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ABSTRACT

This paper introduces an analytical model for the propagation of collisionless neutral particles in neutral beam
injection (NBI) systems. The model incorporates a novel approach using composite Gaussian basis functions
to represent non-Gaussian source distributions and extends to two-dimensional source configurations under
orthogonal separability assumptions. The method efficiently computes particle velocity and spatial distributions
along beam trajectories, accounting for truncation effects due to transmission losses. The model has been
implemented as a computational module in the Minerva framework and interfaced with the ITER Integrated
Modelling & Analysis Suite (IMAS).

A case study of the MAST Upgrade NBI system demonstrates the model’s ability to predict particle distributions
from the source grid to the plasma cavity while accommodating detailed baffle geometries and calculating
transmission factors. Comparisons reveal that reduced Gaussian basis representations can achieve an order-of-
magnitude reduction in computational time with negligible impact on accuracy. The proposed model provides a
fast and rigorous alternative to Monte Carlo simulations, enabling enhanced diagnostic modelling and efficient

integration with Bayesian inference frameworks.

1. Introduction

High-energy neutral beam systems play a vital role in the cur-
rent generation of tokamak and stellarator magnetic confinement de-
vices, serving both as a key mechanism for plasma heating and current
drive [1] and as a valuable diagnostic tool for plasma quantities [2,3]. In
this paper we consider the propagation of a collisionless particle beam
distribution as a precursor to its modification by collisions with popula-
tions of neutrals and ions. Here the challenge lies in achieving a fast and
accurate analysis involving integrals over 6-dimensional phase space
(i.e. three spatial and three in velocity) whilst simultaneously includ-
ing details of a realistic geometrical configuration.

High accuracy codes generally use Monte-Carlo techniques to evolve
trajectories of individual particles, for example FREYA [4], NFREYA [5],
TRANSP [6], NUBEAM [7], MSESIM [8], BBNBI [9] and FIDASIM [10].
These codes couple the collisionless treatment of the high energy neu-
trals with collisional models of the beam deposition in the plasma cavity.
The most significant issue with these codes is that execution time tends
to be long as a large number of particles need to be followed to re-
duce statistical fluctuations. However, through simplifications in the
beam formulation, codes such as PENCIL [11] and SUPERCODE [12]
are capable of generating faster approximating solutions. The SINBAD
code [13] offers improvements over these earlier first-generation ap-
proximate methods. Based on a so-called narrow beam model the ap-
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proach in SINBAD assumes the beam source is planar with a small
cross-sectional area compared to the length of the beam-line. Results
from SINBAD provide reasonable matches to FREYA, TRANSP and to
measured NBI data [13]. The NEMO code [14] is a modernised version
of the SINBAD code enabling it to be included in the CRONOS integrated
modelling suite [15] and to be used by the European Integrated Toka-
mak Modelling Task Force (ITM-TF) [16]. The NEBULA code [17] also
uses the narrow beam model proposed by SINBAD. A similar but not iden-
tical approach has been recently described by Bannmann et al. [18,19]
to model neutral beam injection and halo formation using a set of Gaus-
sian pencil (Gausscil) beams, formed by dividing the source grid into
a set of rectangular areas. The results of the model are shown to be in
good agreement with FIDASIM.

Whilst earlier approaches (for example PENCIL) treated the beam
as a single entity, later models provided the capability of sub-dividing
the beam and summing the contributions; it was found that the number
of subdivided beams required is less than the total number of Positive
Ion Neutral Injector (PINI) beamlets and as low as 2x5 [18] which is
an advantage for computational speed. The main hypothesis for the ap-
plication of these simplified approaches is that the plasma conditions
are sufficiently homogeneous across the constituent beamlets in planes
parallel to the beam source; this sets a condition on the minimum num-
ber of beamlets and ultimately limits the applicability for using a non
Monte-Carlo method.
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Fig. 1. Schematic of the neutral beam system on MAST Upgrade illustrating the
salient features of a generic system. (figure is based on [20]).

Fig. 1 shows a schematic of the beam system on MAST Upgrade. The
first stage is the generation of ions. These are subsequently accelerated,
shaped and focussed via an electric field generated by a cascade of grids
held at fixed potentials. The final grid is at tokamak (or device) earth po-
tential and particles emerge into a neutralisation chamber. Following
this, remaining ions are diverted off to a beam dump with an applied
magnetic field, whilst the neutral particles stream down a duct into the
plasma (tokamak or stellarator) cavity. During the final transit a propor-
tion of the neutral particles may be reionised due to interactions with the
background neutral gas. Furthermore, the presence of baffles or other
fixed components may scrape off part of the streaming neutral particle
beam; these are collectively referred to as transmission losses.

The usual approach for computing the neutral beam distribution ar-
riving into the plasma cavity is to start with the flux of fast ions exiting
the final earthed acceleration grid into the neutraliser chamber. The
salient features relevant for determining the downstream beam distri-
bution are as follows:

1. The velocity distribution of the neutralised ions in the neutraliser cham-
ber matches the distribution of the source ions exiting the final accelera-
tor grid. Evidence to support this is contained in a recently published
computational model for space charge neutralisation of positive ion
beams, Holmes and McAdams [21] who show that for a Deuterium
beam of 120 kV, 60 A the role of space charge forces is inconse-
quential in the beam transport at least until the bend magnet is
reached. Similar evidence is available for ITER negative ion beams
from simulations using the OPERA code [22].

2. The neutraliser efficiency is known. The overall neutraliser efficiency
is generally obtained by a combination of measurements taken
within the beamline during dedicated calibration exercises and sim-
ulation [23-25]. Typical values on JET for deuterium injection
range from 30-60% depending on precise details of beam species
mix produced by the ion source and acceleration voltage.

3. The transmission factor is known. The beam transmission factor ac-
counts for “baffle losses”: particles lost by interactions with struc-
tures at the edge of the beam. The transmission factor cannot be
obtained by direct measurement and thus is estimated. On JET, this
is achieved by combining neutral beam test bed data with ray trac-
ing simulations giving a value of 75% [25]. This factor therefore
accounts for one of the largest uncertainties in the overall beam
power delivered to the plasma which, combined with other uncer-
tainties results in a total uncertainty of 10% in power delivered
to JET. The PINI simulator code [26] takes full account of baffle
losses as do other codes, for example BBNBI which has been used
to model JET and AUG tokamaks [9]. Another factor included in the
PINI simulator code is transmission losses due to reionisation of the
beam with the background gas in the duct between the neutraliser
chamber and the tokamak plasma cavity.

4. Spatial variations in the beam flux and velocity divergence on the beam
source grid are known. For the JET PINI ion source design, detailed
measurements of the ion-source non-uniformity were made on the
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NB test-bed(NBTB) [27-29]. Measurements of the beam profile
with high spatial resolution and accurate electrical measurements
at the PINI accelerator grids were then combined with detailed
modelling to infer the beam divergence characteristics. For each
JET PINI, following initial construction and again after any sig-
nificant engineering work on the PINI, a detailed characterisation
exercise was executed on the NBTB recording the beam profile over
a wide range of voltages and perveance values. (These characteri-
sations are kept as internal reports and are not generally available
to the public). Lacking dedicated test-bed measurements as is the
case for JET PINIs, the MAST Upgrade beams rely on the fact that
the construction of its PINIs is very similar to the JET PINIs.

In this paper we describe a new analytical approach to calculate
the propagation of a probability density function (PDF) of collisionless
neutral particles with a Maxwellian velocity distribution and arbitrary
spatial distribution emitted from a surface towards a fixed focus. In com-
parison with previous approaches based on the narrow beam model of
SINBAD or the Gaussian pencil beams of Bannmann, the methodology
presented in this paper is mathematically rigorous relating the PDF at
the source with the PDF at any point beyond the source. This is achieved
by a change of variables enabling a 1:1 mapping of particles between
the source and points beyond. The model takes into account transmis-
sion losses, expressed as a truncation in the velocity component of the
PDF. An outcome of the model is that the PDF at any point both on the
source or elsewhere can be expressed as the product of two PDFs for the
spatial and velocity distributions. Furthermore, contrary to the assump-
tion of constant velocity variance employed in other simplified models,
the velocity variance changes with distance from the source.

Section 2 considers the case of a spatially truncated 1-D source with
normal distribution, and with a normally distributed angular velocity
(pitch). Expressions for the full distribution at a fixed normal distance
from the source are expressed as the product of two constituent dis-
tributions in pitch and in spatial position. Sections 3 compares results
from the new analytic model with the model used in [18] and from 1-D
ray-tracing calculations. Section 4 includes the effects of baffle losses on
the particle distribution and obtains the transmission factor. Section 5
considers non-Gaussian source distributions. This is accomplished by
expressing the distribution in terms of a set of overlapping Gaussian
distributions whose magnitude are computed such that on aggregate
they match the source distribution. Section 6 extends the model to a
2-D source distribution. Finally section 7 presents results of the model
applied to the MAST Upgrade tokamak.

2. 1-D source distribution

This section derives an analytical expression for the particle distri-
bution at an arbitrary point ahead of a distributed particle source. Fig. 2
illustrates the geometry, aligned with the right-handed Cartesian coor-
dinates u,v,w and unit vectors i, 0, w. The particle source lies on the
vertical line through points O and Q extending from g,,, to g,,,, with
peak density at O and is directed towards a focal point F. The dashed-
dotted line through O and F represents the locus of peak density. While
most of the beam is constrained within the dashed lines, velocity diver-
gence causes some particles to deviate beyond these boundaries. Point
P is situated on line X — X, parallel to the source. The mapping Q — P
represents particles with pitch angle 6 emitted from Q and arriving at
P on line X — X.

The positions of points P, O and F are defined as follows:

P=0+p,d+p,D @
0=0+q0 2
F:0+fu2+fvé 3
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Fig. 2. Configuration of problem with a 1-D source. The point B is a single baffle
point creating an obstruction (see section 4).

The PDF of particles at the source based on position g and pitch angle
0 is defined as:

2 (0-6,)7
Ap(-L£ -2
n, 202 252

8(q.0)=
ifqminﬁqsqmax and _%Sasg

C)]
0 otherwise

where ¢, denotes the counter-clockwise angle between the normal to
the source (#) and QF, while 6 is the counter-clockwise angle between

@ and QP. The normalisation constant A and the terms ny, n, are given
by:

1
A_27r0'5n1 )
— (Imax \ _ g ((min
m=o (%) - (%) ©
2-0 —n/2—-0
nz:q><L5 ")—cp(iﬂ/& ") @)

where ®(x) is the cumulative distribution function (CDF) of the standard
normal distribution:

D(x) =% (1 +erf(x /\/5)) (8)

with erf(-) denoting the error function.

The PDF g(g,6) characterises the source distribution as a spatially
truncated normal distribution centred about the point O and truncated
normal velocity distribution directed towards focus F. In the next sec-
tion we derive expressions to map this distribution to the line X-X
which is parallel to the source and located a distance p, from it, i.e.
2(q,0) = g4(p,. 0). To facilitate this mapping, we derive expressions re-
lating the coordinates and angles involved. By computing the scalar and
cross products of vectors F_Q and E with 4 we obtain:

sm0=%~g 9
_P-0,

cos @ pol L 10
F-0 .

sing, =Tro| & 1D
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F-0
cosf, =—— -0 12)
OIFQL ~
Combining these relations, we find:
(P-Q)-atanf=(P~Q)-0 a3
(F-Q)-atanf, =(F-Q)-0 a4

Substituting equations (1), (2) and (3) for P, Q and F respectively
yields:

q=-—p,tanf +p, (15)
fu_q

u

tand, = (16)
In the limit f, > f, — ¢, the small-angle approximation tan6, ~ 0,
holds. Furthermore equation (4) indicates that significant values of
g(q,0,6,) occur when (6 — 0}4)/5 ~ 1, implying 6 ~ 6+0, if 6 < 1. Com-
bining these approximations yields tan § ~ 6. These approximations are
satisfied in the JET and ITER neutral beamlines [30,31]. Under these
conditions, equations (15) and (16) simplify to:

q=-p,O+p, an
0, =ﬂ 18)
Su
Rearranging these equations yields:
0 =pv -q (19)
Py
pu9 — Pyt fv
0, =T (20)

The following section uses these small-angle approximations as ex-
pressed in equations (17) to (20).

2.1. Transformation of PDF

In this section we obtain the mapping g(q.6) — g,(p,.0), expressed
in separable form as the product of two component PDFs:

8a(Py»050,) = 81(0; Dy P,)E (P53 Py) (21)

where the notation a, b;c indicates that a PDF is a function of vari-
ables {a,b} and c is an additional parameter (i.e. / g(a,b;c)dadb=1).
Whereas g, describes the total mapped PDF in an arbitrary position in
phase space, the components g; and g, each express distinct aspects
of g,. The PDF g, is the velocity distribution at a single spatial point
(p,»p,) and the PDF g, is the spatial distribution evaluated on the sec-
tion X — X located at p, shown in Fig. 2. Substituting equations (17)
and (20) into (4) to eliminate ¢ and 6”, the PDF g, defined in equation
(21) can be expressed as:

24(Pys0; p,) =AJ exp(—ab® — b6 — ¢) (22)
where
I Ml s 23
- 202 f252
he_ Pupvfuzaz-’-az(l’u _fu)(Pu_fv) 24)
02 f252
O i Pl 2O 25
- 202 f252
and
9| o
op, 26
J= Pulg P | =1 (26)
20| a0
oy |y 00 'p
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is the Jacobian determinant accounting for the change of variable from
{q.0} to {p,,0}. Completing the square for 6, equation (22) can be writ-
ten as a product of two PDF functions as shown in equation (21) with

09— 2
! exp <_( 20_12*) ) gmin <0< gmax

81(0:p,p,) =4 V2rmo.m 27)
0 <6,
0 0> 0,0y
Py — 1)
82(py:p) = Bny(p,. p,) €xp (—"2%‘2’ (28)
r
where
—b _ hpy(hp, — f,)+hf,(f, —Pu)
#(Pyspy) = 5 = e p e 29
262
| 12
oup)’ = 5= =7 (30)
Jup
H(p) = == (31
Ju
2
2 _ 2 (hpu - fu) h-1
O'r(Pu)—O' <h—fuz+T (32)
tan~! <pv _meax> . pu>0
0. p) = u
min(Pur Po) = —%, Py =0 and gpin < Py < Gmax
0 otherwise
(33)
tan~! <p7U _quin> , p,>0
— u
Omax(Pus Po) = 9 +§, Py =0 and gpiy < py < gmax
0 otherwise
(34)
O — Opin —
1y (D py) = ® < max — Hx > —® < min — Hx > (35)
o, o,
B(p,) = AV2ro, (36)
in which
52/‘2
h=1+ 2" (37)
k(p,) =(hp, = f,)° + (h= DS (38)

In the limits |p, — ¢,,,| < p, and |p, — ¢nax| < p,,» €quations (33) and
(34) become:

P4
Bpin(Pu» Py) F——= (39
Pu
Do~ i
Ormax(Pys Py) ¥ —2 (40)

u

In this limit, substituting for 6,,;,, 0,,.., H., the arguments of the ®(-)
terms appearing in equation (35) are:

Omin = #s __ h(fuby + [oP)fu = Pu) + Kdmax 1)
6max — Hs - h(fupy + fvpu)(fu - pu) + kqmin) (42)
o, o Pk
When p, = f,,, these simplify to:
gmin —H* —_ Amax (43)
O Pu=/u OxPy
omax — Ky - _ Amin (44)
Ox Pu=fu OxPu

and n, is independent of p,.
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focus (f,, f,):
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1. g,(0;p,.p,) is a truncated normal distribution whereas g,(p,; p,) is
a truncated normal distribution at p, = 0 (this is consistent with
equation (4)) and an unbounded distribution for p, > 0.

2. The parameters of the normal distribution g,(6;p,.p,) are o,, u,
and n,. The parameter n, expresses the truncation of the normal
distribution; o, is independent of both p, and f,, whereas for a
given value of p,, u, varies linearly with p,. The characteristics are
plotted in Fig. 3.

At specific limits,

(a) when p, =0 (at the source plane), u, = (f, — p,)/fu, 0. =6
(i.e. 6 is consistent with equation (4)).

(b) when p, = f, (at the focal plane), y, =p,/f,, 0. =0/f,. (i.e
at longer focal distances the beam becomes more collimated
and with a reduced standard deviation in velocity.)

(c) when p, = f,/h, u, = f,/f,, i.e. u, is independent of p,; and
6, = \/62+(c/f,)?, increasing from o, = § at p, =0, and
thereafter decreasing with ¢, =0 as p, — co.

(d) in the limit p,/f, = o0, p, =p,(1 — f,) and o, =0 i.e. at dis-
tances well beyond the focus, the mean velocity direction varies
linearly with p, and its variance is zero.

(e) in the limit f,/p, — o, p, =p,(hf,—1) and o, =6 i.e. as the
focal point moves towards oo at finite distances from the source
the mean velocity direction varies linearly and its variance is §2.

3. The parameters of g,(p,; p,) are B, n,, y, and o,. The parameter B
is a normalising factor to ensure that f & (p,:p,)dp, = 1. Fig. 4(a)
plots the variation of n,; at p, = f, the variation in n, with re-
spect to p, reduces to zero and g,(p,;p,) is a normal distribution.
Fig. 4(b) plots the variation of o,. Although g,(p,; p,) is not in gen-
eral a Gaussian distribution, ¢, provides an approximation to the
standard deviation fit to a normal distribution.

At specific limits,

(a) when p, =0 (at the source plane), y, =0, o, =0 (.e. o, is
consistent with equation (4)).

(b) when p, = f, (at the focal plane), u,. = f,, and 6, =6f,. In
the limit |p, = g,pin| < p, and |p, = Gpax| < P> &2(Pyip,) is @
truncated Gaussian.

() when p, = f,/h, 0} =ho*/f}, u,= [,

(d) in the limit p,/ f, - o, 6, = 00 and
» if f,=0then p, =0
« if f,>0then y, =40
« if f, <0 then y, = -0
i.e. at distances well beyond the focus, the radial variance tends
to oo whereas its mean value dependence on whether f, is non-
zero, and also its sign if non-zero.

(e) in the limit f,/p, — o0, y, =0 and o, = ¢ i.e. as the focal point
moves towards oo at finite distances from the source the radial
variance tends to ¢ and its mean velocity is zero.

4. The p,-value where ¢, and o, reach their extreme points and where
u, is independent of p, are all coincident at p, = f,/h. Since in
general 4 > 1 (see equation (37)) this position always lies between
the beam source (p, = 0) and the focal plane (p, = f,).

3. Model validation

In this section we compare the results of the 1-D model described in
section 2 with a 1-D ray-tracing model and with the Bannmann model
for a single Gausscil Beam. The parameters are based on the neutral
beam assembly installed on MAST Upgrade [31] that has a beam half-
width=282.5 mm, focus = 12 m, and beam divergence of 0.6 degrees.
The line joining the mid-point of the source and focal point is taken
to be perpendicular to the source. Specific details of the models are as
follows:
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Fig. 3. (a) Variation of y, with p, and p,. (b) Variation of o, with p,. The lines shown are at p, =0 (orange line) and p, = f,, (magenta line). The red line is at the
value of p, where y, is independent of p,, o, reaches its maximum value and o, (see Fig. 4b) reaches it minimum value. (Beam parameters are ¢ = 82.5 mm, 6 =0.6
degrees, O =(0,0), F =(12m,0), q,,;,, = =0, q,,q = +0). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
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Fig. 4. (a) Variation of n, with p, and p,. (b) Variation of ¢, with p,. The lines shown are at p, =0 (orange line) and p, = f, (magenta line). The red line is at the

value of p, where both y, is constant and o, reaches its minimum value. (Beam parameters are ¢ = 82.5 mm, 6 = 0.6 degrees, O = (0,0), F = (12m,0),

=+0).

qmax
Monte-Carlo model

For the purpose of validating the model described in section 2, a 1-D
ray tracing code was written in Python. The geometry is as shown in
Fig. 2. A set of rays (n = 108), spatially distributed according to a trun-
cated normal distribution about ¢ = 0 with standard deviation 82.5 mm
were launched from the source within the range g,,, < ¢ < ¢,,,. The
orientation of each ray emanating from a given point was sampled from
a normal distribution with a mean orientation directed towards the fo-
cal point and with angular standard deviation 0.6 degrees. The rays
were projected a distance u from the source, and results presented as
histograms.

Bannmann model

The Bannmann model represents the beam source by a set of Gausscil
beams. Fig. 5 illustrates a single Gausscil for the case § < y on orthogo-
nal axes uv. The geometrical details are taken from its implementation
in the Minerva Bayesian framework [32]. The beam source, located at
u = 0 on the left side of the figure, follows a normal distribution N0, 6%)
about the point O = (0,0) with ¢ = w/2 = 82.5 mm, truncated at v = +o.
Particles are emitted from all points at the source in the positive u-

Apin = —0,

v

Fig. 5. Geometrical depiction of a single Gausscil beam (y > §) [18].

direction towards the focus F with a divergence angle 6. The solid lines
in the figure show the trajectory of two particles launched with zero
divergence from the extreme edges of the source converging at the fo-
cal point F = (f,,0). Neglecting velocity divergence, all particles would
converge at F. However, velocity divergence causes the majority of par-
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ticles launched at the source to miss F. To account for this, the model
introduces an ad hoc assumption: particles pass through one of two “vir-
tual” focal points, depending on their observed position. These virtual
focal points, Fr=(f7,0) and F, = (f},0), are defined by the trajecto-
ries of particles emitted from the source’s edges at an angle 6 relative
to the optimum focus angle y shown by the dashed lines in the figure.
Particles in front of F (u > f,) are focused at F Iz while those behind
F (u< f,) are focused at F,. Although this ad hoc approach provides
a practical framework for modelling, it may not accurately reflect the
physical trajectories of particles emitted from the source.

Expressions for the geometrical angles ¢, &; focal positions f, and
f»» and beam width (standard deviation) o + ata point P = (p,, p,) are:

=tan~! & 45)
y =tan . (
E=y+6 (46)
¢=ly -4l 47)
o
fr =tne (48)
o
Ib =tan(y —9) (49)
|fb_pu|tan¢s pu<fu
op=1 |p,— frltané,  p,>7f, (50)
fu[an(y'i'&)_o" puzfu
In the limit, f,> ¢ and § < 1
o
== (51)
s
_ 0
=755 (52)
o
fb =7=s (53)
or=£,8 (Pu= 1) (54

The velocity is taken to be normally distributed N' (GZ (Py» P,), 6%) where:

—1 —Py
tan <fb_pu>’ pu<f
S

pu—/ f

In the case 6 >y, f;, <0 and the beam model is modified as shown in
Fig. 6. In this case the beam divergence dominates the focussing of the
beam even in the near-focus region u < f,,. Equations (45) to (55) remain
valid. In the MAST Upgrade case, f, = 12m, w/2 = 82.5 mm, 6 = 0.6
degrees yielding y = 0.39 degrees. Therefore we are in the regime § > y
and the results presented use the model shown in Fig. 6.

In both the Bannmann model and the analytic model presented in
Section 2, the velocity is normally distributed, though in the latter case
it has truncated bounds. In the Bannmann model, the mean velocity de-
pends on one of two virtual focal positions (see equations (55)) and the
standard deviation is constant. In contrast, the analytic model has a sin-
gle focal point and a position-dependent standard deviation of velocity
(cf. o4(p,) in equation (30)).

AL (55)

tan s p2f

3.1. Results

Fig. 7 plots the spatial variation at six discrete values of p,. From
inspection of the figure:

1. The agreement between the analytic model and the ray-tracing
model is excellent for all values of p,. The distribution is not a nor-
mal apart from at the positions p, and p, = f.

2. At p, =0 (the source location) the distribution for all three cases is a
truncated normal distribution in agreement with the requirements
of the model.
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Fig. 6. Geometrical depiction of a single Gausscil beam (6 > y) [18].

3. At p, = 12m (the “focal-plane”) the Bannmann model is in agree-
ment with the analytic model and ray tracing model. This is the case
because f, > ¢ and 6§ < 1 and equation (54) applies i.e. 6 = f,6,
the value for the analytic model (see section 2.1, observation 3(b)).

4. The Bannmann model does not agree perfectly with the analytic
model and ray-tracing results away from p, =0 and p, = f.

Fig. 8 plots the velocity distribution at p, =0, p, =0, and p, =20,
at three positions along the beam: p, =0, p, = 12m, and p, = 20m. There
is no plot at p, =0, p, = 20 as the beam is truncated spatially at p, = ¢.
From inspection of the figure and the model equations:

1. The agreement between the analytic model and the ray-tracing
model is excellent for all cases. This includes the details of the trun-
cation limits.

2. The Bannmann model agrees with the ray-tracing model and ana-
lytic model only at the mid-point of the source (see the left-hand
graph in Fig. 8(a)). The use of a virtual focus position (F}) rather
than the true focal position (F) explains the discrepancy in the right
plot of Fig. 8(a). The assumption that the velocity standard devia-
tion is 6, independent of position, yields values that are at too large
at p, = 12m and p, = 20m. Finally the Bannmann model assumes
the distributions are unbounded in comparison with the analytic
model that provides truncation bounds for p, > 0.

In conclusion, agreement between the analytic model and ray-tracing
model is excellent in all cases. The reason that the Bannmann model
works well for interpretation of Charge Exchange Recombination Spec-
troscopy (CXRS) data [19] is explained by the fact that the details of the
velocity distribution are not important in this case.

4. Transmission losses

Transmission losses in neutral beamlines occur when obstructions,
such as baffles, intercept portions of the beam, effectively “scraping” off
its edges. For a point P downstream of an obstruction at coordinates
B =(b,,b,) (refer to Fig. 2), the obstruction angle 0, is defined as:

_1(Ps—0
0, =tan 1<u> (56)
b pu_bu



L. Appel

Comp Physics Co ications 312 (2025) 109610
=0.0m pu=8.0m
n\
6 /-\ 4 - ,’ \
G 44
Qo
2 .
—0.05 0.00 0.05 -0.25 0.00 0.25
pvim] pvim]
pu=12.0m pu=16.0m
3 1 M
2.0 4 \
w 2 o 1.5
© e
[ o
1.0
1 -
0.5 1
0 0.0 - T T
—0 5 . -1 0 1

Fig. 7. Comparison of g,(p,; p,) (red line) with ray tracing calculation (histogram) and the Bannmann [18] model (blue line). The results are shown for six p, values;
p, =0 is the source location, p, = 12m is the focal plane.
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Fig. 8. Comparison of g,(6, p,; p,) (red dashed line with the truncation limits shown in orange); ray tracing calculation (histogram); and Bannmann [18] model (blue
dashed line). Results are shown for: (a) p, =0, the source location; (b) p, = 12m, (plane through focal point); (c) p, = 20m.

Obstructions intercepting the top of the beam are denoted as 9;7 and Combining these inequalities results in:

those intercepting the bottom as BZ . The sets of these obstructions down- . s

stream of point P are 6} = {6?’l Yoo ,0:,‘} and OZ = {617] Ve ,ézb }, respec- max(6y, Oin) <0 < min(6}, Ornax) (59)

tively. Equations (33) and (34) impose constraints on the permissible This combined constraint ensures that only beam trajectories unob-

angles: structed by baffles contribute to the transmission at point P. Taking
account of transmission losses simply requires to update the values of

B min <0 < Orax (57) 0in and 6., in equations (33) and (34) with these new limits (i.e.

Opmin — max(GZ,Hmm) and 0., — min(@i,@max)). Equations (39) and
(40) are transformed in a similar manner.

] o Reducing the permissible pitch angles affects both the velocity and
max(8,) <6 <min(6,) (58) radial distribution functions, g(6;p,.p,) and g(p,;p,), respectively,

The presence of obstructions introduces an additional constraint:
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Fig. 9. Transmission efficiency for MAST Upgrade case with an obstruction at
u = 6m, descending into the beam in the range 0 < b, < 0.3m. The result shown
is for p, > 6m.

through the term n, (equation (35)). The modified PDF g,(6;p,.p,)
retains the property / £16;p,.p,)d6 = 1. However the integral of
8 (Pyipy):

n= / &Py pdpy, (60)

represents the transmission efficiency; a value of # < 1 indicates that
some particles have been intercepted by obstructions before reaching
u = p,. Evaluating # typically involves numerical integration. Since the
integral is one-dimensional over a smooth function, it is readily evalu-
ated using Gaussian quadrature.

Fig. 9 illustrates the variation in # for a single obstruction located
at u = 6 m, where the beam is intercepted from above (v > b,). The
figure shows that for values of p, downstream of the obstruction, # varies
between 50% and 100%, depending on the value of b,. Upstream of the
obstruction, # remains constant at 100%.

5. Non-Gaussian 1-D source distributions

In this section, we generalize the spatially truncated normal distribu-
tion assumption at the source to accommodate “arbitrary” distributions.
This is accomplished by representing the source distribution as a set of
spatially distributed truncated Gaussian basis functions.

The PDF, I'(q, ), constructed from a collection of n, normally dis-
tributed sources with truncated bounds, is expressed as:

p
I(g,0)= ) T8(a.0) (61)
k=1

where g, (q, 0) represents the PDF of a single Gaussian source with spa-
tial truncation (cf. equation (4)):

A (_a-ar? @ 6>2
ny, P 26,% 62)

if @in < q < Gax and —% 0<7

8k(q,0) =
0 otherwise

Here the normalisation constant A and the terms n, , n,, , are defined
as:

1
B 2royony,

n]k:cp(qmﬂ)_q)(qm_"") (64)
Oy Oy

r/2-06 —z/2-6
n2k=‘1>< / 5 ”k>—<1>< /5 ”k> (65)

(63)
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For each g, (g, 0), the expressions for the PDFs g,(6; p,.p,) and g,(p,; p,)
are given by equations (22) to (44) with the transformation p, — p, —gy.

For I'(q,0) to be a probability requires that ZZ’; Ik = 1. With this
condition satisfied, I'; is the fractional flux carried by the k" basis func-
tion.

To set about defining parameters of the constituent basis functions
to fit a given distribution, we integrate equation (61) over 6:

p
(@)= ) Tygf(@) (66)
k=1

where the marginal distribution g/ (¢) is:

2

g(@)= \/gAké exp( i 2:(’() > Gmin < 4 < Gmax ©67)
0 otherwise

With defined g, and o, values, the set of coefficients I' = {I", -,

I',,} can be determined in a least-squares sense by solving a set of linear

equation, with the stiffness matrix composed of g; (g;) terms evaluated

at a set of n; sample points g; € {q;, -+ ,qn\_} distributed over the one-

dimensional source domain:

81y I"(qy)
: =|: (68)

&n,n) || Tn, I"(g,,)

Selecting appropriate values for g, and o, is crucial for achieving a
smooth fit across the data range, minimizing artefacts such as ringing,
especially at the boundaries, and ensuring that all basis function ampli-
tudes are positive (i.e. I'; > 0,Vi € {1,2, ..., n,). In addition as discussed
in section 7 the choice of basis function affects the calculation accuracy
of the transmission efficiency.

A single parameter, p, controls the 1-D spatial density of the basis
functions via a power-law distribution, ¢”. Here, p = 1 corresponds to
a uniform distribution, p > 1 increases density toward the beam center,
and p < 1 increases density toward the periphery. To mitigate ringing
effects, the number of constraint points is increased proportionally to
the basis function density. The standard deviation of each basis func-
tion is set equal to the distance to its nearest neighbour (or the aver-
age distance, in cases of non-uniform distribution) further enhances the
fit.

Numerical tests demonstrate that for p > 0.1 excellent fits are ob-
tained to a set of constant values, I""(q;) = 1 with g,,;, < ¢; < g4 by
placing the mean positions of basis functions within a spatial range ex-
tending one standard deviation beyond the physical extent of the beam
source. A particular example with p =1 is shown in Fig. 10(a). All ob-
served computed fits have no ringing and with basis function amplitudes
that are always positive. Obtaining good fits with p = 0.1 is more chal-
lenging, because of the reduced density of basis functions in the domain
interior. Fig. 10(b) shows a typical case for p = 0.1 and was obtained
with the mean positions of basis functions restricted to lie within the
range of the source domain. Compared to the previous case, ringing is
apparent in the domain interior. Other tests have negative amplitudes
for basis functions with means close to the domain boundaries. This is
strictly permissible numerically and is not inconsistent physically as the
sum of the basis functions is nevertheless greater than zero at all values
of q.

g [Ty

g1@a,)

6. Extension to 2-D source distributions

The model can be extended to two dimensions if the beam can be
approximated as rectangular and is uncorrelated across dimensions. For
cases involving multiple beams (e.g., beamlets within a larger beam),
the constraints apply individually to each beamlet rather than to the
composite beam. The PDF at the source grid can then be expressed as
the product of two independent distributions:
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Fig. 10. Results of fitting a set of data with 5 basis functions. The blue curve represents the sum of the constituent basis functions, which are individually shown in
green. The boundary of the region, indicated by faint blue vertical lines, is located at +0.21 m.
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Fig. 11. Cartoon of a 2-D beam source, indicating the locations of Gaussian
basis functions. The shaded region indicates the range to within one standard
deviation for a single Gaussian basis function. The green circle indicates the
position of a circular baffle surface, and the magenta and orange lines indicate
the positions of effective baffles necessary to compute the 1-D beam propagation
in the v-u and w-u planes respectively.

g(qMU’ euw qwu’ gwu) = guU(un’ euv)gwu(qwu’ GLUM) (69)

Here g,, and g, corresponds to g(q, 6) as defined in equation (4). The
function g(q,,,.0,,,) is obtained by transforming g(g,6) with the substi-
tutions w — —v and 6, — —6.

An additional condition is that the baffle edges must align with
the beam-aligned uvw coordinate system. However, this is not achiev-
able for circular baffles and may only be partially true for other baffles
shapes. Accurate modelling of baffle losses necessitates precise bound-
ary representation, considering combinations of rectangular and circular
baffles, as illustrated in Fig. A.19.

To address this challenge, the source distribution can be decomposed
into Gaussian basis functions each occupying a smaller spatial extent, as
outlined in Section 5. Fig. 11 shows the arrangement of Gaussian basis
functions over a two-dimensional source grid, uniformly distributed on
a grid, aligned with the coordinate axes. Defining the source intensity
distribution as the product of two one-dimensional functions:

I (v,w) =L (V) (w) (70)

permits the node intensities to be computed in one dimension by solving
equations (68) separately for each axis using I""(q;) sets generated from
the functions I'} (v) and I'} (w). From these results, the two-dimensional
PDF can be assembled.

The independence of the distributions in the uv, and vw planes al-
lows the transmission coefficient, #, to be computed as a sum of products
of integrals over n, basis functions:

np
'I=2Fk/(gw)§dv/(gwu)§dw 71)
k=1

Here, (g,w)lzc denotes the k™ basis function’s g, PDF (equation (28)) in

the uv plane, and (gwu);( represents the k' basis function’s g, PDF in
the wu plane.

The next section will explore how the selection of the number of basis
function and their spatial distribution influences the model’s capacity to
accurately account for baffle-induced losses.

7. Application to MAST Upgrade

A new module has been developed within Minerva to model colli-
sionless beam propagation from a two-dimensional beam source com-
prising multiple sub-beamlets, incorporating realistic baffle geometries.
This enhancement leverages Minerva’s recent integration with the ITER
Integrated Modelling & Analysis Suite (IMAS) [33,34], enabling the sim-
ulation of any neutral beam system for which an appropriate IMAS
database instance is available. In this section, we present model pre-
dictions for the MAST Upgrade neutral beam system.

The MAST neutral beam system is detailed in Barrett [35], with ad-
ditional engineering specifications provided in a technical note [31]. As
the latter information is not publicly available, we include pertinent de-
tails here, along with descriptions of baffles and PINI geometry in the
appendix.

The IMAS dataset for the MAST Upgrade beam system specifies the
locations of 262 beamlets and their fractional powers; in the data set
used for this work there is equal power distribution among all beamlets.
The numerical model computes the PDF of the beam by summing the
contributions from each beamlet. To reduce computational demands,
the model also allows for fitting the spatial variation of fractional powers
with a reduced set of basis functions, as described in Section 5. Below,
we present results using both the full set of 262 beamlets (method 0) and
the reduced set of basis functions (method 1).
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Fig. 12. Variation of PDF on planes normal to the MAST Upgrade neutral beam source marginalised over velocity.

Fig. 12 displays contours of PDF variation, marginalized over veloc-
ity, for a MAST Upgrade neutral beam using method 0. The plots are
on planes parallel to the beam source, with u denoting the normal dis-
tance from the source. Figures are shown at the beam source (¥ =0 m),
at two positions downstream toward the plasma cavity («=1.5 m and
u=2.5 m), and within the plasma cavity (u=7 m). The coordinates v
and w represent vertical and horizontal positions relative to the center
of the beam source.

In Fig. 12(a), the localized intensity of the 262 beamlets is evident,
exhibiting symmetrical mirroring across the beam source. The PDF in
subsequent panels (Figs. 12(b-d)) is modified by the combined effects
of velocity divergence and baffle interactions. Notably, the shaping ob-
served in Fig. 12(b) results from the “Neutraliser II HR” baffle, the
outline in Fig. 12(c) is due to the “Inter-tank duct entry” baffle, and
the circular outline in Fig. 12(d) arises from the “Duct 1 entry” baffle
(see Table A.4 for baffle names and coordinates).

Fig. 13 illustrates the variation in transmission efficiency with dis-
tance from the beam source, calculated using method 0. Step-wise reduc-
tions in efficiency are induced by baffles, resulting in a final transmis-
sion efficiency of # =93.2% at the plasma cavity. The most significant
degradations occur at the “Neutraliser II HR” baffle (u = 1.840 m), the
“Inter-tank duct entry” baffle (u = 2.799 m), and the “Duct 1 entry” baf-
fle (u =3.851 m). These results align with calculations of transmitted
power efficiency in the JET beam line, as shown in figure 8 of [26]. Al-
though [26] does not provide specific details about the beam geometry,
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Fig. 13. Variation of transmission efficiency for a MAST Upgrade neutral beam
as a function of distance from the beam source.

beam divergence and baffle geometry, the reported transmission effi-
ciency of n = 88% for JET, obtained using the PINI simulator code, is
reassuringly close to the value computed for MAST Upgrade.

Fig. 14 compares transmission efficiency at u =7 m across five model
variants. The dashed line represents results from method 0, considered
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Fig. 16. Marginal velocity distributions in the wu plane (blue) and in the vu plane (red). The angle 6 is the anti-clockwise angle subtended by the velocity vector with
the unit vector in the u-direction. Results shown are from model method 0 (solid line) and method 1 (dashed line). Refer to Fig. 12d to relate the velocity distributions

to their spatial positions within the neutral beam.

the most accurate representation of the neutral beam system. Other cal-
culations employ alternative sets of basis functions as prescribed in Sec-
tion 5. The findings show that as the density of basis functions changes
from uniform loading to edge loading (p=1.0—-p=05—-p=03 -
p=0.1), the discrepency with the method 0 result decreases. In particu-
lar the result with p = 0.1 and 5 basis functions per axis is within 0.03%
of the method O result. Further calculations show that for these model
parameters the maximum discrepency in the transmission efficiency in
the range 0 < u < 10 is 0.25%. The reason that small values of p improve
accuracy is because the generated basis functions can better account for
circular baffles; in cases where the baffles are entirely parallel to the
v- or w- axes there was no observed dependence on p. These results
show that using five basis functions per axis (totalling 25 basis func-
tions) results in a transmission efficiency degradation of less than 0.03%
at u=7 m (0.25% for u < 10 m), while reducing execution time by a fac-
tor of approximately 10. It is important to note that method 0 and method
1 address similar but not identical problems. While method 0 models a
non-rectangular, locally varying source distribution, method 1 assumes a
rectangular source with a constant (and, in this work, non-varying) frac-
tional power density. For method 1 the transmission efficiency is affected
by the dimensions of the nominal source; the results shown in Fig. 14
assumed the dimensions of the rectangular beam source extended 3 mm
(i.e. one PINI half-radius) beyond the outer PINI beamlets.

11

Fig. 15 presents the horizontal PDF profile, marginalized over veloc-
ity, at u=7 m and v =0 m. Results are shown for method 0 and method
1 (p=0.1 with five basis functions per axis). The two cases are nearly
indistinguishable, indicating that the simplified model accurately rep-
resents spatial variations in the neutral beam at this location.

Fig. 16 plots the marginal velocity distributions in the wu and uv
planes at u =7 m. Results for method 0 and method 1 (using p =0.5 with
five basis functions per axis) are compared. The method 0 results exhibit
detailed variations reflecting the spatial distribution of beamlets on the
source grid. In particular, the unusual #-dependence in the wu plane is
due to fewer beamlets on the top and bottom rows of the beamlet grid
(see Fig. 12a). In all cases the method 1 results closely replicate the trends
of the method 0 results. These plots show that the effect of superposing
the spatially offset Gaussian beams results in velocity distributions that
are fundamentally different to the distribution of a single Gaussian beam
expressed by equation (27) (cf. Fig. 8).

8. Conclusions

We have developed an analytical model to describe the transport
of collisionless particles in neutral beam systems, incorporating non-
Gaussian source distributions using Gaussian basis functions. The model
extends to two-dimensional source distributions under the assumption
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of separability along orthogonal axes, enabling a comprehensive analy-
sis of beam propagation dynamics.

The model also accounts for baffle geometry, with reductions in the
transmission factor due to baffle losses computed efficiently through in-
tegrals over one-dimensional marginal velocity distributions along each
beam axis. The model shows that a single beam’s velocity distribution
retains its Gaussian nature en route to the plasma cavity, although its
divergence is modified by geometric shaping. However, superposing
spatially offset Gaussian beams can produce a velocity distribution that
deviates significantly from a Gaussian profile (see Fig. 16). The degree
of deviation will depend on the spatial distribution of fractional beam
power among the Gaussian components.

Our implementation of the model as a module in Minerva, interfaced
with IMAS, enables the computation of two-dimensional collisionless
particle distributions for any neutral beam system with an available
IMAS database. Application to the MAST Upgrade neutral beam sys-
tem has demonstrated the model’s ability to account for detailed source
distributions and to capture the evolving beam shape and velocity dis-
tribution.

A key feature of the model is its computational efficiency. By employ-
ing an analytical method to evolve the particle distribution instead of re-
lying on Monte Carlo tracking of individual particles, the model ensures
computational tractability, particularly in Bayesian analysis contexts.
Using a reduced basis set to represent the source distribution maintains
accuracy within 0.25% for transmission efficiency calculations, while
achieving a tenfold reduction in execution time.

Future plans involve coupling the collisionless beam model with a
collisional-radiative model to enhance diagnostic modelling capabil-
ities, enabling the quantification of beam losses in the duct during
its transit to the plasma cavity. Additionally, the implementation of
the model within the Minerva framework, achieved during the current
work, will create new opportunities to address uncertainty-related chal-
lenges in neutral beam systems within the tokamak context by utilizing
the extensive Bayesian analysis tools provided by Minerva.

This integration will particularly benefit diagnostics such as Mo-
tional Stark Effect (MSE) and Charge Exchange Recombination Spec-

Appendix A. The MAST neutral beam system

ications 312 (2025) 109610
troscopy (CXRS) on MAST Upgrade. By applying Bayesian analysis, un-
certainties in parameters such as beam divergence, power flux, geom-
etry, and the neutral gas distribution in the duct can be systematically
evaluated. This comprehensive approach will enhance the interpretation
of diagnostic data and optimize the performance of heating systems in
tokamaks reliant on neutral beams.
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Fig. A.17 shows the engineering dimensions of the MAST neutral beam system. The values of parameters referred to in this figure are given
in Table A.1. Other relevant design parameters are given in Table A.2. The final acceleration grid (referred to as grid 4 in Fig. A.17) is shown in
Fig. A.18. Ions emerge from 262 circular holes each with a diameter of 12 mm into a neutralisation chamber. The coordinates of the sub-beamlets
are provided in Table A.3 and baffle coordinates in Table A.4. The locations of the beam baffles are plotted in Fig. A.19.

Table A.1

Neutral beam engineering dimensions (see Fig. A.17 for parameters definitions). Taken from [31].

Engineering Dimension

Parameter Values / mm (unless stated)

sector 6 sector 8
Beamline ID SS SW
R, Tangency radius 705.7 800
R, Pivot radius 2063.3 2103.5
Z, beamline length 5112.9 5068.3
Y, Vertical offset 0 650
a, inclination angle 0° 0°

Table A.2

Neutral beam design parameters operated with Deuterium injection. Taken from [31].

Description

Parameter Values

Maximum beam energy
Maximum beam current

Beamlet divergence angle (at maximum current and voltage)

Grid half-height

Grid half-width
Horizontal focal length
Vertical focal length

75kv
65A

0.6°

218 mm
82.5 mm
14 m

6 m

12
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Fig. A.17. “Engineering” dimensions of the MAST neutral beam system (taken from [31]).
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Fig. A.18. “The final-stage acceleration grid (referred to as grid 4 in Fig. A.17). The grid consists of a lower and upper part.
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Fig. A.19. Locations of the MAST Upgrade baffles. (left) vertical extent of each baffles. Source grid is indicated as a thick line at z=0m and circular baffles are shown
as dashed lines; (right) vertical and horizontal extent of baffle. The source grid is shown as a dashed line.
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Table A.3

Comp Physics Co

ications 312 (2025) 109610

Centroid locations of the 262 sub-beamlets in w,v (width and height) coordinates on the final acceleration grid. Coordinate are
shown with respect to the centre of the grid.

w v w v w v w v w v w v
-0.0825 0.0135 -0.0825 0.1495 0.04125 0.0645 -0.066 -0.0135 -0.066 -0.1495 0.05775 -0.0645
-0.066 0.0135 -0.066 0.1495 0.05775 0.0645 -0.0495 -0.0135 -0.0495 -0.1495 0.07425 -0.0645
-0.0495 0.0135 -0.0495 0.1495 0.07425 0.0645 -0.033 -0.0135 -0.033 -0.1495 -0.07425 -0.0985
-0.033 0.0135 -0.033 0.1495 -0.07425 0.0985 -0.0165 -0.0135 -0.0165 -0.1495 -0.05775 -0.0985
-0.0165 0.0135 -0.0165 0.1495 -0.05775 0.0985 0. -0.0135 0. -0.1495 -0.04125 -0.0985
0. 0.0135 0. 0.1495 -0.04125 0.0985 0.0165 -0.0135 0.0165 -0.1495 -0.02475 -0.0985
0.0165 0.0135 0.0165 0.1495 -0.02475 0.0985 0.033 -0.0135 0.033 -0.1495 -0.00825 -0.0985
0.033 0.0135 0.033 0.1495 -0.00825 0.0985 0.0495 -0.0135 0.0495 -0.1495 0.00825 -0.0985
0.0495 0.0135 0.0495 0.1495 0.00825 0.0985 0.066 -0.0135 0.066 -0.1495 0.02475 -0.0985
0.066 0.0135 0.066 0.1495 0.02475 0.0985 0.0825 -0.0135 0.0825 -0.1495 0.04125 -0.0985
0.0825 0.0135 0.0825 0.1495 0.04125 0.0985 -0.0825 -0.0475 -0.0825 -0.1835 0.05775 -0.0985
-0.0825 0.0475 -0.0825 0.1835 0.05775 0.0985 -0.066 -0.0475 -0.066 -0.1835 0.07425 -0.0985
-0.066 0.0475 -0.066 0.1835 0.07425 0.0985 -0.0495 -0.0475 -0.0495 -0.1835 -0.07425 -0.1325
-0.0495 0.0475 -0.0495 0.1835 -0.07425 0.1325 -0.033 -0.0475 -0.033 -0.1835 -0.05775 -0.1325
-0.033 0.0475 -0.033 0.1835 -0.05775 0.1325 -0.0165 -0.0475 -0.0165 -0.1835 -0.04125 -0.1325
-0.0165 0.0475 -0.0165 0.1835 -0.04125 0.1325 0. -0.0475 0. -0.1835 -0.02475 -0.1325
0. 0.0475 0. 0.1835 -0.02475 0.1325 0.0165 -0.0475 0.0165 -0.1835 -0.00825 -0.1325
0.0165 0.0475 0.0165 0.1835 -0.00825 0.1325 0.033 -0.0475 0.033 -0.1835 0.00825 -0.1325
0.033 0.0475 0.033 0.1835 0.00825 0.1325 0.0495 -0.0475 0.0495 -0.1835 0.02475 -0.1325
0.0495 0.0475 0.0495 0.1835 0.02475 0.1325 0.066 -0.0475 0.066 -0.1835 0.04125 -0.1325
0.066 0.0475 0.066 0.1835 0.04125 0.1325 0.0825 -0.0475 0.0825 -0.1835 0.05775 -0.1325
0.0825 0.0475 0.0825 0.1835 0.05775 0.1325 -0.0825 -0.0815 -0.033 -0.2175 0.07425 -0.1325
-0.0825 0.0815 -0.033 0.2175 0.07425 0.1325 -0.066 -0.0815 -0.0165 -0.2175 -0.07425 -0.1665
-0.066 0.0815 -0.0165 0.2175 -0.07425 0.1665 -0.0495 -0.0815 0. -0.2175 -0.05775 -0.1665
-0.0495 0.0815 0. 0.2175 -0.05775 0.1665 -0.033 -0.0815 0.0165 -0.2175 -0.04125 -0.1665
-0.033 0.0815 0.0165 0.2175 -0.04125 0.1665 -0.0165 -0.0815 0.033 -0.2175 -0.02475 -0.1665
-0.0165 0.0815 0.033 0.2175 -0.02475 0.1665 0. -0.0815 -0.07425 -0.0305 -0.00825 -0.1665
0. 0.0815 -0.07425 0.0305 -0.00825 0.1665 0.0165 -0.0815 -0.05775 -0.0305 0.00825 -0.1665
0.0165 0.0815 -0.05775 0.0305 0.00825 0.1665 0.033 -0.0815 -0.04125 -0.0305 0.02475 -0.1665
0.033 0.0815 -0.04125 0.0305 0.02475 0.1665 0.0495 -0.0815 -0.02475 -0.0305 0.04125 -0.1665
0.0495 0.0815 -0.02475 0.0305 0.04125 0.1665 0.066 -0.0815 -0.00825 -0.0305 0.05775 -0.1665
0.066 0.0815 -0.00825 0.0305 0.05775 0.1665 0.0825 -0.0815 0.00825 -0.0305 0.07425 -0.1665
0.0825 0.0815 0.00825 0.0305 0.07425 0.1665 -0.0825 -0.1155 0.02475 -0.0305 -0.07425 -0.2005
-0.0825 0.1155 0.02475 0.0305 -0.07425 0.2005 -0.066 -0.1155 0.04125 -0.0305 -0.05775 -0.2005
-0.066 0.1155 0.04125 0.0305 -0.05775 0.2005 -0.0495 -0.1155 0.05775 -0.0305 -0.04125 -0.2005
-0.0495 0.1155 0.05775 0.0305 -0.04125 0.2005 -0.033 -0.1155 0.07425 -0.0305 -0.02475 -0.2005
-0.033 0.1155 0.07425 0.0305 -0.02475 0.2005 -0.0165 -0.1155 -0.07425 -0.0645 -0.00825 -0.2005
-0.0165 0.1155 -0.07425 0.0645 -0.00825 0.2005 0. -0.1155 -0.05775 -0.0645 0.00825 -0.2005
0. 0.1155 -0.05775 0.0645 0.00825 0.2005 0.0165 -0.1155 -0.04125 -0.0645 0.02475 -0.2005
0.0165 0.1155 -0.04125 0.0645 0.02475 0.2005 0.033 -0.1155 -0.02475 -0.0645 0.04125 -0.2005
0.033 0.1155 -0.02475 0.0645 0.04125 0.2005 0.0495 -0.1155 -0.00825 -0.0645 0.05775 -0.2005
0.0495 0.1155 -0.00825 0.0645 0.05775 0.2005 0.066 -0.1155 0.00825 -0.0645 0.07425 -0.2005
0.066 0.1155 0.00825 0.0645 0.07425 0.2005 0.0825 -0.1155 0.02475 -0.0645

0.0825 0.1155 0.02475 0.0645 -0.0825 -0.0135 -0.0825 -0.1495 0.04125 -0.0645
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Table A.4

Description of the fifteen baffles for each neutral beam line. The baffle outlines are given,
either as a set of (w, v) coordinates or as a radius. In the case of radius the baffle outline
is in a plane parallel to the source grid. The first number in each column is the distance
from the source. Dimensions are given in mm.

Component u w/radius v
1840 0.0 -222
1840 39.0 -218
1840 66.0 -208
1840 81.0 -192
1840 87.5 -166
1840 87.5 166
1840 81.0 192
1840 66.0 208
Neutraliser Il HR 1840 39.0 218
1840 0.0 222
1840 -39.0 218
1840 -66.0 208
1840 -81.0 192
1840 -87.5 166
1840 -87.5 -166
1840 -81.0 -192
1840 -66.0 -208
1840 -39.0 -218
1840 120.0 -250
Magnet entry 1840 120.0 250
1840 -120.0 250
1840 -120.0 -250
2260 120.0 -250
Magnet exit 2260 120.0 250
2260 -120.0 250
2260 -120.0 -250
Inter-tank duct entry 2799 150.0 —
Inter-tank duct exit 2991 150.0 —
3171 122.0 -250
Calorimeter element 1 8171 122.0 250
3171 -125.0 250
3171 -125.0 -250
3289 118.0 -250
Calorimeter element 2 5289 118.0 250
3289 -119.0 250
3289 -119.0 -250
Duct 1 entry 3851 140.0 —
Duct 1 exit 4080 140.0 —
Duct 2 entry 4133 140.0 —
Duct 2 exit 4304 140.0 —
Duct 3 entry 4305 158.0 —
Duct 3 exit 4504 158.0 —
Duct 4 entry 4575 175.0 —
Duct 4 exit 5142 180.0 —
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Data availability

Data will be made available on request.
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