

𝜉 =𝛾 + 𝛿 (46)

𝜙 =|𝛾 − 𝛿| (47)

𝑓𝑓 = 𝜎

tan 𝜉
(48)

𝑓𝑏 =
𝜎

tan(𝛾 − 𝛿)
(49)

𝜎𝑓 =
⎧⎪⎨⎪⎩
|𝑓𝑏 − 𝑝𝑢| tan𝜙, 𝑝𝑢 < 𝑓𝑢|𝑝𝑢 − 𝑓𝑓 | tan 𝜉, 𝑝𝑢 > 𝑓𝑢
𝑓𝑢 tan(𝛾 + 𝛿) − 𝜎, 𝑝𝑢 = 𝑓𝑢

(50)

In the limit, 𝑓𝑢 ≫ 𝜎 and 𝛿 ≪ 1

𝛾 = 𝜎

𝑓𝑢
(51)

𝑓𝑓 = 𝜎

𝛾 + 𝛿
(52)

𝑓𝑏 =
𝜎

𝛾 − 𝛿
(53)

𝜎𝑓 =𝑓𝑢𝛿 (𝑝𝑢 = 𝑓𝑢) (54)

The velocity is taken to be normally distributed  (𝜃𝑏
𝜇
(𝑝𝑢, 𝑝𝑣), 𝛿2) where:

𝜃𝑏
𝜇
(𝑝𝑢, 𝑝𝑣) =

⎧⎪⎨⎪⎩
tan−1

(
−𝑝𝑣

𝑓𝑏 − 𝑝𝑢

)
, 𝑝𝑢 < 𝑓

tan−1
(

𝑝𝑣

𝑝𝑢 − 𝑓𝑓

)
, 𝑝𝑢 ≥ 𝑓

(55)

In the case 𝛿 > 𝛾 , 𝑓𝑏 < 0 and the beam model is modified as shown in 
Fig. 6. In this case the beam divergence dominates the focussing of the 
beam even in the near-focus region 𝑢 < 𝑓𝑢. Equations (45) to (55) remain 
valid. In the MAST Upgrade case, 𝑓𝑢 = 12𝑚, 𝑤∕2 = 82.5 mm, 𝛿 = 0.6
degrees yielding 𝛾 = 0.39 degrees. Therefore we are in the regime 𝛿 > 𝛾

and the results presented use the model shown in Fig. 6.
In both the Bannmann model and the analytic model presented in 

Section 2, the velocity is normally distributed, though in the latter case 
it has truncated bounds. In the Bannmann model, the mean velocity de
pends on one of two virtual focal positions (see equations (55)) and the 
standard deviation is constant. In contrast, the analytic model has a sin
gle focal point and a position-dependent standard deviation of velocity 
(cf. 𝜎⋆(𝑝𝑢) in equation (30)). 

3.1. Results

Fig. 7 plots the spatial variation at six discrete values of 𝑝𝑢 . From 
inspection of the figure:

1. The agreement between the analytic model and the ray-tracing 
model is excellent for all values of 𝑝𝑢 . The distribution is not a nor
mal apart from at the positions 𝑝𝑢 and 𝑝𝑢 = 𝑓 .

2. At 𝑝𝑢 = 0 (the source location) the distribution for all three cases is a 
truncated normal distribution in agreement with the requirements 
of the model.

Fig. 6. Geometrical depiction of a single Gausscil beam (𝛿 > 𝛾) [18]. 

3. At 𝑝𝑢 = 12𝑚 (the ``focal-plane'') the Bannmann model is in agree
ment with the analytic model and ray tracing model. This is the case 
because 𝑓𝑢 ≫ 𝜎 and 𝛿 ≪ 1 and equation (54) applies i.e. 𝜎 ≈ 𝑓𝑢𝛿, 
the value for the analytic model (see section 2.1, observation 3(b)).

4. The Bannmann model does not agree perfectly with the analytic 
model and ray-tracing results away from 𝑝𝑢 = 0 and 𝑝𝑢 = 𝑓 .

Fig. 8 plots the velocity distribution at 𝑝𝑣 = 0, 𝑝𝑣 = 𝜎𝑟 and 𝑝𝑣 = 2𝜎𝑟
at three positions along the beam: 𝑝𝑢 = 0, 𝑝𝑢 = 12𝑚, and 𝑝𝑢 = 20𝑚. There 
is no plot at 𝑝𝑢 = 0, 𝑝𝑣 = 2𝜎 as the beam is truncated spatially at 𝑝𝑣 = 𝜎. 
From inspection of the figure and the model equations:

1. The agreement between the analytic model and the ray-tracing 
model is excellent for all cases. This includes the details of the trun
cation limits.

2. The Bannmann model agrees with the ray-tracing model and ana
lytic model only at the mid-point of the source (see the left-hand 
graph in Fig. 8(a)). The use of a virtual focus position (𝐹𝑏) rather 
than the true focal position (𝐹 ) explains the discrepancy in the right 
plot of Fig. 8(a). The assumption that the velocity standard devia
tion is 𝛿, independent of position, yields values that are at too large 
at 𝑝𝑢 = 12𝑚 and 𝑝𝑢 = 20𝑚. Finally the Bannmann model assumes 
the distributions are unbounded in comparison with the analytic 
model that provides truncation bounds for 𝑝𝑢 > 0.

In conclusion, agreement between the analytic model and ray-tracing 
model is excellent in all cases. The reason that the Bannmann model 
works well for interpretation of Charge Exchange Recombination Spec
troscopy (CXRS) data [19] is explained by the fact that the details of the 
velocity distribution are not important in this case.

4. Transmission losses

Transmission losses in neutral beamlines occur when obstructions, 
such as baffles, intercept portions of the beam, effectively ``scraping'' off 
its edges. For a point 𝑃 downstream of an obstruction at coordinates 
𝐵 = (𝑏𝑢, 𝑏𝑣) (refer to Fig. 2), the obstruction angle 𝜃𝑏 is defined as:

𝜃𝑏 =tan−1
(
𝑝𝑣 − 𝑏𝑣

𝑝𝑢 − 𝑏𝑢

)
(56)
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Fig. 7. Comparison of 𝑔2(𝑝𝑣;𝑝𝑢) (red line) with ray tracing calculation (histogram) and the Bannmann [18] model (blue line). The results are shown for six 𝑝𝑢 values; 
𝑝𝑢 = 0 is the source location, 𝑝𝑢 = 12𝑚 is the focal plane.

Fig. 8. Comparison of 𝑔1(𝜃, 𝑝𝑣;𝑝𝑢) (red dashed line with the truncation limits shown in orange); ray tracing calculation (histogram); and Bannmann [18] model (blue 
dashed line). Results are shown for: (a) 𝑝𝑢 = 0, the source location; (b) 𝑝𝑢 = 12𝑚, (plane through focal point); (c) 𝑝𝑢 = 20𝑚.

Obstructions intercepting the top of the beam are denoted as 𝜃𝑡
𝑏

and 
those intercepting the bottom as 𝜃𝑏

𝑏
. The sets of these obstructions down

stream of point 𝑃 are 𝜽𝑡
𝑏
= {𝜃𝑡

𝑏1
,… , 𝜃𝑡

𝑛𝑡
} and 𝜽𝑏

𝑏
= {𝜃𝑏

𝑏1
,… , 𝜃𝑏

𝑛𝑏
}, respec

tively. Equations (33) and (34) impose constraints on the permissible 
angles:

𝜃min <𝜃 < 𝜃max (57)

The presence of obstructions introduces an additional constraint:

max(𝜽𝑡
𝑏
) <𝜃 <min(𝜽𝑏

𝑏
) (58)

Combining these inequalities results in:

max(𝜽𝑡
𝑏
, 𝜃min) <𝜃 <min(𝜽𝑏

𝑏
, 𝜃max) (59)

This combined constraint ensures that only beam trajectories unob
structed by baffles contribute to the transmission at point 𝑃 . Taking 
account of transmission losses simply requires to update the values of 
𝜃min and 𝜃max in equations (33) and (34) with these new limits (i.e. 
𝜃min → max(𝜽𝑡

𝑏
, 𝜃min) and 𝜃max → min(𝜽𝑏

𝑏
, 𝜃max)). Equations (39) and 

(40) are transformed in a similar manner.
Reducing the permissible pitch angles affects both the velocity and 

radial distribution functions, 𝑔1(𝜃;𝑝𝑢, 𝑝𝑣) and 𝑔2(𝑝𝑣;𝑝𝑢), respectively, 
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Fig. 9. Transmission efficiency for MAST Upgrade case with an obstruction at 
𝑢 = 6𝑚, descending into the beam in the range 0 < 𝑏𝑣 < 0.3𝑚. The result shown 
is for 𝑝𝑢 > 6𝑚.

through the term 𝑛2 (equation (35)). The modified PDF 𝑔1(𝜃;𝑝𝑢, 𝑝𝑣)
retains the property ∫ 𝑔1(𝜃;𝑝𝑢, 𝑝𝑣)𝑑𝜃 = 1. However the integral of 
𝑔2(𝑝𝑣;𝑝𝑢):

𝜂 =∫ 𝑔2(𝑝𝑣;𝑝𝑢)𝑑𝑝𝑣 (60)

represents the transmission efficiency; a value of 𝜂 < 1 indicates that 
some particles have been intercepted by obstructions before reaching 
𝑢 = 𝑝𝑢. Evaluating 𝜂 typically involves numerical integration. Since the 
integral is one-dimensional over a smooth function, it is readily evalu
ated using Gaussian quadrature.

Fig. 9 illustrates the variation in 𝜂 for a single obstruction located 
at 𝑢 = 6 m, where the beam is intercepted from above (𝑣 > 𝑏𝑣). The 
figure shows that for values of 𝑝𝑢 downstream of the obstruction, 𝜂 varies 
between 50% and 100%, depending on the value of 𝑏𝑣. Upstream of the 
obstruction, 𝜂 remains constant at 100%.

5. Non-Gaussian 1-D source distributions

In this section, we generalize the spatially truncated normal distribu
tion assumption at the source to accommodate ``arbitrary'' distributions. 
This is accomplished by representing the source distribution as a set of 
spatially distributed truncated Gaussian basis functions.

The PDF, 𝚪(𝑞, 𝜃), constructed from a collection of 𝑛𝑏 normally dis
tributed sources with truncated bounds, is expressed as:

𝚪(𝑞, 𝜃) =
𝑛𝑏∑
𝑘=1

Γ𝑘𝑔𝑘(𝑞, 𝜃) (61)

where 𝑔𝑘(𝑞, 𝜃) represents the PDF of a single Gaussian source with spa
tial truncation (cf. equation (4)):

𝑔𝑘(𝑞, 𝜃) =

⎧⎪⎪⎨⎪⎪⎩
𝐴𝑘

𝑛2𝑘
exp

(
−
(𝑞 − 𝑞𝑘)2

2𝜎2
𝑘

−
(𝜃 − 𝜃𝜇)2

2𝛿2

)
if 𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥 and − 𝜋

2 ≤ 𝜃 ≤ 𝜋

2 
0 otherwise

(62)

Here the normalisation constant 𝐴𝑘 and the terms 𝑛1𝑘 , 𝑛2𝑘 , are defined 
as:

𝐴𝑘 =
1 

2𝜋𝜎𝑘𝛿𝑛1𝑘
(63)

𝑛1𝑘 =Φ
(
𝑞𝑚𝑎𝑥

𝜎𝑘

)
−Φ

(
𝑞𝑚𝑖𝑛

𝜎𝑘

)
(64)

𝑛2𝑘 =Φ

(
𝜋∕2 − 𝜃𝜇𝑘

𝛿

)
−Φ

(
−𝜋∕2 − 𝜃𝜇𝑘

𝛿

)
(65)

For each 𝑔𝑘(𝑞, 𝜃), the expressions for the PDFs 𝑔1(𝜃;𝑝𝑢, 𝑝𝑣) and 𝑔2(𝑝𝑣;𝑝𝑢)
are given by equations (22) to (44) with the transformation 𝑝𝑣 → 𝑝𝑣−𝑞𝑘.

For 𝚪(𝑞, 𝜃) to be a probability requires that 
∑𝑛𝑏

𝑘=1 Γ𝑘 = 1. With this 
condition satisfied, Γ𝑘 is the fractional flux carried by the 𝑘𝑡ℎ basis func
tion.

To set about defining parameters of the constituent basis functions 
to fit a given distribution, we integrate equation (61) over 𝜃:

Γ𝑟(𝑞) =
𝑛𝑏∑
𝑘=1

Γ𝑘𝑔𝑟𝑘(𝑞) (66)

where the marginal distribution 𝑔𝑟
𝑘
(𝑞) is:

𝑔𝑟
𝑘
(𝑞) =

⎧⎪⎨⎪⎩
√
2𝜋𝐴𝑘𝛿 exp

(
−
(𝑞 − 𝑞𝑘)2

2𝜎2
𝑘

)
𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥

0 otherwise

(67)

With defined 𝑞𝑘 and 𝜎𝑘 values, the set of coefficients 𝚪𝑏 = {Γ1,⋯ , 
Γ𝑛𝑏} can be determined in a least-squares sense by solving a set of linear 
equation, with the stiffness matrix composed of 𝑔𝑟

𝑘
(𝑞𝑖) terms evaluated 

at a set of 𝑛𝑠 sample points 𝑞𝑖 ∈ {𝑞1,⋯ , 𝑞𝑛𝑠
} distributed over the one

dimensional source domain:

⎡⎢⎢⎣
𝑔𝑟1(𝑞1) ⋯ 𝑔𝑟

𝑛𝑏
(𝑞1)

⋮ ⋱ ⋮
𝑔𝑟1(𝑞𝑛𝑠 ) ⋯ 𝑔𝑟

𝑛𝑏
(𝑞𝑛𝑠 )

⎤⎥⎥⎦
⎡⎢⎢⎣
Γ1
⋮
Γ𝑛𝑏

⎤⎥⎥⎦ =
⎡⎢⎢⎣
Γ𝑟(𝑞1)
⋮
Γ𝑟(𝑞𝑛𝑠 )

⎤⎥⎥⎦ (68)

Selecting appropriate values for 𝑞𝑘 and 𝜎𝑘 is crucial for achieving a 
smooth fit across the data range, minimizing artefacts such as ringing, 
especially at the boundaries, and ensuring that all basis function ampli
tudes are positive (i.e. Γ𝑖 > 0,∀𝑖 ∈ {1,2,… , 𝑛𝑏). In addition as discussed 
in section 7 the choice of basis function affects the calculation accuracy 
of the transmission efficiency.

A single parameter, 𝜌, controls the 1-D spatial density of the basis 
functions via a power-law distribution, 𝑞𝜌. Here, 𝜌 = 1 corresponds to 
a uniform distribution, 𝜌 > 1 increases density toward the beam center, 
and 𝜌 < 1 increases density toward the periphery. To mitigate ringing 
effects, the number of constraint points is increased proportionally to 
the basis function density. The standard deviation of each basis func
tion is set equal to the distance to its nearest neighbour (or the aver
age distance, in cases of non-uniform distribution) further enhances the 
fit.

Numerical tests demonstrate that for 𝜌 > 0.1 excellent fits are ob
tained to a set of constant values, Γ𝑟(𝑞𝑖) = 1 with 𝑞𝑚𝑖𝑛 ≤ 𝑞𝑖 ≤ 𝑞𝑚𝑎𝑥 by 
placing the mean positions of basis functions within a spatial range ex
tending one standard deviation beyond the physical extent of the beam 
source. A particular example with 𝜌 = 1 is shown in Fig. 10(a). All ob
served computed fits have no ringing and with basis function amplitudes 
that are always positive. Obtaining good fits with 𝜌 = 0.1 is more chal
lenging, because of the reduced density of basis functions in the domain 
interior. Fig. 10(b) shows a typical case for 𝜌 = 0.1 and was obtained 
with the mean positions of basis functions restricted to lie within the 
range of the source domain. Compared to the previous case, ringing is 
apparent in the domain interior. Other tests have negative amplitudes 
for basis functions with means close to the domain boundaries. This is 
strictly permissible numerically and is not inconsistent physically as the 
sum of the basis functions is nevertheless greater than zero at all values 
of 𝑞. 

6. Extension to 2-D source distributions

The model can be extended to two dimensions if the beam can be 
approximated as rectangular and is uncorrelated across dimensions. For 
cases involving multiple beams (e.g., beamlets within a larger beam), 
the constraints apply individually to each beamlet rather than to the 
composite beam. The PDF at the source grid can then be expressed as 
the product of two independent distributions:
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Fig. 10. Results of fitting a set of data with 5 basis functions. The blue curve represents the sum of the constituent basis functions, which are individually shown in 
green. The boundary of the region, indicated by faint blue vertical lines, is located at ±0.21 m.

Fig. 11. Cartoon of a 2-D beam source, indicating the locations of Gaussian 
basis functions. The shaded region indicates the range to within one standard 
deviation for a single Gaussian basis function. The green circle indicates the 
position of a circular baffle surface, and the magenta and orange lines indicate 
the positions of effective baffles necessary to compute the 1-D beam propagation 
in the v-u and w-u planes respectively.

𝑔(𝑞𝑢𝑣, 𝜃𝑢𝑣, 𝑞𝑤𝑢, 𝜃𝑤𝑢) = 𝑔𝑢𝑣(𝑞𝑢𝑣, 𝜃𝑢𝑣)𝑔𝑤𝑢(𝑞𝑤𝑢, 𝜃𝑤𝑢) (69)

Here 𝑔𝑢𝑣 and 𝑔𝑤𝑢 corresponds to 𝑔(𝑞, 𝜃) as defined in equation (4). The 
function 𝑔(𝑞𝑤𝑢, 𝜃𝑤𝑢) is obtained by transforming 𝑔(𝑞, 𝜃) with the substi
tutions 𝑤→ −𝑣 and 𝜃𝑤𝑢 → −𝜃.

An additional condition is that the baffle edges must align with 
the beam-aligned uvw coordinate system. However, this is not achiev
able for circular baffles and may only be partially true for other baffles 
shapes. Accurate modelling of baffle losses necessitates precise bound
ary representation, considering combinations of rectangular and circular 
baffles, as illustrated in Fig. A.19.

To address this challenge, the source distribution can be decomposed 
into Gaussian basis functions each occupying a smaller spatial extent, as 
outlined in Section 5. Fig. 11 shows the arrangement of Gaussian basis 
functions over a two-dimensional source grid, uniformly distributed on 
a grid, aligned with the coordinate axes. Defining the source intensity 
distribution as the product of two one-dimensional functions:

Γ𝑟(𝑣,𝑤) =Γ𝑟
𝑣
(𝑣)Γ𝑟

𝑤
(𝑤) (70)

permits the node intensities to be computed in one dimension by solving 
equations (68) separately for each axis using Γ𝑟(𝑞𝑖) sets generated from 
the functions Γ𝑟

𝑣
(𝑣) and Γ𝑟

𝑤
(𝑤). From these results, the two-dimensional 

PDF can be assembled.
The independence of the distributions in the 𝑢𝑣, and 𝑣𝑤 planes al

lows the transmission coefficient, 𝜂, to be computed as a sum of products 
of integrals over 𝑛𝑏 basis functions:

𝜂 =
𝑛𝑏∑
𝑘=1

Γ𝑘 ∫
(
𝑔𝑢𝑣

)𝑘
2 d𝑣∫

(
𝑔𝑤𝑢

)𝑘
2 d𝑤 (71)

Here, 
(
𝑔𝑢𝑣

)𝑘
2 denotes the 𝑘th basis function’s 𝑔2 PDF (equation (28)) in 

the 𝑢𝑣 plane, and 
(
𝑔𝑤𝑢

)𝑘
2 represents the 𝑘𝑡ℎ basis function’s 𝑔2 PDF in 

the 𝑤𝑢 plane.
The next section will explore how the selection of the number of basis 

function and their spatial distribution influences the model’s capacity to 
accurately account for ba˙le-induced losses.

7. Application to MAST Upgrade

A new module has been developed within Minerva to model colli
sionless beam propagation from a two-dimensional beam source com
prising multiple sub-beamlets, incorporating realistic baffle geometries. 
This enhancement leverages Minerva’s recent integration with the ITER 
Integrated Modelling & Analysis Suite (IMAS) [33,34], enabling the sim
ulation of any neutral beam system for which an appropriate IMAS 
database instance is available. In this section, we present model pre
dictions for the MAST Upgrade neutral beam system.

The MAST neutral beam system is detailed in Barrett [35], with ad
ditional engineering specifications provided in a technical note [31]. As 
the latter information is not publicly available, we include pertinent de
tails here, along with descriptions of baffles and PINI geometry in the 
appendix.

The IMAS dataset for the MAST Upgrade beam system specifies the 
locations of 262 beamlets and their fractional powers; in the data set 
used for this work there is equal power distribution among all beamlets. 
The numerical model computes the PDF of the beam by summing the 
contributions from each beamlet. To reduce computational demands, 
the model also allows for fitting the spatial variation of fractional powers 
with a reduced set of basis functions, as described in Section 5. Below, 
we present results using both the full set of 262 beamlets (method 0) and 
the reduced set of basis functions (method 1).
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Fig. 12. Variation of PDF on planes normal to the MAST Upgrade neutral beam source marginalised over velocity. 

Fig. 12 displays contours of PDF variation, marginalized over veloc
ity, for a MAST Upgrade neutral beam using method 0. The plots are 
on planes parallel to the beam source, with 𝑢 denoting the normal dis
tance from the source. Figures are shown at the beam source (𝑢=0 m), 
at two positions downstream toward the plasma cavity (𝑢=1.5 m and 
𝑢=2.5 m), and within the plasma cavity (𝑢=7 m). The coordinates 𝑣
and 𝑤 represent vertical and horizontal positions relative to the center 
of the beam source.

In Fig. 12(a), the localized intensity of the 262 beamlets is evident, 
exhibiting symmetrical mirroring across the beam source. The PDF in 
subsequent panels (Figs. 12(b--d)) is modified by the combined effects 
of velocity divergence and baffle interactions. Notably, the shaping ob
served in Fig. 12(b) results from the ``Neutraliser II HR'' baffle, the 
outline in Fig. 12(c) is due to the ``Inter-tank duct entry'' baffle, and 
the circular outline in Fig. 12(d) arises from the ``Duct 1 entry'' baffle 
(see Table A.4 for baffle names and coordinates).

Fig. 13 illustrates the variation in transmission efficiency with dis
tance from the beam source, calculated using method 0. Step-wise reduc
tions in efficiency are induced by baffles, resulting in a final transmis
sion efficiency of 𝜂 = 93.2% at the plasma cavity. The most significant 
degradations occur at the ``Neutraliser II HR'' baffle (𝑢 = 1.840 m), the 
“Inter-tank duct entry'' baffle (𝑢 = 2.799 m), and the ``Duct 1 entry'' baf
fle (𝑢 = 3.851 m). These results align with calculations of transmitted 
power efficiency in the JET beam line, as shown in figure 8 of [26]. Al
though [26] does not provide specific details about the beam geometry, 

Fig. 13. Variation of transmission efficiency for a MAST Upgrade neutral beam 
as a function of distance from the beam source.

beam divergence and baffle geometry, the reported transmission effi
ciency of 𝜂 = 88% for JET, obtained using the PINI simulator code, is 
reassuringly close to the value computed for MAST Upgrade.

Fig. 14 compares transmission efficiency at 𝑢=7 m across five model 
variants. The dashed line represents results from method 0, considered 
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Fig. 14. Comparison calculations of transmission efficiency at 𝑢=7 m. Fig. 15. Horizontal profile of power density, marginalised over velocity at 𝑢=7 m 
and 𝑣=0 m.

Fig. 16. Marginal velocity distributions in the 𝑤𝑢 plane (blue) and in the 𝑣𝑢 plane (red). The angle 𝜃 is the anti-clockwise angle subtended by the velocity vector with 
the unit vector in the u-direction. Results shown are from model method 0 (solid line) and method 1 (dashed line). Refer to Fig. 12d to relate the velocity distributions 
to their spatial positions within the neutral beam.

the most accurate representation of the neutral beam system. Other cal
culations employ alternative sets of basis functions as prescribed in Sec
tion 5. The findings show that as the density of basis functions changes 
from uniform loading to edge loading (𝜌 = 1.0 → 𝜌 = 0.5 → 𝜌 = 0.3 →
𝜌 = 0.1), the discrepency with the method 0 result decreases. In particu
lar the result with 𝜌 = 0.1 and 5 basis functions per axis is within 0.03% 
of the method 0 result. Further calculations show that for these model 
parameters the maximum discrepency in the transmission efficiency in 
the range 0 < 𝑢 < 10 is 0.25%. The reason that small values of 𝜌 improve 
accuracy is because the generated basis functions can better account for 
circular baffles; in cases where the baffles are entirely parallel to the 
v- or w- axes there was no observed dependence on 𝜌. These results 
show that using five basis functions per axis (totalling 25 basis func
tions) results in a transmission efficiency degradation of less than 0.03% 
at 𝑢=7 m (0.25% for 𝑢 < 10 m), while reducing execution time by a fac
tor of approximately 10. It is important to note that method 0 and method 
1 address similar but not identical problems. While method 0 models a 
non-rectangular, locally varying source distribution, method 1 assumes a 
rectangular source with a constant (and, in this work, non-varying) frac
tional power density. For method 1 the transmission efficiency is affected 
by the dimensions of the nominal source; the results shown in Fig. 14
assumed the dimensions of the rectangular beam source extended 3 mm 
(i.e. one PINI half-radius) beyond the outer PINI beamlets.

Fig. 15 presents the horizontal PDF profile, marginalized over veloc
ity, at 𝑢=7 m and 𝑣=0 m. Results are shown for method 0 and method 
1 (𝜌=0.1 with five basis functions per axis). The two cases are nearly 
indistinguishable, indicating that the simplified model accurately rep
resents spatial variations in the neutral beam at this location.

Fig. 16 plots the marginal velocity distributions in the 𝑤𝑢 and 𝑢𝑣
planes at 𝑢=7 m. Results for method 0 and method 1 (using 𝜌=0.5 with 
five basis functions per axis) are compared. The method 0 results exhibit 
detailed variations reflecting the spatial distribution of beamlets on the 
source grid. In particular, the unusual 𝜃-dependence in the 𝑤𝑢 plane is 
due to fewer beamlets on the top and bottom rows of the beamlet grid 
(see Fig. 12a). In all cases the method 1 results closely replicate the trends 
of the method 0 results. These plots show that the effect of superposing 
the spatially offset Gaussian beams results in velocity distributions that 
are fundamentally different to the distribution of a single Gaussian beam 
expressed by equation (27) (cf. Fig. 8).

8. Conclusions

We have developed an analytical model to describe the transport 
of collisionless particles in neutral beam systems, incorporating non
Gaussian source distributions using Gaussian basis functions. The model 
extends to two-dimensional source distributions under the assumption 
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of separability along orthogonal axes, enabling a comprehensive analy
sis of beam propagation dynamics.

The model also accounts for baffle geometry, with reductions in the 
transmission factor due to baffle losses computed efficiently through in
tegrals over one-dimensional marginal velocity distributions along each 
beam axis. The model shows that a single beam’s velocity distribution 
retains its Gaussian nature en route to the plasma cavity, although its 
divergence is modified by geometric shaping. However, superposing 
spatially offset Gaussian beams can produce a velocity distribution that 
deviates significantly from a Gaussian profile (see Fig. 16). The degree 
of deviation will depend on the spatial distribution of fractional beam 
power among the Gaussian components.

Our implementation of the model as a module in Minerva, interfaced 
with IMAS, enables the computation of two-dimensional collisionless 
particle distributions for any neutral beam system with an available 
IMAS database. Application to the MAST Upgrade neutral beam sys
tem has demonstrated the model’s ability to account for detailed source 
distributions and to capture the evolving beam shape and velocity dis
tribution.

A key feature of the model is its computational efficiency. By employ
ing an analytical method to evolve the particle distribution instead of re
lying on Monte Carlo tracking of individual particles, the model ensures 
computational tractability, particularly in Bayesian analysis contexts. 
Using a reduced basis set to represent the source distribution maintains 
accuracy within 0.25% for transmission efficiency calculations, while 
achieving a tenfold reduction in execution time.

Future plans involve coupling the collisionless beam model with a 
collisional-radiative model to enhance diagnostic modelling capabil
ities, enabling the quantification of beam losses in the duct during 
its transit to the plasma cavity. Additionally, the implementation of 
the model within the Minerva framework, achieved during the current 
work, will create new opportunities to address uncertainty-related chal
lenges in neutral beam systems within the tokamak context by utilizing 
the extensive Bayesian analysis tools provided by Minerva.

This integration will particularly benefit diagnostics such as Mo
tional Stark Effect (MSE) and Charge Exchange Recombination Spec

troscopy (CXRS) on MAST Upgrade. By applying Bayesian analysis, un
certainties in parameters such as beam divergence, power flux, geom
etry, and the neutral gas distribution in the duct can be systematically 
evaluated. This comprehensive approach will enhance the interpretation 
of diagnostic data and optimize the performance of heating systems in 
tokamaks reliant on neutral beams.
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Appendix A. The MAST neutral beam system

Fig. A.17 shows the engineering dimensions of the MAST neutral beam system. The values of parameters referred to in this figure are given 
in Table A.1. Other relevant design parameters are given in Table A.2. The final acceleration grid (referred to as grid 4 in Fig. A.17) is shown in 
Fig. A.18. Ions emerge from 262 circular holes each with a diameter of 12 mm into a neutralisation chamber. The coordinates of the sub-beamlets 
are provided in Table A.3 and baffle coordinates in Table A.4. The locations of the beam baffles are plotted in Fig. A.19.

Table A.1

Neutral beam engineering dimensions (see Fig. A.17 for parameters definitions). Taken from [31].

Engineering Dimension
Parameter Values / mm (unless stated) 
sector 6 sector 8 

Beamline ID SS SW 
𝑅𝑡 Tangency radius 705.7 800 
𝑅𝑝 Pivot radius 2063.3 2103.5 
𝑍𝑠 beamline length 5112.9 5068.3 
𝑌𝑠 Vertical offset 0 650 
𝛼𝑠 inclination angle 0◦ 0◦

Table A.2

Neutral beam design parameters operated with Deuterium injection. Taken from [31].

Description Parameter Values 
Maximum beam energy 75kV 
Maximum beam current 65A 
Beamlet divergence angle (at maximum current and voltage) 0.6◦

Grid half-height 218 mm 
Grid half-width 82.5 mm 
Horizontal focal length 14 m 
Vertical focal length 6 m 
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Fig. A.17. ``Engineering'' dimensions of the MAST neutral beam system (taken from [31]). 

Fig. A.18. ``The final-stage acceleration grid (referred to as grid 4 in Fig. A.17). The grid consists of a lower and upper part. 

Fig. A.19. Locations of the MAST Upgrade baffles. (left) vertical extent of each baffles. Source grid is indicated as a thick line at z=0m and circular baffles are shown 
as dashed lines; (right) vertical and horizontal extent of baffle. The source grid is shown as a dashed line.
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Table A.3

Centroid locations of the 262 sub-beamlets in w,v (width and height) coordinates on the final acceleration grid. Coordinate are 
shown with respect to the centre of the grid.
𝑤 𝑣 𝑤 𝑣 𝑤 𝑣 𝑤 𝑣 𝑤 𝑣 𝑤 𝑣

-0.0825 0.0135 -0.0825 0.1495 0.04125 0.0645 -0.066 -0.0135 -0.066 -0.1495 0.05775 -0.0645 
-0.066 0.0135 -0.066 0.1495 0.05775 0.0645 -0.0495 -0.0135 -0.0495 -0.1495 0.07425 -0.0645 
-0.0495 0.0135 -0.0495 0.1495 0.07425 0.0645 -0.033 -0.0135 -0.033 -0.1495 -0.07425 -0.0985 
-0.033 0.0135 -0.033 0.1495 -0.07425 0.0985 -0.0165 -0.0135 -0.0165 -0.1495 -0.05775 -0.0985 
-0.0165 0.0135 -0.0165 0.1495 -0.05775 0.0985 0. -0.0135 0. -0.1495 -0.04125 -0.0985 
0. 0.0135 0. 0.1495 -0.04125 0.0985 0.0165 -0.0135 0.0165 -0.1495 -0.02475 -0.0985 
0.0165 0.0135 0.0165 0.1495 -0.02475 0.0985 0.033 -0.0135 0.033 -0.1495 -0.00825 -0.0985 
0.033 0.0135 0.033 0.1495 -0.00825 0.0985 0.0495 -0.0135 0.0495 -0.1495 0.00825 -0.0985 
0.0495 0.0135 0.0495 0.1495 0.00825 0.0985 0.066 -0.0135 0.066 -0.1495 0.02475 -0.0985 
0.066 0.0135 0.066 0.1495 0.02475 0.0985 0.0825 -0.0135 0.0825 -0.1495 0.04125 -0.0985 
0.0825 0.0135 0.0825 0.1495 0.04125 0.0985 -0.0825 -0.0475 -0.0825 -0.1835 0.05775 -0.0985 
-0.0825 0.0475 -0.0825 0.1835 0.05775 0.0985 -0.066 -0.0475 -0.066 -0.1835 0.07425 -0.0985 
-0.066 0.0475 -0.066 0.1835 0.07425 0.0985 -0.0495 -0.0475 -0.0495 -0.1835 -0.07425 -0.1325 
-0.0495 0.0475 -0.0495 0.1835 -0.07425 0.1325 -0.033 -0.0475 -0.033 -0.1835 -0.05775 -0.1325 
-0.033 0.0475 -0.033 0.1835 -0.05775 0.1325 -0.0165 -0.0475 -0.0165 -0.1835 -0.04125 -0.1325 
-0.0165 0.0475 -0.0165 0.1835 -0.04125 0.1325 0. -0.0475 0. -0.1835 -0.02475 -0.1325 
0. 0.0475 0. 0.1835 -0.02475 0.1325 0.0165 -0.0475 0.0165 -0.1835 -0.00825 -0.1325 
0.0165 0.0475 0.0165 0.1835 -0.00825 0.1325 0.033 -0.0475 0.033 -0.1835 0.00825 -0.1325 
0.033 0.0475 0.033 0.1835 0.00825 0.1325 0.0495 -0.0475 0.0495 -0.1835 0.02475 -0.1325 
0.0495 0.0475 0.0495 0.1835 0.02475 0.1325 0.066 -0.0475 0.066 -0.1835 0.04125 -0.1325 
0.066 0.0475 0.066 0.1835 0.04125 0.1325 0.0825 -0.0475 0.0825 -0.1835 0.05775 -0.1325 
0.0825 0.0475 0.0825 0.1835 0.05775 0.1325 -0.0825 -0.0815 -0.033 -0.2175 0.07425 -0.1325 
-0.0825 0.0815 -0.033 0.2175 0.07425 0.1325 -0.066 -0.0815 -0.0165 -0.2175 -0.07425 -0.1665 
-0.066 0.0815 -0.0165 0.2175 -0.07425 0.1665 -0.0495 -0.0815 0. -0.2175 -0.05775 -0.1665 
-0.0495 0.0815 0. 0.2175 -0.05775 0.1665 -0.033 -0.0815 0.0165 -0.2175 -0.04125 -0.1665 
-0.033 0.0815 0.0165 0.2175 -0.04125 0.1665 -0.0165 -0.0815 0.033 -0.2175 -0.02475 -0.1665 
-0.0165 0.0815 0.033 0.2175 -0.02475 0.1665 0. -0.0815 -0.07425 -0.0305 -0.00825 -0.1665 
0. 0.0815 -0.07425 0.0305 -0.00825 0.1665 0.0165 -0.0815 -0.05775 -0.0305 0.00825 -0.1665 
0.0165 0.0815 -0.05775 0.0305 0.00825 0.1665 0.033 -0.0815 -0.04125 -0.0305 0.02475 -0.1665 
0.033 0.0815 -0.04125 0.0305 0.02475 0.1665 0.0495 -0.0815 -0.02475 -0.0305 0.04125 -0.1665 
0.0495 0.0815 -0.02475 0.0305 0.04125 0.1665 0.066 -0.0815 -0.00825 -0.0305 0.05775 -0.1665 
0.066 0.0815 -0.00825 0.0305 0.05775 0.1665 0.0825 -0.0815 0.00825 -0.0305 0.07425 -0.1665 
0.0825 0.0815 0.00825 0.0305 0.07425 0.1665 -0.0825 -0.1155 0.02475 -0.0305 -0.07425 -0.2005 
-0.0825 0.1155 0.02475 0.0305 -0.07425 0.2005 -0.066 -0.1155 0.04125 -0.0305 -0.05775 -0.2005 
-0.066 0.1155 0.04125 0.0305 -0.05775 0.2005 -0.0495 -0.1155 0.05775 -0.0305 -0.04125 -0.2005 
-0.0495 0.1155 0.05775 0.0305 -0.04125 0.2005 -0.033 -0.1155 0.07425 -0.0305 -0.02475 -0.2005 
-0.033 0.1155 0.07425 0.0305 -0.02475 0.2005 -0.0165 -0.1155 -0.07425 -0.0645 -0.00825 -0.2005 
-0.0165 0.1155 -0.07425 0.0645 -0.00825 0.2005 0. -0.1155 -0.05775 -0.0645 0.00825 -0.2005 
0. 0.1155 -0.05775 0.0645 0.00825 0.2005 0.0165 -0.1155 -0.04125 -0.0645 0.02475 -0.2005 
0.0165 0.1155 -0.04125 0.0645 0.02475 0.2005 0.033 -0.1155 -0.02475 -0.0645 0.04125 -0.2005 
0.033 0.1155 -0.02475 0.0645 0.04125 0.2005 0.0495 -0.1155 -0.00825 -0.0645 0.05775 -0.2005 
0.0495 0.1155 -0.00825 0.0645 0.05775 0.2005 0.066 -0.1155 0.00825 -0.0645 0.07425 -0.2005 
0.066 0.1155 0.00825 0.0645 0.07425 0.2005 0.0825 -0.1155 0.02475 -0.0645 
0.0825 0.1155 0.02475 0.0645 -0.0825 -0.0135 -0.0825 -0.1495 0.04125 -0.0645 
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Table A.4

Description of the fifteen baffles for each neutral beam line. The baffle outlines are given, 
either as a set of (𝑤,𝑣) coordinates or as a radius. In the case of radius the baffle outline 
is in a plane parallel to the source grid. The first number in each column is the distance 
from the source. Dimensions are given in mm.

Component u w/radius v 

Neutraliser II HR

1840 0.0 -222 
1840 39.0 -218 
1840 66.0 -208 
1840 81.0 -192 
1840 87.5 -166 
1840 87.5 166 
1840 81.0 192 
1840 66.0 208 
1840 39.0 218 
1840 0.0 222 
1840 -39.0 218 
1840 -66.0 208 
1840 -81.0 192 
1840 -87.5 166 
1840 -87.5 -166 
1840 -81.0 -192 
1840 -66.0 -208 
1840 -39.0 -218 

Magnet entry

1840 120.0 -250 
1840 120.0 250 
1840 -120.0 250 
1840 -120.0 -250 

Magnet exit

2260 120.0 -250 
2260 120.0 250 
2260 -120.0 250 
2260 -120.0 -250 

Inter-tank duct entry 2799 150.0 �- 
Inter-tank duct exit 2991 150.0 �- 

Calorimeter element 1
3171 122.0 -250 
3171 122.0 250 
3171 -125.0 250 
3171 -125.0 -250 

Calorimeter element 2
3289 118.0 -250 
3289 118.0 250 
3289 -119.0 250 
3289 -119.0 -250 

Duct 1 entry 3851 140.0 �- 
Duct 1 exit 4080 140.0 �- 
Duct 2 entry 4133 140.0 �- 
Duct 2 exit 4304 140.0 �- 
Duct 3 entry 4305 158.0 �- 
Duct 3 exit 4504 158.0 �- 
Duct 4 entry 4575 175.0 �- 
Duct 4 exit 5142 180.0 �- 
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Data availability

Data will be made available on request.

References

[1] R. Koch, Fast particle heating, Fusion Sci. Technol. 57 (02 2010), https://doi.org/
10.13182/FST10-A9409.

[2] E.S. Marmar, J.L. Terry, W.L. Rowan, A.J. Wootton, Diagnostic neutral beam and 
active spectroscopy requirements for the Alcator C-Mod tokamak, Rev. Sci. Instrum. 
68 (1) (1997) 265--268, https://doi.org/10.1063/1.1147821, https://pubs.aip.org/
aip/rsi/article-pdf/68/1/265/19052982/265_1_online.pdf.

[3] Y. Luo, W.W. Heidbrink, K.H. Burrell, E. Ruskov, W.M. Solomon, Fast-ion 𝐷𝛼 mea
surements and simulations in quiet plasmas, Phys. Plasmas 14 (11) (2007) 112503, 
https://doi.org/10.1063/1.2794320, https://pubs.aip.org/aip/pop/article-pdf/doi/
10.1063/1.2794320/14048167/112503_1_online.pdf.

[4] G. Lister, D. Post, R. Goldston, Computer simulation of neutral beam injection into 
tokamaks using Monte Carlo techniques, in: Proceedings of the 3rd Symposium on 
Plasma Heating in Toroidal Devices, Varenna, Italy, 1976, p. 303, held in Varenna, 
Italy.

[5] R. Fowler, J. Holmes, J. Rome, NFREYA -a Monte Carlo beam deposition code for 
non-circular tokamak plasmas, Report ORNL-TM-6845, Oak Ridge National Labora
tory, TN, 1979, https://www.osti.gov/servlets/purl/6088388.

[6] R. Hawryluk, An empirical approach to tokamak transport, in: B. Coppi, G. Leotta, 
D. Pfirsch, R. Pozzoli, E. Sindoni (Eds.), Physics of Plasmas Close to Thermonuclear 
Conditions, Pergamon, 1981, pp. 19--46, https://www.sciencedirect.com/science/
article/pii/B9781483283852500091.

[7] A. Pankin, D. McCune, R. Andre, G. Bateman, A. Kritz, The tokamak Monte Carlo fast 
ion module NUBEAM in the national transport code collaboration library, Comput. 
Phys. Commun. 159 (3) (2004) 157--184, https://doi.org/10.1016/j.cpc.2003.11.
002, https://www.sciencedirect.com/science/article/pii/S0010465504001109.

[8] M.F.M. De Bock, N.J. Conway, M.J. Walsh, P.G. Carolan, N.C. Hawkes, Ab initio 
modeling of the motional Stark effect on MAST, Rev. Sci. Instrum. 79 (10) (2008) 
10F524, https://doi.org/10.1063/1.2966459, https://pubs.aip.org/aip/rsi/article-
pdf/doi/10.1063/1.2966459/15669786/10f524_1_online.pdf.

[9] O. Asunta, J. Govenius, R. Budny, M. Gorelenkova, G. Tardini, T. Kurki
Suonio, A. Salmi, S. Sipilä, Modelling neutral beams in fusion devices: 
beamlet-based model for fast particle simulations, Comput. Phys. Commun. 
188 (2015) 33--46, https://doi.org/10.1016/j.cpc.2014.10.024, https://www.
sciencedirect.com/science/article/pii/S0010465514003701.

[10] B. Geiger, L. Stagner, W. Heidbrink, R. Dux, R. Fischer, Y. Fujiwara, A. Garcia, A.S. 
Jacobsen, A.J. van Vuuren, A.N. Karpushov, D. Liu, P.A. Schneider, I. Sfiligoi, P.Z. 
Poloskei, M. Weiland, Progress in modelling fast-ion d-alpha spectra and neutral 
particle analyzer fluxes using fidasim, Plasma Phys. Control. Fusion 62 (10) (2020) 
105008, https://doi.org/10.1088/1361-6587/aba8d7.

[11] P.M. Stubberfield, M.L. Watkins, Multiple pencil beam, JET - DPA(06)87, 1987.
[12] J. Mandrekas, Physics models and user’s guide for the neutral beam module of 

the SUPERCODE, report GTFR-102, Georgia Institute of Technology, Atlanta, 1992, 
https://www.osti.gov/servlets/purl/10191990.

[13] Y. Feng, B. Wolle, K. Hübner, New, simplified technique for calculating parti
cle source rates due to neutral beam injection into tokamaks, Comput. Phys. 
Commun. 88 (1995) 161--172, https://www.sciencedirect.com/science/article/pii/
0010465595000136.

[14] M. Schneider, L.-G. Eriksson, I. Jenkins, J. Artaud, V. Basiuk, F. Imbeaux, T. Oikawa, 
JET-EFDA contributors, ITM-TF contributors, simulation of the neutral beam depo
sition within integrated tokamak modelling frameworks, Nucl. Fusion 51 (6) (2011) 
063019, https://doi.org/10.1088/0029-5515/51/6/063019.

[15] J. Artaud, V. Basiuk, F. Imbeaux, M. Schneider, J. Garcia, G. Giruzzi, P. Huynh, T. 
Aniel, F. Albajar, J. Ané, A. Bécoulet, C. Bourdelle, A. Casati, L. Colas, J. Decker, R. 
Dumont, L. Eriksson, X. Garbet, R. Guirlet, P. Hertout, G. Hoang, W. Houlberg, G. 
Huysmans, E. Joffrin, S. Kim, F. Köchl, J. Lister, X. Litaudon, P. Maget, R. Masset, 
B. Pégourié, Y. Peysson, P. Thomas, E. Tsitrone, F. Turco, The cronos suite of codes 
for integrated tokamak modelling, Nucl. Fusion 50 (4) (2010) 043001, https://doi.
org/10.1088/0029-5515/50/4/043001.

[16] G. Falchetto, D. Coster, R. Coelho, B. Scott, L. Figini, D. Kalupin, E. Nardon, S. 
Nowak, L. Alves, J. Artaud, V. Basiuk, J.P. Bizarro, C. Boulbe, A. Dinklage, D. Fa
rina, B. Faugeras, J. Ferreira, A. Figueiredo, P. Huynh, F. Imbeaux, I. Ivanova-Stanik, 
T. Jonsson, H.-J. Klingshirn, C. Konz, A. Kus, N. Marushchenko, G. Pereverzev, M. 
Owsiak, E. Poli, Y. Peysson, R. Reimer, J. Signoret, O. Sauter, R. Stankiewicz, P. 
Strand, I. Voitsekhovitch, E. Westerhof, T. Zok, W. Zwingmann, ITM-TF contrib
utors, the ASDEX upgrade team, JET-EFDA contributors, the European integrated 
tokamak modelling (itm) effort: achievements and first physics results, Nucl. Fusion 
54 (4) (2014) 043018, https://doi.org/10.1088/0029-5515/54/4/043018.

[17] M. Tournianski, Experimental investigation of ion behaviour on the START toka
mak, Ph.D. thesis, The University of Essex, 1999, held at https://library.essex.ac.
uk/literature/theses.

[18] S. Bannmann, O. Ford, U. Hoefel, P. Poloskei, A. Pavone, S. Kwak, J. Svensson, S. 
Lazerson, P. McNeely, N. Rust, D. Hartmann, E. Pasch, G. Fuchert, R. Wolf, The 
W7-X-team, fast forward modeling of neutral beam injection and halo formation 
including full balmer-𝛼 emission prediction at w7-x, J. Instrum. 18 (10) (2023) 
P10029, https://doi.org/10.1088/1748-0221/18/10/P10029.

[19] S. Bannmann, O. Ford, U. Hoefel, P.Z. Poloskei, A. Pavone, S. Kwak, J. Svensson, S. 
Lazerson, P. McNeely, N. Rust, D. Hartmann, E. Pasch, G. Fuchert, A. Langenberg, 
N. Pablant, K.J. Brunner, R.C. Wolf, The W7-X team, Bayesian inference of electron 
density and ion temperature profiles from neutral beam and halo balmer-𝛼 emission 
at wendelstein 7-x, Plasma Phys. Control. Fusion 66 (6) (2024) 065001, https://
doi.org/10.1088/1361-6587/ad3c1d.

[20] D.A. Homfray, D. Ciric, V. Dunkley, R. King, D. Payne, M.R. Simmonds, B. Stevens, P. 
Stevenson, C. Tame, S.E.V. Warder, A.M. Whitehead, D. Young, Overview of MAST 
neutral beam system performance, in: 2009 23rd IEEE/NPSS Symposium on Fusion 
Engineering, 2009, pp. 1--4, https://doi.org/10.1109/FUSION.2009.5226423.

[21] A. Holmes, R. McAdams, Space charge compensation of positive ion beams used in 
magnetic fusion applications, Nucl. Fusion 62 (6) (2022) 066017, https://doi.org/
10.1088/1741-4326/ac544c.

[22] P. Veltri, E. Sartori, P. Agostinetti, D. Aprile, M. Brombin, G. Chitarin, N. Fonnesu, K. 
Ikeda, M. Kisaki, H. Nakano, A. Pimazzoni, K. Tsumori, G. Serianni, Ion beam trans
port: modelling and experimental measurements on a large negative ion source in 
view of the ITER heating neutral beam, Nucl. Fusion 57 (1) (2016) 016025, https://
doi.org/10.1088/0029-5515/57/1/016025.

[23] E. Surrey, C. Challis, D. Ciric, S. Cox, B. Crowley, I. Jenkins, T. Jones, D. Keeling, 
Measurement of the depletion of neutraliser target due to gas heating in the JET neu
tral beam injection system, Fusion Eng. Des. 73 (2) (2005) 141--153, https://doi.org/
10.1016/j.fusengdes.2005.06.348, https://www.sciencedirect.com/science/article/
pii/S0920379605003832.

[24] D.B. King, C.D. Challis, E.G. Delabie, D. Keeling, G.F. Matthews, A. Shepherd, S. 
Silburn, JET contributors, Neutral beam injection on JET: effect on neutron dis
crepancy and energy balance, in: 45th EPS Conference on Plasma Physics, vol. 352, 
Prague, 2018, paper number: P4.1067, available as a downloadable report, https://
scientific-publications.ukaea.uk/wp-content/uploads/UKAEA-CCFE-CP1801.pdf.

[25] D. King, R. Sharma, C. Challis, A. Bleasdale, E. Delabie, D. Douai, D. Keeling, E. 
Lerche, M. Lennholm, J. Mailloux, G. Matthews, M. Nicassio, Ž. Štancar, T. Wilson, 
J.E.T. Contributors, Tritium neutral beam injection on JET: calibration and plasma 
measurements of stored energy, Nucl. Fusion 63 (11) (2023) 112005, https://doi.
org/10.1088/1741-4326/acee97.

[26] D. Ciric, J. Milnes, E. Surrey, Influence of accelerator grid misalignment on multi
aperture particle beam properties, in: Proceedings of the 19th IEEE/IPSS Symposium 
on Fusion Engineering. 19th SOFE (Cat. No.02CH37231), 2002, pp. 56--59, https://
doi.org/10.1109/FUSION.2002.1027641.

[27] D. Ciric, H.D. Falter, D.J. Godden, Space and time resolved doppler spectroscopy 
of neutral beams, in: B. Beaumont, P. Libeyre, B. de Gentile, G. Tonon (Eds.), 
Proceedings of the 20th Symposium on Fusion Technology (SOFT 1998), Associa
tion Euratom-CEA Cadarache, Saint-Paul-Lez-Durance, France, 1999, pp. 469--472, 
published in Fusion Technology 1998, https://scipub.euro-fusion.org/wp-content/
uploads/2014/11/JETC98040.pdf.

[28] D. Godden, Plasma non-uniformity in the JET neutral beam injection source - mea
surement, simulations and development of an improved source, Ph.D. thesis, Dublin 
City University, 2000, https://doras.dcu.ie/18755/1/Daniel_J_Godden.pdf.

[29] D.J. Godden, D. Ciric, H.D. Falter, Modelling ion source uniformity, in: Proceedings 
of the 21st Symposium on Fusion Technology (SOFT), Madrid, Spain, 2000, Avail
able as a downloadable report: https://scipub.euro-fusion.org/wp-content/uploads/
2014/11/EFDC00111.pdf. (Accessed 20 January 2025).

[30] G. Duesing, H. Altmann, H. Falter, A. Goede, R. Haange, R.S. Hemsworth, P. Kup
schus, D. Stork, E. Thompson, Neutral beam injection system, Fusion Technol. 11 (1) 
(1987) 163--202, https://doi.org/10.13182/FST87-A25004.

[31] T. Barrett, Neutral beam physics and beamline position parameters, Design Process 
CD/MU/00038, UK Atomic Energy Authority, updated: 19th July 2012 (July 2012).

[32] J. Svensson, A. Werner, Large scale bayesian data analysis for nuclear fusion ex
periments, in: 2007 IEEE International Symposium on Intelligent Signal Processing, 
2007, pp. 1--6, https://doi.org/10.1109/WISP.2007.4447579.

[33] S.D. Pinches, J.-F. Artaud, F.J. Casson, Progress in the ITER integrated modelling 
programme and the ITER scenario database, in: Proceedings of the 27th IAEA Fusion 
Energy Conference (FEC 2018), International Atomic Energy Agency (IAEA), IAEA
CN–258, Ahmedabad, India, 2018, p. 504.

[34] ITER organisation, Contains publicly accessible ITER repositories on github, https://
github.com/iterorganization, 2025. (Accessed 20 January 2025).

[35] T.R. Barrett, C. Jones, P. Blatchford, B. Smith, R. McAdams, N. Woods, Engineering 
design of the double neutral beam injection system for MAST upgrade, in: Pro
ceedings of the 26th Symposium of Fusion Technology (SOFT-26), Fusion Eng. Des. 
86 (6) (2011) 789--792, https://doi.org/10.1016/j.fusengdes.2011.01.020, https://
www.sciencedirect.com/science/article/pii/S0920379611000329.

Computer Physics Communications 312 (2025) 109610 

16 

https://doi.org/10.13182/FST10-A9409
https://doi.org/10.13182/FST10-A9409
https://doi.org/10.1063/1.1147821
https://pubs.aip.org/aip/rsi/article-pdf/68/1/265/19052982/265_1_online.pdf
https://pubs.aip.org/aip/rsi/article-pdf/68/1/265/19052982/265_1_online.pdf
https://doi.org/10.1063/1.2794320
https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.2794320/14048167/112503_1_online.pdf
https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.2794320/14048167/112503_1_online.pdf
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib9A0CFAE0692202AE1E41BA3EDC533E19s1
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib9A0CFAE0692202AE1E41BA3EDC533E19s1
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib9A0CFAE0692202AE1E41BA3EDC533E19s1
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib9A0CFAE0692202AE1E41BA3EDC533E19s1
https://www.osti.gov/servlets/purl/6088388
https://www.sciencedirect.com/science/article/pii/B9781483283852500091
https://www.sciencedirect.com/science/article/pii/B9781483283852500091
https://doi.org/10.1016/j.cpc.2003.11.002
https://doi.org/10.1016/j.cpc.2003.11.002
https://www.sciencedirect.com/science/article/pii/S0010465504001109
https://doi.org/10.1063/1.2966459
https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/1.2966459/15669786/10f524_1_online.pdf
https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/1.2966459/15669786/10f524_1_online.pdf
https://doi.org/10.1016/j.cpc.2014.10.024
https://www.sciencedirect.com/science/article/pii/S0010465514003701
https://www.sciencedirect.com/science/article/pii/S0010465514003701
https://doi.org/10.1088/1361-6587/aba8d7
https://www.osti.gov/servlets/purl/10191990
https://www.sciencedirect.com/science/article/pii/0010465595000136
https://www.sciencedirect.com/science/article/pii/0010465595000136
https://doi.org/10.1088/0029-5515/51/6/063019
https://doi.org/10.1088/0029-5515/50/4/043001
https://doi.org/10.1088/0029-5515/50/4/043001
https://doi.org/10.1088/0029-5515/54/4/043018
https://library.essex.ac.uk/literature/theses
https://library.essex.ac.uk/literature/theses
https://doi.org/10.1088/1748-0221/18/10/P10029
https://doi.org/10.1088/1361-6587/ad3c1d
https://doi.org/10.1088/1361-6587/ad3c1d
https://doi.org/10.1109/FUSION.2009.5226423
https://doi.org/10.1088/1741-4326/ac544c
https://doi.org/10.1088/1741-4326/ac544c
https://doi.org/10.1088/0029-5515/57/1/016025
https://doi.org/10.1088/0029-5515/57/1/016025
https://doi.org/10.1016/j.fusengdes.2005.06.348
https://doi.org/10.1016/j.fusengdes.2005.06.348
https://www.sciencedirect.com/science/article/pii/S0920379605003832
https://www.sciencedirect.com/science/article/pii/S0920379605003832
https://scientific-publications.ukaea.uk/wp-content/uploads/UKAEA-CCFE-CP1801.pdf
https://scientific-publications.ukaea.uk/wp-content/uploads/UKAEA-CCFE-CP1801.pdf
https://doi.org/10.1088/1741-4326/acee97
https://doi.org/10.1088/1741-4326/acee97
https://doi.org/10.1109/FUSION.2002.1027641
https://doi.org/10.1109/FUSION.2002.1027641
https://scipub.euro-fusion.org/wp-content/uploads/2014/11/JETC98040.pdf
https://scipub.euro-fusion.org/wp-content/uploads/2014/11/JETC98040.pdf
https://doras.dcu.ie/18755/1/Daniel_J_Godden.pdf
https://scipub.euro-fusion.org/wp-content/uploads/2014/11/EFDC00111.pdf
https://scipub.euro-fusion.org/wp-content/uploads/2014/11/EFDC00111.pdf
https://doi.org/10.13182/FST87-A25004
https://doi.org/10.1109/WISP.2007.4447579
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib552FA04B600965496C66972331EB8179s1
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib552FA04B600965496C66972331EB8179s1
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib552FA04B600965496C66972331EB8179s1
http://refhub.elsevier.com/S0010-4655(25)00112-2/bib552FA04B600965496C66972331EB8179s1
https://github.com/iterorganization
https://github.com/iterorganization
https://doi.org/10.1016/j.fusengdes.2011.01.020
https://www.sciencedirect.com/science/article/pii/S0920379611000329
https://www.sciencedirect.com/science/article/pii/S0920379611000329

	Analytic model for the propagation of a collisionless neutral beam
	1 Introduction
	2 1-D source distribution
	2.1 Transformation of PDF

	3 Model validation
	Monte-Carlo model
	Bannmann model
	3.1 Results

	4 Transmission losses
	5 Non-Gaussian 1-D source distributions
	6 Extension to 2-D source distributions
	7 Application to MAST Upgrade
	8 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A The MAST neutral beam system
	Data availability
	References


