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where the left-hand side of the equation is the Vlasov operator, account-
ing for the acceleration of particles by the large-scale electromagnetic
fields. The Boltzmann collision operator on the right-hand side of the

1. Introduction

A low density plasma is one that can be accurately described by
the one-point particle distribution function F(r,v,?). The distribu-
tion function provides us with the number of particles on(r,v,t) =
Fy(r,v,1) d3rd3v of species s at a time ¢ in the phase space volume
around the phase space position (r,v), with r the particle position and
v the particle velocity. An equation for the time evolution of the distri-

equation accounts for the interactions of particles of species s with lo-
cal small-scale electromagnetic fields generated by interactions between
particles of species s at the same position r. Here, m; is the species mass,
Z, is the species charge number, e is the unit charge, and E and B are

bution function may be obtained from the BBGKY hierarchy [1], which
converts an N -body Hamiltonian system describing a plasma or gas into
a statistical description. The resulting equation has the form
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the electric and magnetic fields, respectively. Equation (1) is solved with
the boundary condition that F(v) — 0 as |v| - oo and an appropriate
boundary condition in r.

If the interaction cross section is chosen to be the 1/r electrostatic
potential, then the collision operator becomes the well-known Fokker—
Planck collision operator [2-5], which we introduce here using the form
due to Landau:
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with In Ay the Coulomb logarithm [2-5],

g=|V—V’|, (4)

and / d3Vv' denotes a definite integral over all v'. Note that it is common
to write 0%g/dvov = (Ig? —gg)/¢>, with g = v—v’ and I the identity ma-
trix. The operator (2) is widely used in plasma physics and magnetic con-
finement fusion studies [4,5]. Despite the complex integro-differential
structure of the operator, the Landau form of the Fokker-Planck oper-
ator (2) possesses four key properties that we note. First, the collision
operator conserves particle density, i.e.,

/ Cxx/ [Fx’ Fs’] d3V =0. (5)

Second, the collision operator conserves the total momentum in a colli-
sion, i.e.,

/ (mxv Csx’ [Fs’ Fs/] +mgV Cx’x [FS” Fr] ) d3V =0. (6)
The same is true for the total energy:

/ (AP Coo [Fo Fol 4 2o € [ ]y

=0.

(7)

Finally, Boltzmann’s H-theorem applied to same-species collisions [5]
proves that the entropy production

$,== [ mF,C, [F.F] dv20 ®

with equality if and only if F, is a Maxwellian distribution described by
the local density ng, mean velocity ug, and temperature T, i.e.,

2
F.=Fpy =—2 _exp < ~‘> ©
= Fy, = —5 _exp |- ,
g g 7[3/2 UtSh,x Uth,x

with vy, ; = /2T /my.

Implementing the nonlinear Fokker-Planck collision operator nu-
merically is challenging because of the nonlinear and integro-differential
nature of the operator. For a given distribution function F,, we must
carry out a series of difficult integrals to find the coefficients of the
operator. Whilst previous authors have implemented the nonlinear
Fokker-Planck collision operator, see, e.g., [6-13], including implemen-
tations of the underlying Boltzmann operator [14], it is more typical to
either (i) write down an ad-hoc diffusive model operator which may be
solved rapidly, yet still has the conservation or H-theorem properties
desired for the physics of interest [15-18]; or (ii) use asymptotic expan-
sions in physics parameters to linearise the kinetic equation (including
both the collision operator and the convective left hand side) around
a known Maxwellian distribution function for use in a specific applica-
tion (e.g., transport theory or collisional closures [4,5,19,20]). Such a
linearised model that solves for small perturbations to F; is often re-
ferred to as a 6F model, in contrast to full-F models that aim to solve
for the entire distribution function without linearisations.

In applications relating to hot plasma turbulence on closed magnetic
field lines, collisional relaxation timescales are typically long compared
to the nonlinear turnover time of the turbulent eddies: energy is injected
into the turbulence at velocity scales comparable to the thermal speed,
and energy is dissipated at much smaller velocity scales set by veloc-
ity diffusion via inter-particle collisions. When the dissipation scale is
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well separated from the injection scale — near-collisionless plasma tur-
bulence — details of the velocity-space dissipation mechanism do not
affect the large-scale turbulent transport of interest. In these situations,
a linearised Fokker-Planck operator or an ad-hoc model operator is an
appropriate and relatively inexpensive operator that captures the dissi-
pation of fine velocity-space structure [16,17].

Systems with closed magnetic field lines are known to be approx-
imately in thermal equilibrium because the system is approximately
closed [20,21], meaning that the distribution function is never far from
the Maxwellian around which the collision operator is usually linearised.
However, in certain applications, the distribution function of the plasma
may be far from Maxwellian: for example, in beam-driven plasmas
[22,23], or in the scrape-off layer of a tokamak plasma [24-28]. In the
latter example, this is due to the presence of the divertor plate or lim-
iter [29], which intercepts the field lines at the edge of the plasma and
so makes the system open, preventing local thermal equilibrium. In ad-
dition, hot particles may transit rapidly from the hot, closed-magnetic-
field-line region of the plasma to the open magnetic field lines at the
edge where the plasma is expected to be cooler, potentially resulting in
a bimodal distribution of particle energies: the steady state distribution
is not known. Therefore, it is not clear whether or not a model or lin-
earised collision operator is adequate for modelling the plasma on open
field lines. The only rigorous choice is the nonlinear Fokker-Planck op-
erator.

In this paper we describe the implementation of the nonlinear
Fokker—Planck operator appropriate for use in a drift-kinetic [30] model
of a magnetised plasma. We will choose a higher-order continuous-
Galerkin (C?) finite-element representation for the distribution func-
tion to permit a spectrally-accurate polynomial representation whilst
retaining the ability to describe boundary layers in velocity space. This
representation does not attempt to guarantee positivity of F;. The spe-
cialisation to drift-kinetics allows us to consider only gyrotropic dis-
tribution functions, which, due to rapid gyromotion around the field
line, are independent of the gyrophase angle 9 that measures the posi-
tion of the particle in the plane perpendicular to the magnetic field. We
support Fy = F,(v, v, ), with the cylindrical velocity space coordinates
(u”, v, ,9) defined by

V€
vy=v-b, v, =|v—yb|, tand=- s (10)
I 1 I voe
or equivalently,
V=U”b+l)lel, an

with e; = (cosde; —sinde,). The basis vector b =B /|B| is the unit vec-
tor in the direction of the magnetic field. The vectors e; and e, are
orthogonal to b and satisfy

b-e xe, =1,

e,-b=0, e -b=0. (12)

The numerical implementation described in this paper ensures the
near-exact satisfaction of the conservation properties (5)-(7) by achiev-
ing high accuracy with the weak formulations and adequate numerical
resolution. To avoid carrying out costly numerical integration in v’ in
the whole of the velocity space, as required by the definition (2), we use
the Rosenbluth-MacDonald-Judd (RMJ) form of the collision operator
[3], given in the next section, where the velocity integrals are rewrit-
ten as Rosenbluth potentials: the Rosenbluth potentials may be obtained
by solving elliptic PDEs using the higher-order finite-element method,
with boundary conditions obtained by direct integration using the for-
mal definitions of the Rosenbluth potentials at the limits of the velocity
space. This numerical strategy optimises the scheme for scalability.

We emphasise that the novel contribution of this work is the
demonstration that higher-order finite-element methods such as those
used by mature computational fluid dynamics frameworks, e.g., [31],
can achieve a scalable, conservative implementation of the nonlinear
Fokker-Planck collision operator. Higher-order finite-element methods
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which can achieve accuracy by refinement of both element size and
polynomial order, h-p refinement, should be considered as numerical
methods for models within plasma physics [32]. The remainder of this
paper is structured as follows. In the next section, we write the colli-
sion operator in the RMJ form. In section 3, we obtain the weak-form
representation of the problem that we will implement numerically. In
section 4 we prescribe numerical-error-correcting terms to ensure that
conservative properties (5)-(7) are satisfied to machine precision in the
time advance. In section 5 we provide results from numerical tests of our
implementation. In section 6, we discuss the outlook for the use of the
operator in a production code. Appendix A, Appendix B and Appendix C
contain useful results pertaining to the calculation of the Rosenbluth po-
tentials.

2. RMJ form of the collision operator

The operator in the RMJ form [3] in (u“,v ) coordinates is most
usefully written in terms of collisional fluxes:
or
I 1 0
Cyy [Fy Fy] = o, Yol (01T1), 13)

where the fluxes are defined by

o ey (9F, ’Gy  OF, Gy _mg O0Hy a4
I m2 \ dvy dvy 2~ dvp dv dvy Tmy * dyy )’
and
o oYy (OF ?Gy  OF, *Gy _ m, _dHy 1s)
7 m2 \ovy dvgov,  ovy ov, 2 Tmy v, )’
and the Rosenbluth potentials are
Gy(v)= / Fy(V)g d*v' 16)
and
F (v
Hy(V):/Laﬁv’. a7
g

In the drift-kinetic limit the largest piece of the distribution func-
tions is independent of gyroangle [4], i.e., Fy; = F,(v,v,) and Fy =
Fy (v, v,). In terms of (v, v, ) coordinates, for gyrotropic distributions
the Rosenbluth potentials simplify to

Gy = / / 4U'PE(m)Fy (v), v} )] v dv), (18)

—o0 0
and

o o

Hy =//4U—1/21<(m)Fs,(ufl,u’l)u’L dv dv), 19

- 0
where

roy \? 72
U=U(U”,UJ_,U”,UJ_)=(U”—U“> + (v +0)7, (20)
and
4o,

m =m(v||,vl,vi|,v’l) = 2n

U(U”,UJ_»UfI,Ul)

and we have used the definitions of the complete elliptic integral of the
first and second kinds,

/2

K(m)z/;de
5 V1-msin®0

and

(22)
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/2

E(m) = / 1 —msin® 6 do, (23)
0

respectively.

2.1. Finding elliptic problems for the Rosenbluth potentials

As noted in the original derivation by Rosenbluth, MacDonald, and
Judd [3], the potentials defined by equations (16) and (17) may also be
defined as the solutions of the elliptic problems

2
°G 1 0 <U aG>:2H’ (24)

00”2 ZE la
and
2
Ph 40 (1,98 aer -
a, v 0v| ov|

Given a known F, we recognise the Poisson’s equation for the Rosen-
bluth potential H, and the biharmonic equation for G. Obtaining the
Rosenbluth potentials through an elliptic solve is potentially numeri-
cally advantageous compared to evaluating the formal definitions di-
rectly, see, e.g., (16) and (17). This is because several algorithms with
O (N?) or O(N?InN?) complexity for solving Poisson equations are
known [33-36], where N is of order the number of points in the array
that represents one of the velocity dimensions, whereas a direct evalu-
ation of the formal definition leads to a scaling of O (N*) due to the
need to evaluate an integral with a kernel function that is a function of
(V)01 U?l JU)).

In practice, for a finite simulation domain, boundary conditions for
the elliptic solve must be supplied on the bounding surfaces where
vy ==V, and v, =V, with V| the maximum || on grid, and V, the
maximum v, on grid. This necessitates O (N 3) operations to obtain the
boundary data through direct integration using the formal definition
of the appropriate Rosenbluth potential. Parallelisation over many pro-
cesses may be able to alleviate the cost of obtaining boundary data, as
this part of the calculation is embarrassingly parallel.

Having motivated the use of sparse elliptic solvers to find the Rosen-
bluth potentials, it remains to formulate the appropriate PDEs for the
derivatives of the Rosenbluth potentials appearing in the fluxes (14) and
(15). We choose to solve for the derivatives of the Rosenbluth potentials
directly: this avoids derivatives in the scheme higher than second or-
der, which improves numerical accuracy. Henceforth, we will also refer
to the derivatives of the Rosenbluth potentials as Rosenbluth poten-
tials. First, we introduce the shorthand notation G,, = 0°G/ 611”2, Gy =
?GJov,?, Gy = 626/60”6%, Hyy=0H/ov, and Hy =0H /ov,.
Direct differentiation of equations (24) and (25) yields the required dif-
ferential definitions of the Rosenbluth potentials. Taking care to write
the results in forms that are easy to integrate by parts through the iden-
tity
‘)2_6 1 0 ( ﬁ) _1 G (26)

=——|v N
ov,2 vy 0vy Lov, v, dvy

and making liberal use of equations (24) and (25), we find that useful
equations for the Rosenbluth potentials derived from G are

*G G 2

20+L 0 (UL 20>=2() PI7 @27)
011”2 v, 0v| ov; (311”2
*G G G 2

u, 1 9 (UL 11>_ 1 _, 0°H ’ (28)
dv?2 vy dvy av; yi ovjdvy

and
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PGy, 1 9 < (3Goz>_4Goz

—— v
ov2 vy ovy Lo, Ui 29)
_20 (,0H)\_20H 4H  20x%
T 00, \tov, vyovy 2 2 '

Note that we must obtain H via (25) to make use of equations (27) and
(28). Equation (29) also requires the solution to (27). For the derivatives
of H, we similarly obtain the PDEs

*H oH
—;"+ii (vl ”’> =42 9F (30)
ay v, dvy v,y )
and
0% H, 0H H
X +ii<ul (”)—%:—mzﬂ. (31)
9y v, 0vy ov, v] ov|

Note that we have written the elliptic equations (27), (28), (29),
(30), and (31), in a form that will be amenable to integration by parts in
the test-function analysis required for a weak-form implementation. The
numerical implementation of these equations first uses equations (25),
(30) and (31) to find H and its derivatives from F. Then, equations
(27), (28), and (29) may be solved for the derivatives of G.

2.2. Evaluating the Rosenbluth potential boundary data

To obtain the boundary data required to solve the elliptic problems
(27), (28), (29), (30), and (31), we must obtain formal definitions for
each of the required Rosenbluth potentials by differentiating the formal
definitions (16) and (17). We use integration by parts to obtain formal
definitions where the integration kernels are very similar to those ap-
pearing in the integrals (16) and (17), which can be carried out with
known methods once they are expressed in the forms (18) and (19).

We start by computing

0G ag ag
a—VS =/FS/(V’)E a3y’ =—/FS/(V’)W >, (32)

where we have used that dg/0ov = —dg/ov’. Using integration by parts,
and that Fy(v) > 0 as |v'| — oo, we find that

oGy [ dFy By 33)
ov av £V
We can use the same method to find that
0H oF,
s =/ s 1 3V, (34)
ov ov g
Direct differentiation of equation (33) shows that
Gy OFy y—v'
o 2T a3 35
avov / o g v (35)

Equations (33) and (34) are vector equations and (35) is a tensor
equation. We extract the required results by taking dot products with
the unit vectors b and e, noting that

0 0 d

e, xb o
— =b— +e, — <z
ov oy ov|

v, 09

(36)

Assuming that Fy = E"’(Uil’ v'), which implies that Gy = Gy (v, v,),
we find that

2 T T 2
Gy =27[//ﬂ101 v dv' du), 37)
ov v, ov' oV’ L
o 2%
oHy _, // oy , ' du do! 38)
=2 oV, dv dv),
al}” RS U?I I
0Hy o0F,
=2r Sy U dU dU, (39)
0Ul _/‘O/avi H1Y1%%1%%
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*Gy dFy ) I
53 =2z aT(U” — vl v dv' doy, (40)
Il 2% 0 I
and
5203/ 8FS/ ’ ’ ’ ’
— =2z ~ (i Ty =V L) V) dV dvj, 4D
L A L
where
1 ’ ’
-
-
1 r €L ’e/i ’
I =5z [ = ad. (44)
-
and
T
(e -€))?
Iy = %/lTL dy'. (45)
-

The main advantage of this formulation is that the integrands have
rather simple numerators and denominators. Note that inspection of
the integral (19) reveals that the integrand there diverges logarithmi-
cally as m — 1 since K — In(4/v/1 — m) as m — 1. The kernels (43)-(45)
also diverge logarithmically where Uil = v and v, = v, : this kind of di-
vergence can be handled numerically by a change of variables in the
affected elements [37]. The functions Iy, Iy, Iy, and Iy, are eval-
uated explicitly in Appendix A.

3. Obtaining the weak formulation of the problem

We consider the collisional relaxation problem

oF _ Oy 1 9
E_a_v”JFZE(UlFL)' (46)
in vy €=V, Wl vy €10,V,] and ¢, where Vi and V| are the max-
imum values of v and v, on the grid, respectively. The solution
F= F(U”,ubt), and the fluxes FII = l"”(u”,vbt) = FII [F(v”, v;,1)] and
I, =T (v)v.0) =T [F(y,v,,1)] are functionals of F. We note that
the fluxes in velocity space are defined explicitly by equations (14) and
(15). As we only consider the self-collision operator in what follows, we
neglect the species index s in the following analysis where it is conve-
nient to do so.

We divide the domain into a rectangular grid of Ny, = NN, ele-
ments. We use N, 1D elements in the v direction and N, 1D elements
in the v, direction. Each 2D element is a tensor product of two 1D ele-
ments. On each 1D element we represent the function with Lagrange
polynomials of order N, using the Ny, = N, + 1 (normalised) grid
points within the elements

xje{xo,xl,...,xNP_l,xNP}, 47)

with xy = —1 and x, =1 (Gauss-Legendre-Lobatto quadrature points
[38]) on elements that do not include v, =0. On the element including
v, =0, we take xy, =1 but we use Gauss-Legendre-Radau quadrature
points to ensure that x, > —1 [38].

The transformation between (vy,01) and the local coordinate x in
the 7" 1D element is

h’)x(ﬂ + c‘(lr), v, = s(lr)x(’) +c (48)

v =s 1
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) ()

where 57, ¢,”, s(’) and c(’)

are constants in each element (labelled here
by r) which may vary between elements, and x” € [—1,1] for all r,
except in the element that includes the origin of v,, which has x") €
(=1,1].

3.1. The basis functions

We introduce tensor-product 2D basis functions

o (vp.0) =0 (v)) 9 (01). 49
where the 1D basis functions are
o =1 (x7 )0 (v-0(x) )0 (o(x) ) - v). (50)

with /; the j™ Lagrange polynomial on the element, v a placeholder for
either v or v, , and © (v) the Heaviside function. Expanding the solution
in these basis functions, we write

)
Fopv)= Y3 Fro o), 0))
rp jk

— Z Z IJ (")(U )(P(p)(UJ_),

rp jk

(51)

with

F=F (o (x).00 (x2)). (52)

Note that the basis functions have the cardinality property

o (o) =50

with 6;, =1if j =k and 0 if j # k. This choice of basis functions does
not guarantee positivity of the distribution function F - this scheme
relies on spectral accuracy implied by the higher-order polynomial rep-
resentation to obtain convergence to physical solutions. In particular,
note that the interpolant for F may be negative even if F .rlf are positive,
due to oscillations in the Lagrange polynomial basis functions.

3.2. The projection onto the polynomial basis

To project equation (46) onto the basis functions CI);Z’ ) (U”, vy ), we

multiply by the basis function ®\%% (vj,v1), and integrate over ve-
locity space corresponding to a single 2D element. The limits of this
element are UT(Z =y ( @ ), 0P = o) ( W), Ujf;j ul< (l), and

Iz
(fi =0, ( (S)) respectively. The strong-form equation (46) is then re-

placed by the weak-form equation

(q) (s)

Ylu viy
oF

//¢§Z;)E UJ_dUJ_dUH=

(q) (X>

YL liL

(54)
U(q) U(s)
U "1u
//d)("“') ﬂ+i J (U F) v,dv,dv
"\ duy vy dvy L L5

ROMO

L liL
valid for each of the 2D basis functions retained in the scheme.
3.3. The mass matrix

The left hand side of equation (54) takes the form
(q) (s)
lu v1y qs
(qS) M ij
P == dedev” Z My M) —=. (55)

(q) <A)
YL VL
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where we have defined the 1D parallel and perpendicular mass matrices

)

||U
(@ ) (@)
M= /f/’n? (WPe;” (v doy
( )
UL (56)
1
“’) / L, ()1 (x) dx,
a|
and
o0y
Mf;k_/ CRENCRERTN
o) (57)

1

=s$)/l (x) 1 (x) (s x+c(s))dx,

-1
respectively. In equations (56) and (57) we have indicated for com-

pleteness how to evaluate these matrix elements in terms of Lagrange
polynomials.

3.4. The nonlinear stiffness matrices for the collision operator

The form of the right hand side of equation (54) and the forms of
the fluxes, given by equations (14) and (15), respectively, suggest that
we should integrate by parts to bring all derivatives down to first order.
Carrying out this step, we find that for the parallel flux term

(q) (x)
lu Y1y

//CI)(‘”)—UJ_dUJ_dU”

oD )
YL liL

@
YLy

S, /<I>§g;>(u}fg],ul)r“(u“U,ul)ulduL

L@
biL

(q) (58)
J_U
(s) (s)
-6, /@E"’Ifl)(UHSL,UJ_)F“(UHSL,UJ_) v, dv;
@
LL
(q) (:)
v Y1y (qS)
"Iy v,dv,dv
// v, [ ZLE2LE-
ROMO)
oL i
Similarly, for the perpendicular flux term, we have that
(q) (s)
v
Yl LUq)(qs) 9
mn
v,I')) v,dv,dv
[ e s
@ ()
UHqL UiL
ol
Ylo
:5nNP/®(qY)(U||’ ) )U(S) oy J_U)dU” (59

(4)

v
I

o)
Ylu

_50/‘1’52")(”“» TRy, oy

o)
Uiz



M.R. Hardman, M. Abazorius, J. Omotani et al.

(q) (s)
v

0D (‘IS)
— "', v,dv,dv
[ s

2@ ()

YL bir

The boundary flux terms in equations (58) and (59) will cancel iden-
tically at the assembly stage, vanish at v, =0, or vanish at v, =V,
vy = -V, and v, =¥} by the boundary conditions that F — 0 as
[v] = 0.

We are now in a position to write down the matrix row for an arbi-
trary polynomial. We use the expansion (51) for both the distribution
function F and the Rosenbluth potentials. With these choices, recalling
the definitions of the fluxes FII and I' |, equations (14) and (15), respec-
tively, the result is

qs

ZM(‘I)M(S) jk —
= [lmj

Lnk 5t
Js
(g5)
2
Vss! Z qs 4 GS’ (@) (s)
-— F Y, Y,
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_zﬂ oHy y@ y©
de Ir 10mjl~ Linkr |~

(60)

where we have neglected the interior boundary terms as vanishing at the
assembly stage, and we have neglected the extreme boundary terms to
impose the natural boundary condition on F that I'y(v) = +V),v,) =
0 and I'; (v,v, =V,) = 0. This is equivalent to imposing F =0 as
V”, V| — o0. In equation (60), the stiffness matrices with three indices
are

(@)
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(@ _ (@ (D (@D
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,(S)
(s) a (S)

99,
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Ylanr_/ P av YL dvy,
o

Ui
(s)
Uiy (p(s)
s _ (s) _ Tk (s)
YBnkr—/(pn PPN @, v du;.
o
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Note that the stiffness matrices in (60) are all 1D integrals of 1D basis
functions, as a result of the choice to use the representation (51) where
the 2D basis function <I)(qY (v, vy ) is a product of two 1D Lagrange poly-
nomials — one for the v, dimension, and one for the v, dimension.

The assembly step is carried out using the usual element-wise finite-
element assembly algorithm, by defining a compound index that indexes
over the nonzero entries in the assembled matrix equation. We use con-
tinuity of F to demand that qu]’jp = F/."(;SH F 1(\115 =F}; 7+15 and remove
the duplicated points at interior element boundarles by summing the
matrix rows there.

3.5. The weak form of the equations for the Rosenbluth potentials

We need to determine the coefficients derived from the Rosen-
bluth potentials. We start by considering the solution of Poisson’s
equation, equation (25). Multiplying by the 2D basis function d)i’k”) =

(py) (o)) (p(” ) (v,) and integrating over velocity space, integrating by

parts on the left-hand side and neglecting the boundary terms we have
that

o @)

Ylu YLy (rp) (rp
aq)jk oH ad)k [2:1
- — — vy dvy dyy
duy 9y ov, Jv;
RCIC)
L viL
o) o
Ul 1y
=—471:/ /<1>“">Ful dv, dvy. (63)
RO
YL viL

We can neglect boundary terms because the assembly step will cancel all
terms due to interior boundaries, whereas exterior boundary terms only
appear in rows that will be replaced by a Dirichlet boundary condition.
Defining the matrices

(s)
K :_/ 00, 99 v, do, (64)
Lnk ov, Jv;
v(s)
1L
and
o)
(5)
KW :—/ 92, 97 do (65)
lInk du dy)

()

v
e

and expanding
— (rp) -rp (rp) 7P
F= L X O0EL H= Y@ (66)
P o jk

we find that the row of the unassembled matrix is

(r) (p) (p) (r) wo_ _ (r) (p)
Z (KllijJ_kn + KJ_kn M”]m) Hmn 4z Z MHijJ_kn mn" (67)
mn

We impose Dirichlet boundary conditions on the assembled matrices
using the values of the required functions computed numerically by di-
rect integration, as outlined in section 2.2. Once the coefficients H;i
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are known then the same matrices can be used in an identical fash-
ion to solve for G;i. A similar matrix equation can be written down

to solve for G;gj , and H lrgj o
Hyy = 0H /dvy, respectively, with the only difference being in the

source terms on the right-hand side. Explicitly, these results are

the components of G,, = 3°G/ 00”2 and

(68)

(r) (» ») (r) o _ (r) » rrrp
Z (KllijJJcn + KJ_an||jm) GZOmn =2 Z KIIijJJanmn’
mn mn

and

(r) ) ) (r) o _ (r) () grp
Z <K||ijJJcn + KJ_anHjm) HlOmn =—4r Z P||ijJ_knan' 69
mn mn

where we have defined

(r)

Ylu (r)
() _ ) _"J

(r)

Yir

To improve numerical accuracy, we choose to find 0 H /du by a separate
Poisson solve rather than by differentiating H.

To find the equations for the other Rosenbluth potentials in the
fluxes, we must repeat the exercise above. The PDE defining G, =
*G /0v0v, is distinct from Poisson’s equation and will require dif-
ferent matrix elements. We follow identical steps as used to derive the
matrix row equation for H f,‘(’ . First, we integrate over velocity space to
obtain the weak form equation

o)

1Yo (rp) (rp)
~ 9% 0G5 9% a6y,
L aU” 61)” 1 aUJ_ aUJ_
) (p)
e i
G
(rp) 11 (rp)
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oo oLy X
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_2/ / UJ_(Djk FEWTR dv, dyy,
) (p)
YIL iy

and we use this to define the unassembled matrix row equation:
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where we have defined the matrix elements
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N, = / oD )P (w,) dv,
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Computer Physics Communications 314 (2025) 109675

(s)
Uiy PO
() _ (s) k 2
Ulnk—/q)n _avj_ vidu,.
(s)
Ui

Similarly, the PDE for Hy, = 0H /dv,, equation (31), has the weak

form
(r) p) (R0l ") pp) ) AP rp

2 (KllijJ_kn + M||jm']J_kn - M||ijJ_kn - MHijJ_kn) 0lmn
" ) 77 74)

— r p. ¥

=—4z ) M U F7P.

mn

To complete the set of Rosenbluth potentials, we solve the ellip-
tic problem (29) for Gy, = 3*G/dv, >. Following steps similar to those
above, we obtain the weak-form equation

v oy rp) rp)
rp. p.
_/ <v2 IPji” 0Gy 2 9P} 9Gy

1 OUH al)” 1 0UJ_ (3Ul
”i(]i ”(f)L
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(rp) (rp)
+2(1>jk H - CDjk Gzo) dv,dy.
The corresponding row of the unassembled matrix therefore becomes

z ( KO RP 4 p®) (g _p® _ 4N ® )> ar
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mn
— ) (7 (p) (p)
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mn

) AP ~rp
+2 2 M||ijJ_knGZOmn'
mn

3.6. Velocity space integration in the spectral element scheme

To compute the boundary data for the elliptic problems obtained in
the last section, we need to integrate a function F = F (vﬂ R vl) multiplied
by a kernel function G = G(v), v, Uil’ Ui): we wish to compute

[l
I=//Q(U”,UJ_,Ulll,Ui)F(Ulll,Ui)UidU/ldUﬁ. (77)
Z00 0

We expand F in the Lagrange polynomial basis functions using equation
(51) and thus obtain that

= Z Z F; ,f];f) (78)

rp jk
with the integration over local elements

() (p)
Ylu vy

157 = / / NN e CA L CA U L 79
®
oL )
When assembling the integral over elements, one must recall that the
nodal value of F at element boundaries has an interpolating polynomial
that contributes to the quadrature in two elements.
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4. Numerical-error-correcting terms

The numerical scheme for evolving the distribution function due to
the Fokker—Planck collision operator is chosen here for performance and
scalability, rather than for exact machine-precision satisfaction of the
conservative properties (5)-(7). To ensure that the numerical scheme for
the collision operator can also preserve the density, parallel velocity and
total energy at each time step to machine precision, for time-evolving
simulations we introduce ad-hoc conserving terms which make a cor-
rection which is at most of order of the discretisation error. Noting the
definitions of the plasma density n,; and parallel flow | ,,

nS=//FS 2rv,dvy duy, (80)

and

nguy o = // vy Fy 2z, dvo) doy, (81)

respectively, we define

Cys [Fy Fy| =C%, [F,, Fy
2 2 (82)
= (20 + 210y —uy ) + 25 (o) —uy )* +07)) Fy.

where C7 [F S F, S] denotes the numerically calculated finite-element col-
lision operator given by dF /dt in equation (60), and the coefficients z,
z, and z, are determined by the requirements that (5)-(7) are exactly
satisfied. Instead of formulating the equations for {z;} in terms of total
energy

mg
&= //(vﬁ +v])F, 27v,dv, duy, (83)

we write them in terms of pressure p,, using the definition ¢, = 3p, /2 +

mgng uﬁ B /2. Then, the conservation laws (5)-(7) lead to the matrix equa-

tion
mgng 0 3pc\( z mgAng
0 pH-S qu's zZ |= ms(nSAu”J - uH’SAnx) : (84)
3p, qj.s Ry z 3Ap;

where the vector components on the right hand side are the moments
of C, [F s F, S] that should vanish up to discretisation error, i.e.,

An, =//st [F,. F,] 220, dv, dy,
1
Ay = - //u”cjs [FS,FS] 2zv,dv, dv, (85)
s

m
Aps=?f//((U“—unqs)zwi)c; [Fy. F] 270 dv, doy,

and the components of the matrix on the left-hand side are given by
the moments of F,. We have that the total pressure p; = (2p, ; +p) ,)/3
with the parallel and perpendicular pressures given by

Pls =g //(U” —uy )*F, 2zv, dv, duy, (86)
and
pl’S:%/‘/UﬁFSZHUldUl dU”, (87)

respectively. The parallel heat flux is given by

a5 =m, //(u" —uy (v —uy)* +v1)F, 2nv dv; doy, (88)

and the higher-order moment

Ry=m, //((u” —uy ) +v})*F, 270, dv, doy. (89)

We will demonstrate in the next section that Ang, Ay i, and Ap; defined
in equation (85) are indeed bounded by the discretisation error.
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We note the similarity of these error-correcting terms to those em-
ployed for similar reasons where the density, parallel flow, and pressure
are required to be conserved exactly [13,39].

5. Numerical implementation and results

We have implemented an explicit form of the weak-form collision
operator in Julia [40], in the drift-kinetic version of the pre-sheath
plasma code “moment kinetics” [41-43], using shared-memory paral-
lelism implemented with MPI using features introduced in MPI-3 [44],
in particular MPI_Win_allocate_shared [45]. Specifically, we have
implemented the assembled weak-form problems defined by equations
(60), (67), (68), (69), (72), (74), (76), using sparse matrices [46], and
with appropriate calculations of the Rosenbluth potential boundary data
using equations (19) and (37)-(41) with integration weights defined by
(79). The basic quadrature used to calculate these weights is a tensor
product of two 1D Gauss-Legendre quadratures, except near logarith-
mic divergences, where Gauss-Laguerre quadratures are employed with
changes of variables. We use Gauss-Legendre polynomials to define the
Lobatto and Radau collocation grid points. We have implemented the
scheme for arbitrary positive order of polynomials.

The source code for the implementation is available and documented
[47]. The test and simulation results that are presented in the remainder
of this section are supported by publicly available data [48].

5.1. Evaluation tests

We wish to test the three properties of the collision operator (5)-(7).
To facilitate this test we define three quantities which measure the
change in the moments of the distribution function due to the col-
lision operator, given by equation (85). We test in a grid resolution
scan whether or not the collision operator vanishes on a prescribed
Maxwellian distribution up to expected discretisation error, i.e., whether
or not the operator well satisfies

Cyy [Farsr Fars] =0. (90)

58

We now proceed to describe the details of the test. In Fig. 1 we
carry out the resolution test for varying Ny = N, = N /2 at fixed
Ny = 5, corresponding to 4" order polynomials, although we support
any Ngg > 2. Here Ny, is the number of elements in the v, dimen-
sion and half the number of elements in the v dimension. The quan-
tity N is the number of points per 1D element, in both the parallel
and perpendicular dimensions. We take the maximum velocity to be
V) =V =6, With ¢op = /2T ¢ /myr, where T and m,; are the
reference temperature and reference mass, respectively. Note that re-
ducing ¥ and V, for a fixed integrand reduces the accuracy of the
numerical integration because the true velocity integrals should extend
to infinite velocities. We choose to carry out the test for a species of mass
mg/m o =1 with a Maxwellian with a normalised density n,/n;; =1,
a normalised parallel flow u ;/c.s = 1, and a normalised temperature
T,/T,t = 1. In Fig. 1, and in the remainder of the paper, we plot nor-
malised quantities, with the normalisations given in Table 1.

In Fig. 1, we plot both the infinity norm of the error €., and the L,
norm of the error ¢, of calculating the collision operator with respect to
the expected value (which is zero). Here, the infinity norm of the error
in a normalised distribution F is defined by

€ (F) =maxy|F — Foxacrls 91)

with Fyy,cr the normalised, exact, analytically computed value. The L,
norm of the error is defined by

/(F_FEXACT)qu.dUJ.dUH
/Uldvldun

where the integration is carried out numerically over the finite range of
velocities on the grid. We see that the infinity norm gives a larger value

e (F)= (92)
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Table 1

List of normalisations used
in the numerical implemen-
tation of the self-collision

operator.
Quantity Normalisation
ng Pref
Uy s Cref
by ’"ref",zef
o) Cref
vy Cret I
F; Neet /T2,
G, Pref Cref
H Pret / Cref
&
10724 . - —
10754 w Tl—0 TR T
el TNl T T
10-8] @ elClFFYs
& £(CIF, F])
- |An|
10711 ¢ jagy
¥ 1ol .
107144 — (1/Ng Vo1 P
s-:_(_llNEL)NGR+1 el
_________ o
4 8 16 32 64

NeL

Fig. 1. The numerical error for a test carried out with Ng =5 points per ele-
ment. The infinity norm of the error (e, see (91)) and L, norm of the error (e,,
see (92)) of evaluating the collision operator are shown and compared to the
expected scalings for differentiation and integration (93) and (94), respectively.
This test does not use the numerical-error-correcting terms that are introduced
in section 4, in order to show the numerical errors in the conserved moments
native to the finite-element scheme.

than the L, norm in all cases by a factor of an order of magnitude. This
is due to numerical oscillations near v; =0 where the differential equa-
tions become singular. The error in computing the collision operator
decreases according to expected scaling for error in differentiation

1 Ngr-—1
—_ . (93)
< Ng, >

The quantities Ang, Ay, and Ap approach zero rapidly at (or better
than) the expected scaling for numerical integration errors

1\ Nort
—_ . (94)
< NEL >

We have carried out this test using multiple other values of N, and
demonstrated the same results. To demonstrate the attained perfor-
mance of the explicit collision operator, in Fig. 2, we plot the timing
data (in milliseconds) for completing the initialisation and evaluation
of the collision operator on 2 cores. The expected scaling for the initial-
isation is N SL, by virtue of the calculation of the integration weights for
the boundary data. The expected scaling for the evaluation of the col-
lision operator depends on which operation dominates the calculation.
If it is the computation of the boundary data (using equations (37)-(41)
with integration weights defined by (79)) it is NgL, whereas if it is the
elliptic solve or the assembly of the right hand side of equation (60)
then the scaling would be expected to be NéL due to the sparse nature
of these operations. We see that a scaling close to NEL is achieved for
the evaluation step.

To understand the dominant source of the numerical error in the col-
lision operator, we find it useful to plot the infinity and L, norm error

measures of the numerically calculated Rosenbluth potentials dH /dv),
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108 .
@ time/init (ms) -
# time/step (ms)
1051 o u2

EL

- N2

104
103
102
101!
4 8 16 32 64
NeL

Fig. 2. For the test shown in Fig. 1 carried out on 2 cores, timing data for the
initialisation (init) and a single evaluation of the collision operator (step) is
given in milliseconds.

1072
10~
106
® e.(dH/dvy) A
& .(dH/dv )
10-8 -~ £.,(d?G/dv dv))
* €a(d2G/dv})
¥ e.(d?Gldv3)
1071099 (g et

4 8 16 32 64
NeL

Fig. 3. The infinity norm of the error e, in computing the Rosenbluth potentials
for a shifted Maxwellian distribution, for Ngp =5.

Y ® &;(dH/dvy)
10-5 ; 4 &(dH/dv )
~ £,(d°G/dv  dv))
% &(d2Gldv})
10-7 ¥ £,(d?G/dv?)
— (L/Ng)er+?
107°
10—11

4 8 16
NeL

Fig. 4. The L, norm of the error ¢, in computing the Rosenbluth potentials for
a shifted Maxwellian distribution, for Ngg =5.

0H [ov,, 0*G/dv?, 0G/dv,, 0*G/dvdv,, and 9°G/dv,*. The exact
values are known for shifted Maxwellian distributions, see, e.g., Ap-
pendix B. We plot the error in our numerical calculation of the potentials
data for Ng; =5 in Figs. 3 and 4. The L, norm error is smaller by one
or two orders of magnitude than the infinity norm error. This is due
to numerical oscillations near v; = 0. However, in both cases the er-
rors decay to zero approximately at the rate given by (94). Note that
our numerical calculation of the boundary data does involve a numer-
ical differentiation of F, see equations (37)-(41), which may explain
why the rate of convergence is slower for some Rosenbluth potentials.
For completeness, in Appendix C we show the numerical error resulting
from computing the potentials from direct integration.
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Table 2

List of resolution parameters used in the numeri-
cal simulation of the self-collision operator, time
per step in the simulation in milliseconds, and the
number of cores used in the simulation.

Simulation #1 #2 #3

VH [Ces =V /Crer 2.25 3 4

Ng =N, =N;/2 4 8 16

v At 1073 1073 0.25x 1073
time/step (ms) 7 21 89

# cores 4 16 64

We take the results in Figs. 3 and 4 to indicate that the dominant
source of numerical error in evaluating the collision operator comes
from numerical differentiation, rather than from the errors in obtain-
ing the Rosenbluth potentials. Indeed, comparable levels of error to that
seen in computing the collision operator may be obtained by simply us-
ing the weak method to differentiate F to find the second derivatives in
U“ and v.

5.2. Relaxation to a Maxwellian distribution

It is important to test whether or not the numerical self-collision op-
erator can provide a stable, steady-state numerical solution which is
close to a Maxwellian distribution, with positive-definite entropy pro-
duction, equation (8). In this section we show tests where we integrate
in time the collisional relaxation problem (46), in weak form (60), both
with and without the numerical-error-correcting terms (82). We show
that the numerical-error-correcting terms are only necessary to ensure
that we can obtain a stable solution for low numerical resolution. We
impose only natural boundary conditions on F by neglecting the bound-
ary terms introduced by integration by parts in the projection onto the
weak basis. For explicit expressions for these terms, see equations (58)
and (59).

For the time evolving tests, we initialise the normalised distribution
function F to

2
vy + (v — cmf)2

I
Crzef /4

with ny a dimensionless factor calculated to ensure that the density
of F satisfies n = 1 (see equation (80)). The form in equation (95)
was chosen to provide a substantially non-Maxwellian initial distribu-
tion function. The time integration scheme is the Runge—Kutta strong-
stability-preserving 4-stage method [49-51]. We use a collision fre-
quency v, = y”nref/mfcfef, and we run for a time of 200/v,,. We use
the resolutions detailed in Table 2 to generate three different simula-
tions with increasing resolution and maximum velocity on grid, keeping
Ngr =5 and varying V=V and Ny, .

F =ngpexp |- ) (95)

5.2.1. Collisional evolution without numerical-error-correcting terms

In Fig. 5, we show time traces of the change in the density, parallel
flow and pressure over the course of a simulation where the numerical-
error-correcting terms are not employed. The pressure is not well con-
served at long times for low resolution. This is to be anticipated from
the results in Fig. 1 where the change in the pressure was not as small
as the change in the density. The velocity remains well conserved here
because the simulation is symmetric in v). Despite the lack of exact
numerical conservation of the moments, the collision operator without
numerical-error-correcting terms still pushes the distribution towards a
Maxwellian distribution, as shown in Fig. 6, where we show the infin-
ity norm of F — Fy,(t), Ly, (F — Fps()) = max, |F — Fy(1)|, where the
Maxwellian distribution is constructed with the time-evolving values of
the moments. The maximum in the infinity norm is taken over the set
of nodal values of F, F;,f . Simulations with increasing numerical reso-

lution have a smaller L (F - F M), suggesting a strong convergence.

10
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T ——
-
10-8 /// — |An(t)| #1 — |An(t)] #2 — |An(t)] #3

J — JAuy(t)] #1 — |Duy(t)] #2 — |Auy(t)] #3
10711 -- |Ap(t)| #1 -- |Ap(t)| #2 -- |Ap(t)| #3
10—14
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Fig. 5. The changes in the first three moments of the distribution function n_,
u ;> and p, as a result of time evolution with the Fokker-Planck collision opera-
tor defined by equation (60), i.e., without the numerical-error-correcting terms.
The pressure moment is not well conserved at low resolution, as would be ex-
pected from Fig. 1. The resolutions for simulations #1, #2, and #3 are provided
in Table 2.

100
10!
\
10723
\
3.
1073 b
104 \\\ Resolutions
\ —#1
_5 — #2
10 -- #3
0 25 50 75 100 125 150 175 200
Vsst

Fig. 6. The infinity norm of F — Fy(t), L, (F — Fy(1)) = max, |F = F,(1)|,
where the Maxwellian is computed at each timestep with the updated values of
the pressure, velocity and density moments. Despite the loss of pressure conser-
vation shown in Fig. 5, this figure indicates that F, becomes increasingly close
to a Maxwellian distribution. The resolutions for simulations #1, #2, and #3
are provided in Table 2.

These results show that numerical-error-correcting terms are thus only
required to fix the solution to a Maxwellian distribution with the exact
same density, mean velocity and pressure as the initial condition.

5.2.2. Collisional evolution with numerical-error-correcting terms

We now show the result of evolving equation (60) with the numerical-
error-correcting terms (82). In Fig. 7, we show time traces of the change
in the density, parallel flow and pressure over the course of the simu-
lation. The small errors in the moments increase with increasing reso-
lution, suggesting conservation accurate to machine precision, with the
error coming from round-off errors.

In Fig. 8 we show the infinity norm L, (F — Fj;(r)), demonstrating
a strong convergence, with very similar values for the infinity norm as
in Fig. 6. This suggests that the numerical-error-correcting terms act to
conserve the moments to machine-precision without a detrimental effect
on the shape of the distribution function.

Finally, in Fig. 9 we show the entropy production for the simulation
using numerical-error-correcting terms, calculated using the definition
(8) and using the following approximation for the logarithm of the dis-
tribution function

lnF=221n(|Fjrlf|+e)

rp ij

q)(fp)

o, 96)
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1077
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Fig. 7. The changes in the first three moments of the distribution function n,,
uj.» and p; as a result of time evolution with the Fokker-Planck collision op-
erator defined by equations (60) and (82) (i.e., with the numerical conserving
terms). The moments are well conserved, despite the low resolution used. The
resolutions for simulations #1, #2, and #3 are provided in Table 2.

Lo(F — Fpy)
10°
1071
\
10724 |\
\
Y
1073 I
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— #1
_5 \ — #2
10 - #3
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Vst

Fig. 8. The infinity norm of F — F,, L, (F — F,;) = max, |F — F,,|, for the
test including numerical-error-correcting terms. This figure indicates that F be-
comes increasingly close to F,, before converging on a steady-state numerical
Maxwellian distribution. The resolutions for simulations #1, #2, and #3 are
provided in Table 2.

S
107! Resolutions
—#
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- #3
1079
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Fig. 9. The entropy production S, for the test including numerical-error-
correcting terms. The entropy production S is defined in equation (8), where
In F is calculated using an approximation, equation (96). Note that S remains
positive and tends to 0. The resolutions for simulations #1, #2, and #3 are
provided in Table 2.

where ¢ = 10715, The approximation (96) is adequate if the solution
is converging with increasing resolution in a strong sense. Fig. 9 shows
positive-definite entropy production, although there is no guarantee that
S should be a positive-definite quantity in our numerical scheme.
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6. Discussion

In this paper we have investigated a particular finite-element,
continuous-Galerkin, weak-form representation of the explicit nonlinear
Fokker-Planck collision operator. We choose to use the Rosenbluth—
MacDonald-Judd form of the Fokker-Planck operator to permit the use
of sparse elliptic solves for determining the Rosenbluth potentials of the
nonlinear operator. We have demonstrated that this choice can lead to
an optimal scaling of the cost of evaluating the operator for a single
time step NSL, with N the number of elements in a single veloc-
ity space dimension, v or v,. We have implemented and tested the
method for arbitrary number of points per element N, > 2, but we
only present results for Ny, =5 for brevity. We also demonstrated a
successful time-evolving simulation with low resolution, demonstrating
that the self-collision operator can successfully relax the distribution
function to a stable steady state that is close to a Maxwellian distribu-
tion.

Table 2 indicates that the time per step of the collision operator is po-
tentially small enough to be of the correct order of magnitude to permit
the use of the collision operator in drift-kinetic turbulence simulations
where the spatial domain is fully distributed in memory. In future work,
the time evolving “moment kinetics” framework will be leveraged to in-
clude the Fokker-Planck collision operator in 1, 2, and 3 dimensional
simulations of plasma on open field lines. The extension of the operator
here to include cross-species collisions is readily achievable by adding
further contributions to the Rosenbluth potentials.

To help permit the collision operator to be routinely used alongside
other physics features we could further optimise the implementation
for speed to accommodate larger problem sizes. This might be achieved
with an extension from shared-memory-only parallelism to allow for
distributed-memory parallelisation across nodes. The use of distributed
memory to parallelise the collision operator calculation is motivated by
the observation that the dominant costs which contribute to the time
taken to evaluate the operator are the calculation of the boundary data
and the assembly of the right-hand side of equation (60). Both of these
steps are embarrassingly parallel.

Alternatively, we might consider potential optimisations of the nu-
merical method. First, the boundary data for the elliptic solves may be
determined using a multipole expansion of the formal definition of G
and H, equations (16) and (17), respectively. This method may permit
the evaluation of the boundary data using only an order unity num-
ber of velocity integrals, providing the maximum value of v and v}
on the grid, ¥} and V,, respectively, are sufficiently large. Second, the
boundary data may be evaluated at fewer locations and a larger-scale
interpolation of the Rosenbluth potentials on the boundary might be
constructed. This might save computation time without sacrificing sig-
nificant accuracy, if V| and V, are large enough for the Rosenbluth
potentials to have a simple functional form on the boundary. Third, one
could choose to use a different interpolation scheme defining the right-
hand side of equation (60). One could consider using the quadrature
rules commonly employed in spectral element codes that yield diago-
nal mass matrices [52] to reduce the number of operations due to the
nonlinear stiffness matrices defined by equations (61) and (62). Fourth,
to enable stable solutions with timestep sizes not limited by diffusion
in v and v, , one could consider replacing the explicit time-integration
method presented here with an implicit time integrator, see, e.g., [53].

Finally, it is useful to consider the benefits and limitations of the
finite-element method presented here for Fokker-Planck collisions, to
assess the suitability of the method for integration with a solver that
treats the Vlasov part of the kinetic equation and the large-scale elec-
tric and magnetic fields. The primary benefit of the higher-order finite
element method is the potential for spectrally accurate solutions in the
presence of boundary layers in velocity space. However, the method
does not guarantee positivity of the solution. The structure of the finite-
element mass and stiffness matrices means that sparse matrices can be
used. To store the matrices needed for the 2D Poisson solvers for the
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Rosenbluth potentials, we only require O (NéL NgR) matrix entries, and
for each spatial point we will require to store an order unity number of
arrays of the size of the 2D distribution function F, i.e., O (N2 NZ,)
values. Had we chosen to use velocity coordinates with explicit spatial
variation (e.g., magnetic moment u = Ui /2|B|), then the coefficients
in the equations for the Rosenbluth potentials would depend on spatial
position and we would need to store a matrix of size O (NELN(‘}‘R) for
each location in the spatial grid. Compared to a linear advection opera-
tor, the nonlinear collision operator in two velocity coordinates is more
expensive to evaluate. As a result, a model which combines both non-
linear collisions and linear advection will likely be limited by the cost
of evaluating the Fokker—Planck operator, unless care is taken to design
methods where the Fokker-Planck operator is evaluated infrequently.
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Appendix A. Evaluating the gyroaveraged functions

To see how to evaluate the required gyroaveraged functions I,
Iyo, Lg, and Iy, defined in equations (42)-(45), consider

1 /
Igo=— dy'. Al
sy /g (A1)
-
Expanding g, we have that
IGO(UH’ vy, Uﬂ’ Ui) =

r \? 2 ’2 ’ ’ 2 ’ (A.2)
7 (v”—vu) +uv)+u) —ZULULCOS(S —19) dy.

Here we can recognise an elliptic integral. Suitable rearrangement and
relabelling gives us

Igo(vy, vy, 0),0)) = 3U1/2E(m) (A.3)
T

with U and m functions of (u”, v, Ufl, Ui) defined by equations (20) and
(21), respectively, and the elliptic integral of the second kind is defined
by equation (23). Noting that e, - e’l =cos(d’ — 9), the integral for I
evaluates to

/ /
IGI(UH,UJ_,U”,UJ_)=

2 1/2 2—m
_fy 22 Em) - =
P 3m M3
with the elliptic integral of the first kind defined by equation (22), and
we have used the identity

2(1—m) (A4

—K(m)> ,
m

/2
/(1 —2sin? ) V1 —msin’ 0 do =
J (A.5)
2— 2(1—-m
22 )~ 25 K
The remaining integrals are
Iyo= 2012 K (m), (A.6)
¥
Iy, -2y (m—_zK(m)+ 2E(m)> (A7)
V3 m m
and
2 _ —
Iyp=2u-12 (3m=8mE8 ey dm 8E(m)> : (A.8)
T 3m? 3m?2
Here we have used that
/2
/ (1-2sin0) (1-msin?0) /> do =
s (A.9)
=2 g (my+ 2 E(m),
m m
and
n/2
2 _
/ (1-2sin%0) (1-msin>0)”"*do =
0 (A.10)
3m?* —8m+8 4m -8
2T Km+ E(m).
3m? (m) 3m2 (m)
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Appendix B. Rosenbluth potentials for shifted-Maxwellian
distributions

For the shifted Maxwellian distribution of species s, given by equa-
tion (9), the Rosenbluth potential G (v) is given by [4] (Chpt. 5, Sec.
5.2, eqn. (5.49))

nog [ 2
G, == Lexp[-n] + (1 + 20D erf) ). (B.1)
n N
and
Hyw = s @), (B.2)
Uth,s n

with = |v —u|/vg, ;. The results for derivatives of G; and H may be
obtained analytically by direct differentiation. In the drift-kinetic limit
ug = u”“?b.

Appendix C. Computing the Rosenbluth potentials by direct
integration

A more direct, but less efficient, method for computing the Rosen-
bluth potentials is to use the integral expressions (37)-(41) for all (u” ,0))
rather than just the boundary values. Here we show the results of such a
calculation to demonstrate the correct implementation of (37)-(41) and
the results in Appendix A.

10—2,
10—4,
® &.(dH/dv))
& £.(dH/dv ) =
1061 we@Gvia) gy
* €(d?Gldvf)
¥ £.(d?G/dv?)
10-8 — (1/Ng)Ner =1
— (1/Ng)Ner*1
2 4 8 16 32

NeL

Fig. C.10. The infinity norm of the errors ¢ of the potentials dH /dvy, 0H /v, ,
0G/dv,, 9*°G/ov,?, 0°G/dv,?, 9*G/dv, v, for a Maxwellian input distribu-
tion, compared to the expected scalings for differentiation and integration, equa-
tions (93) and (94), respectively.

In Fig. C.10 we plot the infinity-norm errors on the calculation by
direct integration of the derivatives of the Rosenbluth potentials for a
Maxwellian input, for which the results are known analytically [4] (see,
e.g., Appendix B). We see that the integration error becomes small for
increasing resolution, indicating that the definitions of the integrands
are correct. However, the errors eventually deviate from the expected
scaling. This is due to problems carrying out the integral accurately in
the region on the integrand where v’ is such that F,(v') ~ O(1). This
problem might be addressed with an improved integration quadrature,
or by using higher than double precision to compute the integrand. Note
that this difficulty does not affect the integration of the potentials in
the far-field region at the velocity space boundary — meaning that near-
machine-precision accuracy can be achieved in the numerical method
presented in the main text. This is evident from Figs. 3 and 4.

Data availability

Data supporting the results presented in this study are publicly avail-
able https://doi.org/10.5287 /ora-g7mrxgee;j.
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