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Collisions between particles in a low density plasma are described by the Fokker–Planck collision operator. In 
applications, this nonlinear integro-differential operator is often approximated by linearised or ad-hoc model 
operators due to computational cost and complexity. In this work, we present an implementation of the nonlinear 
Fokker–Planck collision operator written in terms of Rosenbluth potentials in the Rosenbluth–MacDonald--Judd 
(RMJ) form. The Rosenbluth potentials may be obtained either by direct integration or by solving partial 
differential equations (PDEs) similar to Poisson’s equation: we optimise for performance and scalability by 
using sparse matrices to solve the relevant PDEs. We represent the distribution function using a tensor-product 
continuous-Galerkin finite-element representation and we derive and describe the implementation of the weak 
form of the collision operator. We present tests demonstrating a successful implementation using an explicit time 
integrator and we comment on the speed and accuracy of the operator. Finally, we speculate on the potential for 
applications in the current and next generation of kinetic plasma models.

1. Introduction

A low density plasma is one that can be accurately described by 
the one-point particle distribution function 𝐹𝑠(𝐫,𝐯, 𝑡). The distribu

tion function provides us with the number of particles 𝛿 𝑛(𝐫,𝐯, 𝑡) =
𝐹𝑠(𝐫,𝐯, 𝑡) 𝑑3𝐫𝑑3𝐯 of species 𝑠 at a time 𝑡 in the phase space volume 
around the phase space position (𝐫,𝐯), with 𝐫 the particle position and 
𝐯 the particle velocity. An equation for the time evolution of the distri

bution function may be obtained from the BBGKY hierarchy [1], which 
converts an 𝑁 -body Hamiltonian system describing a plasma or gas into 
a statistical description. The resulting equation has the form

𝜕𝐹𝑠

𝜕𝑡 
+ 𝐯 ⋅∇𝐹𝑠 +

𝑍𝑠𝑒

𝑚𝑠

(𝐄+ 𝐯 ×𝐁) ⋅
𝜕𝐹𝑠

𝜕𝐯 
=
∑
𝑠′

𝐶𝑠𝑠′
[
𝐹𝑠,𝐹𝑠′

]
,

(1)
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where the left-hand side of the equation is the Vlasov operator, account

ing for the acceleration of particles by the large-scale electromagnetic 
fields. The Boltzmann collision operator on the right-hand side of the 
equation accounts for the interactions of particles of species 𝑠 with lo

cal small-scale electromagnetic fields generated by interactions between 
particles of species 𝑠′ at the same position 𝐫. Here, 𝑚𝑠 is the species mass, 
𝑍𝑠 is the species charge number, 𝑒 is the unit charge, and 𝐄 and 𝐁 are 
the electric and magnetic fields, respectively. Equation (1) is solved with 
the boundary condition that 𝐹𝑠(𝐯)→ 0 as |𝐯|→∞ and an appropriate 
boundary condition in 𝐫.

If the interaction cross section is chosen to be the 1∕𝑟 electrostatic 
potential, then the collision operator becomes the well-known Fokker--

Planck collision operator [2--5], which we introduce here using the form 
due to Landau:
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𝐶𝑠𝑠′
[
𝐹𝑠,𝐹𝑠′

]
=

𝛾𝑠𝑠′

𝑚𝑠

𝜕

𝜕𝐯
⋅
{
∫

𝜕2𝑔 
𝜕𝐯𝜕𝐯

⋅
[
𝐹𝑠′ (𝐯′)
𝑚𝑠

𝜕𝐹𝑠

𝜕𝐯 
−

𝐹𝑠(𝐯)
𝑚𝑠′

𝜕𝐹𝑠′

𝜕𝐯′

]
𝑑3𝐯′

}
,

(2)

where

𝛾𝑠𝑠′ =
2𝜋𝑍2

𝑠
𝑍𝑠′

2𝑒4 lnΛ𝑠𝑠′

(4𝜋𝜖0)2
, (3)

with lnΛ𝑠𝑠′ the Coulomb logarithm [2--5],

𝑔 = |𝐯− 𝐯′|, (4)

and ∫ 𝑑3𝐯′ denotes a definite integral over all 𝐯′ . Note that it is common 
to write 𝜕2𝑔∕𝜕𝐯𝜕𝐯 = (𝐈𝑔2 −𝐠𝐠)∕𝑔3, with 𝐠 = 𝐯−𝐯′ and 𝐈 the identity ma

trix. The operator (2) is widely used in plasma physics and magnetic con

finement fusion studies [4,5]. Despite the complex integro-differential 
structure of the operator, the Landau form of the Fokker–Planck oper

ator (2) possesses four key properties that we note. First, the collision 
operator conserves particle density, i.e.,

∫ 𝐶𝑠𝑠′
[
𝐹𝑠,𝐹𝑠′

]
𝑑3𝐯 = 0. (5)

Second, the collision operator conserves the total momentum in a colli

sion, i.e.,

∫
(
𝑚𝑠𝐯 𝐶𝑠𝑠′

[
𝐹𝑠,𝐹𝑠′

]
+𝑚𝑠′𝐯 𝐶𝑠′𝑠

[
𝐹𝑠′ , 𝐹𝑠

])
𝑑3𝐯 = 𝟎. (6)

The same is true for the total energy:

∫
(1
2
𝑚𝑠|𝐯|2 𝐶𝑠𝑠′

[
𝐹𝑠,𝐹𝑠′

]
+ 1

2
𝑚𝑠′ |𝐯|2 𝐶𝑠′𝑠

[
𝐹𝑠′ , 𝐹𝑠

])
𝑑3𝐯

= 0.
(7)

Finally, Boltzmann’s H-theorem applied to same-species collisions [5] 
proves that the entropy production

𝑆̇𝑠 = −∫ ln𝐹𝑠 𝐶𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
𝑑3𝐯 ≥ 0, (8)

with equality if and only if 𝐹𝑠 is a Maxwellian distribution described by 
the local density 𝑛𝑠, mean velocity 𝐮𝑠, and temperature 𝑇𝑠, i.e.,

𝐹𝑠 = 𝐹𝑀𝑠 =
𝑛𝑠

𝜋3∕2𝑣3
th,𝑠

exp

[
−
(𝐯− 𝐮𝑠

𝑣th,𝑠

)2
]
, (9)

with 𝑣th,𝑠 =
√
2𝑇𝑠∕𝑚𝑠.

Implementing the nonlinear Fokker–Planck collision operator nu

merically is challenging because of the nonlinear and integro-differential 
nature of the operator. For a given distribution function 𝐹𝑠 , we must 
carry out a series of difficult integrals to find the coefficients of the 
operator. Whilst previous authors have implemented the nonlinear 
Fokker–Planck collision operator, see, e.g., [6--13], including implemen

tations of the underlying Boltzmann operator [14], it is more typical to 
either (i) write down an ad-hoc diffusive model operator which may be 
solved rapidly, yet still has the conservation or H-theorem properties 
desired for the physics of interest [15--18]; or (ii) use asymptotic expan

sions in physics parameters to linearise the kinetic equation (including 
both the collision operator and the convective left hand side) around 
a known Maxwellian distribution function for use in a specific applica

tion (e.g., transport theory or collisional closures [4,5,19,20]). Such a 
linearised model that solves for small perturbations to 𝐹𝑠 is often re

ferred to as a 𝛿 𝐹 model, in contrast to full-𝐹 models that aim to solve 
for the entire distribution function without linearisations.

In applications relating to hot plasma turbulence on closed magnetic 
field lines, collisional relaxation timescales are typically long compared 
to the nonlinear turnover time of the turbulent eddies: energy is injected 
into the turbulence at velocity scales comparable to the thermal speed, 
and energy is dissipated at much smaller velocity scales set by veloc

ity diffusion via inter-particle collisions. When the dissipation scale is 

well separated from the injection scale -- near-collisionless plasma tur

bulence -- details of the velocity-space dissipation mechanism do not 
affect the large-scale turbulent transport of interest. In these situations, 
a linearised Fokker–Planck operator or an ad-hoc model operator is an 
appropriate and relatively inexpensive operator that captures the dissi

pation of fine velocity-space structure [16,17].

Systems with closed magnetic field lines are known to be approx

imately in thermal equilibrium because the system is approximately 
closed [20,21], meaning that the distribution function is never far from 
the Maxwellian around which the collision operator is usually linearised. 
However, in certain applications, the distribution function of the plasma 
may be far from Maxwellian: for example, in beam-driven plasmas 
[22,23], or in the scrape-off layer of a tokamak plasma [24--28]. In the 
latter example, this is due to the presence of the divertor plate or lim

iter [29], which intercepts the field lines at the edge of the plasma and 
so makes the system open, preventing local thermal equilibrium. In ad

dition, hot particles may transit rapidly from the hot, closed-magnetic

field-line region of the plasma to the open magnetic field lines at the 
edge where the plasma is expected to be cooler, potentially resulting in 
a bimodal distribution of particle energies: the steady state distribution 
is not known. Therefore, it is not clear whether or not a model or lin

earised collision operator is adequate for modelling the plasma on open 
field lines. The only rigorous choice is the nonlinear Fokker–Planck op

erator.

In this paper we describe the implementation of the nonlinear 
Fokker–Planck operator appropriate for use in a drift-kinetic [30] model 
of a magnetised plasma. We will choose a higher-order continuous

Galerkin (𝐶0) finite-element representation for the distribution func

tion to permit a spectrally-accurate polynomial representation whilst 
retaining the ability to describe boundary layers in velocity space. This 
representation does not attempt to guarantee positivity of 𝐹𝑠. The spe

cialisation to drift-kinetics allows us to consider only gyrotropic dis

tribution functions, which, due to rapid gyromotion around the field 
line, are independent of the gyrophase angle 𝜗 that measures the posi

tion of the particle in the plane perpendicular to the magnetic field. We 
support 𝐹𝑠 = 𝐹𝑠(𝑣∥, 𝑣⟂), with the cylindrical velocity space coordinates 
(𝑣∥, 𝑣⟂, 𝜗) defined by

𝑣∥ = 𝐯 ⋅ 𝐛, 𝑣⟂ = |𝐯− 𝑣∥𝐛|, tan𝜗 = −
𝐯 ⋅ 𝐞2
𝐯 ⋅ 𝐞1

, (10)

or equivalently,

𝐯 = 𝑣∥𝐛+ 𝑣⟂𝐞⟂, (11)

with 𝐞⟂ = (cos𝜗𝐞1 − sin𝜗𝐞2). The basis vector 𝐛 = 𝐁∕|𝐁| is the unit vec

tor in the direction of the magnetic field. The vectors 𝐞1 and 𝐞2 are 
orthogonal to 𝐛 and satisfy

𝐛 ⋅ 𝐞1 × 𝐞2 = 1, 𝐞1 ⋅ 𝐛 = 0, 𝐞2 ⋅ 𝐛 = 0. (12)

The numerical implementation described in this paper ensures the 
near-exact satisfaction of the conservation properties (5)-(7) by achiev

ing high accuracy with the weak formulations and adequate numerical 
resolution. To avoid carrying out costly numerical integration in 𝐯′ in 
the whole of the velocity space, as required by the definition (2), we use 
the Rosenbluth–MacDonald--Judd (RMJ) form of the collision operator 
[3], given in the next section, where the velocity integrals are rewrit

ten as Rosenbluth potentials: the Rosenbluth potentials may be obtained 
by solving elliptic PDEs using the higher-order finite-element method, 
with boundary conditions obtained by direct integration using the for

mal definitions of the Rosenbluth potentials at the limits of the velocity 
space. This numerical strategy optimises the scheme for scalability.

We emphasise that the novel contribution of this work is the 
demonstration that higher-order finite-element methods such as those 
used by mature computational fluid dynamics frameworks, e.g., [31], 
can achieve a scalable, conservative implementation of the nonlinear 
Fokker–Planck collision operator. Higher-order finite-element methods 
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which can achieve accuracy by refinement of both element size and 
polynomial order, ℎ-𝑝 refinement, should be considered as numerical 
methods for models within plasma physics [32]. The remainder of this 
paper is structured as follows. In the next section, we write the colli

sion operator in the RMJ form. In section 3, we obtain the weak-form 
representation of the problem that we will implement numerically. In 
section 4 we prescribe numerical-error-correcting terms to ensure that 
conservative properties (5)-(7) are satisfied to machine precision in the 
time advance. In section 5 we provide results from numerical tests of our 
implementation. In section 6, we discuss the outlook for the use of the 
operator in a production code. Appendix A, Appendix B and Appendix C
contain useful results pertaining to the calculation of the Rosenbluth po

tentials.

2. RMJ form of the collision operator

The operator in the RMJ form [3] in (𝑣∥, 𝑣⟂) coordinates is most 
usefully written in terms of collisional fluxes:

𝐶𝑠𝑠′
[
𝐹𝑠,𝐹𝑠′

]
=

𝜕Γ‖
𝜕𝑣∥

+ 1 
𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂Γ⟂

)
, (13)

where the fluxes are defined by

Γ‖ = 𝛾𝑠𝑠′

𝑚2
𝑠

(
𝜕𝐹𝑠

𝜕𝑣∥

𝜕2𝐺𝑠′

𝜕𝑣∥
2 +

𝜕𝐹𝑠

𝜕𝑣⟂

𝜕2𝐺𝑠′

𝜕𝑣⟂𝜕𝑣∥
− 2

𝑚𝑠

𝑚𝑠′
𝐹𝑠

𝜕𝐻𝑠′

𝜕𝑣∥

)
, (14)

and

Γ⟂ =
𝛾𝑠𝑠′

𝑚2
𝑠

(
𝜕𝐹𝑠

𝜕𝑣∥

𝜕2𝐺𝑠′

𝜕𝑣∥𝜕𝑣⟂
+

𝜕𝐹𝑠

𝜕𝑣⟂

𝜕2𝐺𝑠′

𝜕𝑣⟂
2 − 2

𝑚𝑠

𝑚𝑠′
𝐹𝑠

𝜕𝐻𝑠′

𝜕𝑣⟂

)
, (15)

and the Rosenbluth potentials are

𝐺𝑠′ (𝐯) = ∫ 𝐹𝑠′ (𝐯′)𝑔 𝑑3𝐯′ (16)

and

𝐻𝑠′ (𝐯) = ∫
𝐹𝑠′ (𝐯′)

𝑔
𝑑3𝐯′. (17)

In the drift-kinetic limit the largest piece of the distribution func

tions is independent of gyroangle [4], i.e., 𝐹𝑠 = 𝐹𝑠(𝑣∥, 𝑣⟂) and 𝐹𝑠′ =
𝐹𝑠′ (𝑣∥, 𝑣⟂). In terms of (𝑣∥, 𝑣⟂) coordinates, for gyrotropic distributions 
the Rosenbluth potentials simplify to

𝐺𝑠′ =

∞ 

∫
−∞

∞ 

∫
0 

4𝑈1∕2𝐸(𝑚)𝐹𝑠′ (𝑣′‖, 𝑣′⟂)𝑣′⟂ 𝑑𝑣′⟂𝑑𝑣
′‖, (18)

and

𝐻𝑠′ =

∞ 

∫
−∞

∞ 

∫
0 

4𝑈−1∕2𝐾(𝑚)𝐹𝑠′ (𝑣′‖, 𝑣′⟂)𝑣′⟂ 𝑑𝑣′⟂𝑑𝑣
′‖, (19)

where

𝑈 =𝑈 (𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂) =
(
𝑣∥ − 𝑣′‖

)2
+
(
𝑣⟂ + 𝑣′⟂

)2
, (20)

and

𝑚 =𝑚(𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂) = 4𝑣⟂𝑣′⟂
𝑈 (𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂) , (21)

and we have used the definitions of the complete elliptic integral of the 
first and second kinds,

𝐾(𝑚) =

𝜋∕2

∫
0 

1 √
1 −𝑚 sin2 𝜃

𝑑𝜃 (22)

and

𝐸(𝑚) =

𝜋∕2

∫
0 

√
1 −𝑚 sin2 𝜃 𝑑𝜃, (23)

respectively.

2.1. Finding elliptic problems for the Rosenbluth potentials

As noted in the original derivation by Rosenbluth, MacDonald, and 
Judd [3], the potentials defined by equations (16) and (17) may also be 
defined as the solutions of the elliptic problems

𝜕2𝐺 
𝜕𝑣∥

2 + 1 
𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐺 
𝜕𝑣⟂

)
= 2𝐻, (24)

and

𝜕2𝐻

𝜕𝑣∥
2 + 1 

𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐻 
𝜕𝑣⟂

)
= −4𝜋𝐹 . (25)

Given a known 𝐹 , we recognise the Poisson’s equation for the Rosen

bluth potential 𝐻 , and the biharmonic equation for 𝐺. Obtaining the 
Rosenbluth potentials through an elliptic solve is potentially numeri

cally advantageous compared to evaluating the formal definitions di

rectly, see, e.g., (16) and (17). This is because several algorithms with 
O
(
𝑁2) or O

(
𝑁2 ln𝑁2) complexity for solving Poisson equations are 

known [33--36], where 𝑁 is of order the number of points in the array 
that represents one of the velocity dimensions, whereas a direct evalu

ation of the formal definition leads to a scaling of O
(
𝑁4) due to the 

need to evaluate an integral with a kernel function that is a function of 
(𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂).

In practice, for a finite simulation domain, boundary conditions for 
the elliptic solve must be supplied on the bounding surfaces where 
𝑣∥ = ±𝑉‖ and 𝑣⟂ = 𝑉⟂, with 𝑉‖ the maximum |𝑣∥| on grid, and 𝑉⟂ the 
maximum 𝑣⟂ on grid. This necessitates O

(
𝑁3) operations to obtain the 

boundary data through direct integration using the formal definition 
of the appropriate Rosenbluth potential. Parallelisation over many pro

cesses may be able to alleviate the cost of obtaining boundary data, as 
this part of the calculation is embarrassingly parallel.

Having motivated the use of sparse elliptic solvers to find the Rosen

bluth potentials, it remains to formulate the appropriate PDEs for the 
derivatives of the Rosenbluth potentials appearing in the fluxes (14) and 
(15). We choose to solve for the derivatives of the Rosenbluth potentials 
directly: this avoids derivatives in the scheme higher than second or

der, which improves numerical accuracy. Henceforth, we will also refer 
to the derivatives of the Rosenbluth potentials as Rosenbluth poten

tials. First, we introduce the shorthand notation 𝐺20 = 𝜕2𝐺∕𝜕𝑣∥2, 𝐺02 =
𝜕2𝐺∕𝜕𝑣⟂2, 𝐺11 = 𝜕2𝐺∕𝜕𝑣∥𝜕𝑣⟂, 𝐻10 = 𝜕𝐻∕𝜕𝑣∥, and 𝐻01 = 𝜕𝐻∕𝜕𝑣⟂. 
Direct differentiation of equations (24) and (25) yields the required dif

ferential definitions of the Rosenbluth potentials. Taking care to write 
the results in forms that are easy to integrate by parts through the iden

tity

𝜕2𝐺 
𝜕𝑣⟂

2 = 1 
𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐺 
𝜕𝑣⟂

)
− 1 

𝑣⟂

𝜕𝐺 
𝜕𝑣⟂

, (26)

and making liberal use of equations (24) and (25), we find that useful 
equations for the Rosenbluth potentials derived from 𝐺 are

𝜕2𝐺20

𝜕𝑣∥
2 + 1 

𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐺20
𝜕𝑣⟂

)
= 2𝜕

2𝐻

𝜕𝑣∥
2 , (27)

𝜕2𝐺11
𝜕𝑣∥

2 + 1 
𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐺11
𝜕𝑣⟂

)
−

𝐺11

𝑣2⟂
= 2 𝜕2𝐻 

𝜕𝑣∥𝜕𝑣⟂
, (28)

and
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𝜕2𝐺02

𝜕𝑣∥
2 + 1 

𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐺02
𝜕𝑣⟂

)
−

4𝐺02

𝑣2⟂

= 2 
𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐻 
𝜕𝑣⟂

)
− 2 

𝑣⟂

𝜕𝐻 
𝜕𝑣⟂

− 4𝐻
𝑣2⟂

+
2𝐺20

𝑣2⟂
.

(29)

Note that we must obtain 𝐻 via (25) to make use of equations (27) and 
(28). Equation (29) also requires the solution to (27). For the derivatives 
of 𝐻 , we similarly obtain the PDEs

𝜕2𝐻10

𝜕𝑣∥
2 + 1 

𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐻10
𝜕𝑣⟂

)
= −4𝜋 𝜕𝐹 

𝜕𝑣∥
, (30)

and

𝜕2𝐻01

𝜕𝑣∥
2 + 1 

𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂

𝜕𝐻01
𝜕𝑣⟂

)
−

𝐻01

𝑣2⟂
= −4𝜋 𝜕𝐹 

𝜕𝑣⟂
. (31)

Note that we have written the elliptic equations (27), (28), (29), 
(30), and (31), in a form that will be amenable to integration by parts in 
the test-function analysis required for a weak-form implementation. The 
numerical implementation of these equations first uses equations (25), 
(30) and (31) to find 𝐻 and its derivatives from 𝐹 . Then, equations 
(27), (28), and (29) may be solved for the derivatives of 𝐺.

2.2. Evaluating the Rosenbluth potential boundary data

To obtain the boundary data required to solve the elliptic problems 
(27), (28), (29), (30), and (31), we must obtain formal definitions for 
each of the required Rosenbluth potentials by differentiating the formal 
definitions (16) and (17). We use integration by parts to obtain formal 
definitions where the integration kernels are very similar to those ap

pearing in the integrals (16) and (17), which can be carried out with 
known methods once they are expressed in the forms (18) and (19).

We start by computing

𝜕𝐺𝑠′

𝜕𝐯 
= ∫ 𝐹𝑠′ (𝐯′)

𝜕𝑔

𝜕𝐯 
𝑑3𝐯′ = −∫ 𝐹𝑠′ (𝐯′)

𝜕𝑔 
𝜕𝐯′

𝑑3𝐯′, (32)

where we have used that 𝜕𝑔∕𝜕𝐯 = −𝜕𝑔∕𝜕𝐯′. Using integration by parts, 
and that 𝐹𝑠′ (𝐯′)→ 0 as |𝐯′|→∞, we find that

𝜕𝐺𝑠′

𝜕𝐯 
= ∫

𝜕𝐹𝑠′

𝜕𝐯′
𝑔 𝑑3𝐯′. (33)

We can use the same method to find that

𝜕𝐻𝑠′

𝜕𝐯 
= ∫

𝜕𝐹𝑠′

𝜕𝐯′
1 
𝑔
𝑑3𝐯′. (34)

Direct differentiation of equation (33) shows that

𝜕2𝐺𝑠′

𝜕𝐯𝜕𝐯 
= ∫

𝜕𝐹𝑠′

𝜕𝐯′
𝐯− 𝐯′
𝑔

𝑑3𝐯′. (35)

Equations (33) and (34) are vector equations and (35) is a tensor 
equation. We extract the required results by taking dot products with 
the unit vectors 𝐛 and 𝐞⟂, noting that

𝜕

𝜕𝐯
= 𝐛 𝜕

𝜕𝑣∥
+ 𝐞⟂

𝜕

𝜕𝑣⟂
+

𝐞⟂ × 𝐛
𝑣⟂

𝜕

𝜕𝜗
. (36)

Assuming that 𝐹𝑠′ = 𝐹𝑠′ (𝑣′‖, 𝑣′⟂), which implies that 𝐺𝑠′ = 𝐺𝑠′ (𝑣∥, 𝑣⟂), 
we find that

𝜕2𝐺𝑠′

𝜕𝑣∥𝜕𝑣⟂
= 2𝜋

∞ 

∫
−∞

∞ 

∫
0 

𝜕2𝐹𝑠′

𝜕𝑣′‖𝜕𝑣′⟂ 𝐼𝐺1 𝑣
′
⟂𝑑𝑣

′
⟂𝑑𝑣

′‖, (37)

𝜕𝐻𝑠′

𝜕𝑣∥
= 2𝜋

∞ 

∫
−∞

∞ 

∫
0 

𝜕𝐹𝑠′

𝜕𝑣′‖ 𝐼𝐻0 𝑣
′
⟂𝑑𝑣

′
⟂𝑑𝑣

′‖, (38)

𝜕𝐻𝑠′

𝜕𝑣⟂
= 2𝜋

∞ 

∫
−∞

∞ 

∫
0 

𝜕𝐹𝑠′

𝜕𝑣′⟂
𝐼𝐻1 𝑣

′
⟂𝑑𝑣

′
⟂𝑑𝑣

′‖, (39)

𝜕2𝐺𝑠′

𝜕𝑣∥
2 = 2𝜋

∞ 

∫
−∞

∞ 

∫
0 

𝜕𝐹𝑠′

𝜕𝑣′‖ (𝑣∥ − 𝑣′‖)𝐼𝐻0 𝑣
′
⟂𝑑𝑣

′
⟂𝑑𝑣

′‖, (40)

and

𝜕2𝐺𝑠′

𝜕𝑣⟂
2 = 2𝜋

∞ 

∫
−∞

∞ 

∫
0 

𝜕𝐹𝑠′

𝜕𝑣′⟂
(𝑣⟂𝐼𝐻1 − 𝑣′⟂𝐼𝐻2) 𝑣′⟂𝑑𝑣

′
⟂𝑑𝑣

′‖, (41)

where

𝐼𝐺1 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑔 (𝐞⟂ ⋅ 𝐞′⟂) 𝑑𝜗
′, (42)

𝐼𝐻0 =
1 
2𝜋

𝜋

∫
−𝜋 

1 
𝑔
𝑑𝜗′, (43)

𝐼𝐻1 =
1 
2𝜋

𝜋

∫
−𝜋 

𝐞⟂ ⋅ 𝐞′⟂
𝑔

𝑑𝜗′, (44)

and

𝐼𝐻2 =
1 
2𝜋

𝜋

∫
−𝜋 

(𝐞⟂ ⋅ 𝐞′⟂)
2

𝑔
𝑑𝜗′. (45)

The main advantage of this formulation is that the integrands have 
rather simple numerators and denominators. Note that inspection of 
the integral (19) reveals that the integrand there diverges logarithmi

cally as 𝑚→ 1 since 𝐾 → ln(4∕
√
1 −𝑚) as 𝑚→ 1. The kernels (43)-(45) 

also diverge logarithmically where 𝑣′‖ = 𝑣∥ and 𝑣′⟂ = 𝑣⟂: this kind of di

vergence can be handled numerically by a change of variables in the 
affected elements [37]. The functions 𝐼𝐺1, 𝐼𝐻0, 𝐼𝐻1, and 𝐼𝐻2 are eval

uated explicitly in Appendix A.

3. Obtaining the weak formulation of the problem

We consider the collisional relaxation problem

𝜕𝐹

𝜕𝑡 
=

𝜕Γ‖
𝜕𝑣∥

+ 1 
𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂Γ⟂

)
. (46)

in 𝑣∥ ∈ [−𝑉‖, 𝑉‖], 𝑣⟂ ∈ [0, 𝑉⟂] and 𝑡, where 𝑉‖ and 𝑉⟂ are the max

imum values of 𝑣∥ and 𝑣⟂ on the grid, respectively. The solution 
𝐹 = 𝐹 (𝑣∥, 𝑣⟂, 𝑡), and the fluxes Γ‖ = Γ‖(𝑣∥, 𝑣⟂, 𝑡) = Γ‖[𝐹 (𝑣∥, 𝑣⟂, 𝑡)] and 
Γ⟂ = Γ⟂(𝑣∥, 𝑣⟂, 𝑡) = Γ⟂[𝐹 (𝑣∥, 𝑣⟂, 𝑡)] are functionals of 𝐹 . We note that 
the fluxes in velocity space are defined explicitly by equations (14) and 
(15). As we only consider the self-collision operator in what follows, we 
neglect the species index 𝑠 in the following analysis where it is conve

nient to do so.

We divide the domain into a rectangular grid of 𝑁2D =𝑁‖𝑁⟂ ele

ments. We use 𝑁‖ 1D elements in the 𝑣∥ direction and 𝑁⟂ 1D elements 
in the 𝑣⟂ direction. Each 2D element is a tensor product of two 1D ele

ments. On each 1D element we represent the function with Lagrange 
polynomials of order 𝑁P using the 𝑁GR = 𝑁P + 1 (normalised) grid 
points within the elements

𝑥𝑗 ∈ {𝑥0, 𝑥1, ..., 𝑥𝑁P−1, 𝑥𝑁P
}, (47)

with 𝑥0 = −1 and 𝑥𝑁P
= 1 (Gauss–Legendre--Lobatto quadrature points 

[38]) on elements that do not include 𝑣⟂ = 0. On the element including 
𝑣⟂ = 0, we take 𝑥𝑁P

= 1 but we use Gauss–Legendre--Radau quadrature 
points to ensure that 𝑥0 > −1 [38].

The transformation between (𝑣∥, 𝑣⟂) and the local coordinate 𝑥(𝑟) in 
the 𝑟th 1D element is

𝑣∥ = 𝑠
(𝑟)‖ 𝑥(𝑟) + 𝑐

(𝑟)‖ , 𝑣⟂ = 𝑠
(𝑟)
⟂ 𝑥(𝑟) + 𝑐

(𝑟)
⟂ (48)
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where 𝑠(𝑟)‖ , 𝑐(𝑟)‖ , 𝑠(𝑟)⟂ and 𝑐(𝑟)⟂ are constants in each element (labelled here 
by 𝑟) which may vary between elements, and 𝑥(𝑟) ∈ [−1,1] for all 𝑟, 
except in the element that includes the origin of 𝑣⟂ , which has 𝑥(𝑟) ∈
(−1,1].

3.1. The basis functions

We introduce tensor-product 2D basis functions

Φ(𝑟𝑝)
𝑗𝑘

(
𝑣∥, 𝑣⟂

)
= 𝜑

(𝑟)
𝑗

(
𝑣∥
)
𝜑
(𝑝)
𝑘

(
𝑣⟂

)
, (49)

where the 1D basis functions are

𝜑
(𝑟)
𝑗

(𝑣) = 𝑙𝑗
(
𝑥(𝑟) (𝑣)

)
Θ
(
𝑣− 𝑣

(
𝑥
(𝑟)
0

))
Θ
(
𝑣

(
𝑥
(𝑟)
𝑁P

)
− 𝑣

)
, (50)

with 𝑙𝑗 the 𝑗th Lagrange polynomial on the element, 𝑣 a placeholder for 
either 𝑣∥ or 𝑣⟂, and Θ(𝑣) the Heaviside function. Expanding the solution 
in these basis functions, we write

𝐹 (𝑣∥, 𝑣⟂) =
∑
𝑟,𝑝 

∑
𝑗,𝑘 

𝐹
𝑟𝑝

𝑗𝑘
Φ(𝑟𝑝)

𝑗𝑘
(𝑣∥, 𝑣⟂)

=
∑
𝑟,𝑝 

∑
𝑗,𝑘 

𝐹
𝑟𝑝

𝑗𝑘
𝜑
(𝑟)
𝑗
(𝑣∥)𝜑

(𝑝)
𝑘
(𝑣⟂),

(51)

with

𝐹
𝑟𝑝

𝑗𝑘
= 𝐹

(
𝑣∥

(
𝑥
(𝑟)
𝑗

)
, 𝑣⟂

(
𝑥
(𝑝)
𝑘

))
. (52)

Note that the basis functions have the cardinality property

𝜑
(𝑟)
𝑗

(
𝑣

(
𝑥
(𝑝)
𝑘

))
= 𝛿𝑗𝑘𝛿𝑟𝑝, (53)

with 𝛿𝑗𝑘 = 1 if 𝑗 = 𝑘 and 0 if 𝑗 ≠ 𝑘. This choice of basis functions does 
not guarantee positivity of the distribution function 𝐹 -- this scheme 
relies on spectral accuracy implied by the higher-order polynomial rep

resentation to obtain convergence to physical solutions. In particular, 
note that the interpolant for 𝐹 may be negative even if 𝐹 𝑟𝑝

𝑗𝑘
are positive, 

due to oscillations in the Lagrange polynomial basis functions.

3.2. The projection onto the polynomial basis

To project equation (46) onto the basis functions Φ(𝑟𝑝)
𝑗𝑘

(
𝑣∥, 𝑣⟂

)
, we 

multiply by the basis function Φ(𝑞𝑠)
𝑚𝑛

(
𝑣∥, 𝑣⟂

)
, and integrate over ve

locity space corresponding to a single 2D element. The limits of this 
element are 𝑣(𝑞)‖𝑈 = 𝑣∥

(
𝑥
(𝑞)
𝑁P

)
, 𝑣(𝑞)‖𝐿 = 𝑣∥

(
𝑥
(𝑞)
0

)
, 𝑣(𝑠)⟂𝑈 = 𝑣⟂

(
𝑥
(𝑠)
𝑁P

)
, and 

𝑣
(𝑠)
⟂𝐿 = 𝑣⟂

(
𝑥
(𝑠)
0

)
, respectively. The strong-form equation (46) is then re

placed by the weak-form equation

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

Φ(𝑞𝑠)
𝑚𝑛

𝜕𝐹

𝜕𝑡 
𝑣⟂𝑑𝑣⟂𝑑𝑣∥ =

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

Φ(𝑞𝑠)
𝑚𝑛

(
𝜕Γ‖
𝜕𝑣∥

+ 1 
𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂Γ⟂

))
𝑣⟂𝑑𝑣⟂𝑑𝑣∥,

(54)

valid for each of the 2D basis functions retained in the scheme.

3.3. The mass matrix

The left hand side of equation (54) takes the form

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

Φ(𝑞𝑠)
𝑚𝑛

𝜕𝐹

𝜕𝑡 
𝑣⟂𝑑𝑣⟂𝑑𝑣∥ =

∑
𝑗,𝑘 

𝑀
(𝑞)‖𝑚𝑗𝑀 (𝑠)

⟂𝑛𝑘

𝜕𝐹
𝑞𝑠

𝑗𝑘

𝜕𝑡 
, (55)

where we have defined the 1D parallel and perpendicular mass matrices

𝑀
(𝑞)‖𝑚𝑗 =

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝜑(𝑞)
𝑚
(𝑣∥)𝜑

(𝑞)
𝑗
(𝑣∥) 𝑑𝑣∥

= 𝑠
(𝑞)‖

1 

∫
−1 

𝑙𝑚 (𝑥) 𝑙𝑗 (𝑥) 𝑑𝑥,

(56)

and

𝑀
(𝑠)
⟂𝑛𝑘 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜑(𝑠)
𝑛
(𝑣⟂)𝜑

(𝑠)
𝑘
(𝑣⟂) 𝑣⟂𝑑𝑣⟂

= 𝑠
(𝑠)
⟂

1 

∫
−1 

𝑙𝑛 (𝑥) 𝑙𝑘 (𝑥)
(
𝑠
(𝑠)
⟂ 𝑥+ 𝑐

(𝑠)
⟂

)
𝑑𝑥,

(57)

respectively. In equations (56) and (57) we have indicated for com

pleteness how to evaluate these matrix elements in terms of Lagrange 
polynomials.

3.4. The nonlinear stiffness matrices for the collision operator

The form of the right hand side of equation (54) and the forms of 
the fluxes, given by equations (14) and (15), respectively, suggest that 
we should integrate by parts to bring all derivatives down to first order. 
Carrying out this step, we find that for the parallel flux term

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

Φ(𝑞𝑠)
𝑚𝑛

𝜕Γ‖
𝜕𝑣∥

𝑣⟂𝑑𝑣⟂𝑑𝑣∥ =

𝛿𝑚𝑁P

𝑣
(𝑞)
⟂𝑈

∫
𝑣
(𝑞)
⟂𝐿

Φ(𝑞𝑠)
𝑚𝑛

(𝑣(𝑠)‖𝑈 , 𝑣⟂)Γ‖(𝑣(𝑠)‖𝑈 , 𝑣⟂) 𝑣⟂𝑑𝑣⟂

− 𝛿𝑚0

𝑣
(𝑞)
⟂𝑈

∫
𝑣
(𝑞)
⟂𝐿

Φ(𝑞𝑠)
𝑚𝑛

(𝑣(𝑠)‖𝐿, 𝑣⟂)Γ‖(𝑣(𝑠)‖𝐿, 𝑣⟂) 𝑣⟂𝑑𝑣⟂

−

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜕Φ(𝑞𝑠)
𝑚𝑛

𝜕𝑣∥
Γ‖ 𝑣⟂𝑑𝑣⟂𝑑𝑣∥.

(58)

Similarly, for the perpendicular flux term, we have that

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

Φ(𝑞𝑠)
𝑚𝑛

𝑣⟂

𝜕

𝜕𝑣⟂

(
𝑣⟂Γ⟂

)
𝑣⟂𝑑𝑣⟂𝑑𝑣∥ =

= 𝛿𝑛𝑁P

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

Φ(𝑞𝑠)
𝑚𝑛

(𝑣∥, 𝑣
(𝑠)
⟂𝑈 )𝑣

(𝑠)
⟂𝑈Γ⟂(𝑣∥, 𝑣

(𝑠)
⟂𝑈 ) 𝑑𝑣∥ (59)

− 𝛿𝑛0

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

Φ(𝑞𝑠)
𝑚𝑛

(𝑣∥, 𝑣
(𝑠)
⟂𝐿)𝑣

(𝑠)
⟂𝐿Γ⟂(𝑣∥, 𝑣

(𝑠)
⟂𝐿) 𝑑𝑣∥



Computer Physics Communications 314 (2025) 109675

6

M.R. Hardman, M. Abazorius, J. Omotani et al. 

−

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜕Φ(𝑞𝑠)
𝑚𝑛

𝜕𝑣⟂
Γ⟂ 𝑣⟂𝑑𝑣⟂𝑑𝑣∥.

The boundary flux terms in equations (58) and (59) will cancel iden

tically at the assembly stage, vanish at 𝑣⟂ = 0, or vanish at 𝑣⟂ = 𝑉⟂, 
𝑣∥ = −𝑉‖, and 𝑣∥ = 𝑉‖ by the boundary conditions that 𝐹 → 0 as |𝐯|→∞.

We are now in a position to write down the matrix row for an arbi

trary polynomial. We use the expansion (51) for both the distribution 
function 𝐹 and the Rosenbluth potentials. With these choices, recalling 
the definitions of the fluxes Γ‖ and Γ⟂, equations (14) and (15), respec

tively, the result is

∑
𝑗,𝑘 

𝑀
(𝑞)‖𝑚𝑗𝑀 (𝑠)

⟂𝑛𝑘

𝜕𝐹
𝑞𝑠

𝑗𝑘

𝜕𝑡 
=

−
𝛾𝑠𝑠′

𝑚2
𝑠

∑
𝑗𝑘𝑙𝑟

𝐹
𝑞𝑠

𝑗𝑘

⎛⎜⎜⎝
[
𝜕2𝐺𝑠′

𝜕𝑣∥
2

](𝑞𝑠)

𝑙𝑟

𝑌
(𝑞)‖2𝑚𝑗𝑙𝑌 (𝑠)

⟂0𝑛𝑘𝑟

+
[

𝜕2𝐺𝑠′

𝜕𝑣⟂𝜕𝑣∥

](𝑞𝑠)
𝑙𝑟

𝑌
(𝑞)‖1𝑚𝑗𝑙𝑌 (𝑠)

⟂3𝑛𝑘𝑟 − 2
𝑚𝑠

𝑚𝑠′

[
𝜕𝐻𝑠′

𝜕𝑣∥

](𝑞𝑠)
𝑙𝑟

𝑌
(𝑞)‖1𝑚𝑙𝑗𝑌 (𝑠)

⟂0𝑛𝑘𝑟

+
[

𝜕2𝐺𝑠′

𝜕𝑣⟂𝜕𝑣∥

](𝑞𝑠)
𝑙𝑟

𝑌
(𝑞)‖3𝑚𝑗𝑙𝑌 (𝑠)

⟂1𝑛𝑘𝑟 +
[
𝜕2𝐺𝑠′

𝜕𝑣⟂
2

](𝑞𝑠)
𝑙𝑟

𝑌
(𝑞)‖0𝑚𝑗𝑙𝑌 (𝑠)

⟂2𝑛𝑘𝑟

−2
𝑚𝑠

𝑚𝑠′

[
𝜕𝐻𝑠′

𝜕𝑣⟂

](𝑞𝑠)
𝑙𝑟

𝑌
(𝑞)‖0𝑚𝑗𝑙𝑌 (𝑠)

⟂1𝑛𝑘𝑟

)
,

(60)

where we have neglected the interior boundary terms as vanishing at the 
assembly stage, and we have neglected the extreme boundary terms to 
impose the natural boundary condition on 𝐹 that Γ‖(𝑣∥ = ±𝑉‖, 𝑣⟂) =
0 and Γ⟂(𝑣∥, 𝑣⟂ = 𝑉⟂) = 0. This is equivalent to imposing 𝐹 = 0 as 
𝑉‖, 𝑉⟂ →∞. In equation (60), the stiffness matrices with three indices 
are

𝑌
(𝑞)‖0𝑚𝑗𝑙 =

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝜑(𝑞)
𝑚
𝜑
(𝑞)
𝑗
𝜑
(𝑞)
𝑙
𝑑𝑣∥,

𝑌
(𝑞)‖1𝑚𝑗𝑙 =

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝜕𝜑
(𝑞)
𝑚

𝜕𝑣∥
𝜑
(𝑞)
𝑗
𝜑
(𝑞)
𝑙
𝑑𝑣∥,

𝑌
(𝑞)‖2𝑚𝑗𝑙 =

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝜕𝜑
(𝑞)
𝑚

𝜕𝑣∥

𝜕𝜑
(𝑞)
𝑗

𝜕𝑣∥
𝜑
(𝑞)
𝑙
𝑑𝑣∥,

𝑌
(𝑞)‖3𝑚𝑗𝑙 =

𝑣
(𝑞)‖𝑈

∫
𝑣
(𝑞)‖𝐿

𝜑(𝑞)
𝑚

𝜕𝜑
(𝑞)
𝑗

𝜕𝑣∥
𝜑
(𝑞)
𝑙
𝑑𝑣∥,

(61)

and

𝑌
(𝑠)
⟂0𝑛𝑘𝑟 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜑(𝑠)
𝑛
𝜑
(𝑠)
𝑘
𝜑(𝑠)
𝑟
𝑣⟂ 𝑑𝑣⟂,

𝑌
(𝑠)
⟂1𝑛𝑘𝑟 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜕𝜑
(𝑠)
𝑛

𝜕𝑣⟂
𝜑
(𝑠)
𝑘
𝜑(𝑠)
𝑟
𝑣⟂ 𝑑𝑣⟂, (62)

𝑌
(𝑠)
⟂2𝑛𝑘𝑟 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜕𝜑
(𝑠)
𝑛

𝜕𝑣⟂

𝜕𝜑
(𝑠)
𝑘

𝜕𝑣⟂
𝜑(𝑠)
𝑟
𝑣⟂ 𝑑𝑣⟂,

𝑌
(𝑠)
⟂3𝑛𝑘𝑟 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜑(𝑠)
𝑛

𝜕𝜑
(𝑠)
𝑘

𝜕𝑣⟂
𝜑(𝑠)
𝑟
𝑣⟂ 𝑑𝑣⟂.

Note that the stiffness matrices in (60) are all 1D integrals of 1D basis 
functions, as a result of the choice to use the representation (51) where 
the 2D basis function Φ(𝑞𝑠)

𝑚𝑛 (𝑣∥, 𝑣⟂) is a product of two 1D Lagrange poly

nomials -- one for the 𝑣∥ dimension, and one for the 𝑣⟂ dimension.

The assembly step is carried out using the usual element-wise finite

element assembly algorithm, by defining a compound index that indexes 
over the nonzero entries in the assembled matrix equation. We use con

tinuity of 𝐹 to demand that 𝐹 𝑞,𝑠

𝑗𝑁P
= 𝐹

𝑞,𝑠+1
𝑗0 , 𝐹 𝑞,𝑠

𝑁P𝑘
= 𝐹

𝑞+1,𝑠
0𝑘 , and remove 

the duplicated points at interior element boundaries by summing the 
matrix rows there.

3.5. The weak form of the equations for the Rosenbluth potentials

We need to determine the coefficients derived from the Rosen

bluth potentials. We start by considering the solution of Poisson’s 
equation, equation (25). Multiplying by the 2D basis function Φ(𝑟𝑝)

𝑗𝑘
=

𝜑
(𝑟)
𝑗

(
𝑣∥
)
𝜑
(𝑝)
𝑘

(
𝑣⟂

)
and integrating over velocity space, integrating by 

parts on the left-hand side and neglecting the boundary terms we have 
that

−

𝑣
(𝑟)‖𝑈

∫
𝑣
(𝑟)‖𝐿

𝑣
(𝑝)
⟂𝑈

∫
𝑣
(𝑝)
⟂𝐿

⎛⎜⎜⎝
𝜕Φ(𝑟𝑝)

𝑗𝑘

𝜕𝑣∥

𝜕𝐻

𝜕𝑣∥
+

𝜕Φ(𝑟𝑝)
𝑗𝑘

𝜕𝑣⟂

𝜕𝐻 
𝜕𝑣⟂

⎞⎟⎟⎠𝑣⟂ 𝑑𝑣⟂ 𝑑𝑣∥

= −4𝜋

𝑣
(𝑟)‖𝑈

∫
𝑣
(𝑟)‖𝐿

𝑣
(𝑝)
⟂𝑈

∫
𝑣
(𝑝)
⟂𝐿

Φ(𝑟𝑝)
𝑗𝑘

𝐹𝑣⟂ 𝑑𝑣⟂ 𝑑𝑣∥. (63)

We can neglect boundary terms because the assembly step will cancel all 
terms due to interior boundaries, whereas exterior boundary terms only 
appear in rows that will be replaced by a Dirichlet boundary condition. 
Defining the matrices

𝐾
(𝑠)
⟂𝑛𝑘 = −

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜕𝜑
(𝑠)
𝑛

𝜕𝑣⟂

𝜕𝜑
(𝑠)
𝑘

𝜕𝑣⟂
𝑣⟂𝑑𝑣⟂ (64)

and

𝐾
(𝑠)‖𝑛𝑘 = −

𝑣
(𝑠)‖𝑈

∫
𝑣
(𝑠)‖𝐿

𝜕𝜑
(𝑠)
𝑛

𝜕𝑣∥

𝜕𝜑
(𝑠)
𝑘

𝜕𝑣∥
𝑑𝑣∥ (65)

and expanding

𝐹 =
∑
𝑟𝑝 

∑
𝑗𝑘 

Φ(𝑟𝑝)
𝑗𝑘

𝐹
𝑟𝑝

𝑗𝑘
, 𝐻 =

∑
𝑟𝑝 

∑
𝑗𝑘 

Φ(𝑟𝑝)
𝑗𝑘

𝐻
𝑟𝑝

𝑗𝑘
, (66)

we find that the row of the unassembled matrix is∑
𝑚𝑛 

(
𝐾

(𝑟)‖𝑗𝑚𝑀 (𝑝)
⟂𝑘𝑛 +𝐾

(𝑝)
⟂𝑘𝑛𝑀

(𝑟)‖𝑗𝑚
)
𝐻𝑟𝑝

𝑚𝑛
= −4𝜋

∑
𝑚𝑛 

𝑀
(𝑟)‖𝑗𝑚𝑀 (𝑝)

⟂𝑘𝑛𝐹
𝑟𝑝
𝑚𝑛
. (67)

We impose Dirichlet boundary conditions on the assembled matrices 
using the values of the required functions computed numerically by di

rect integration, as outlined in section 2.2. Once the coefficients 𝐻𝑟𝑝

𝑗𝑘
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are known then the same matrices can be used in an identical fash

ion to solve for 𝐺𝑟𝑝

𝑗𝑘
. A similar matrix equation can be written down 

to solve for 𝐺𝑟𝑝

20𝑗𝑘 and 𝐻𝑟𝑝

10𝑗𝑘, the components of 𝐺20 = 𝜕2𝐺∕𝜕𝑣∥2 and 
𝐻10 = 𝜕𝐻∕𝜕𝑣∥, respectively, with the only difference being in the 
source terms on the right-hand side. Explicitly, these results are∑
𝑚𝑛 

(
𝐾

(𝑟)‖𝑗𝑚𝑀 (𝑝)
⟂𝑘𝑛 +𝐾

(𝑝)
⟂𝑘𝑛𝑀

(𝑟)‖𝑗𝑚
)
𝐺

𝑟𝑝

20𝑚𝑛 = 2
∑
𝑚𝑛 

𝐾
(𝑟)‖𝑗𝑚𝑀 (𝑝)

⟂𝑘𝑛𝐻
𝑟𝑝
𝑚𝑛
, (68)

and∑
𝑚𝑛 

(
𝐾

(𝑟)‖𝑗𝑚𝑀 (𝑝)
⟂𝑘𝑛 +𝐾

(𝑝)
⟂𝑘𝑛𝑀

(𝑟)‖𝑗𝑚
)
𝐻

𝑟𝑝

10𝑚𝑛 = −4𝜋
∑
𝑚𝑛 

𝑃
(𝑟)‖𝑗𝑚𝑀 (𝑝)

⟂𝑘𝑛𝐹
𝑟𝑝
𝑚𝑛
. (69)

where we have defined

𝑃
(𝑟)‖𝑚𝑗 =

𝑣
(𝑟)
⟂𝑈

∫
𝑣
(𝑟)
⟂𝐿

𝜑(𝑟)
𝑚

𝜕𝜑
(𝑟)
𝑗

𝜕𝑣∥
𝑑𝑣∥. (70)

To improve numerical accuracy, we choose to find 𝜕𝐻∕𝜕𝑣∥ by a separate 
Poisson solve rather than by differentiating 𝐻 .

To find the equations for the other Rosenbluth potentials in the 
fluxes, we must repeat the exercise above. The PDE defining 𝐺11 =
𝜕2𝐺∕𝜕𝑣∥𝜕𝑣⟂ is distinct from Poisson’s equation and will require dif

ferent matrix elements. We follow identical steps as used to derive the 
matrix row equation for 𝐻𝑟𝑝

𝑗𝑘
. First, we integrate over velocity space to 

obtain the weak form equation

−

𝑣
(𝑟)‖𝑈

∫
𝑣
(𝑟)‖𝐿

𝑣
(𝑝)
⟂𝑈

∫
𝑣
(𝑝)
⟂𝐿

(
𝑣2⟂

𝜕Φ(𝑟𝑝)
𝑗𝑘

𝜕𝑣∥

𝜕𝐺11
𝜕𝑣∥

+ 𝑣2⟂

𝜕Φ(𝑟𝑝)
𝑗𝑘

𝜕𝑣⟂

𝜕𝐺11
𝜕𝑣⟂

+𝑣⟂Φ
(𝑟𝑝)
𝑗𝑘

𝜕𝐺11
𝜕𝑣⟂

+Φ(𝑟𝑝)
𝑗𝑘

𝐺11

)
𝑑𝑣⟂ 𝑑𝑣∥

= 2

𝑣
(𝑟)‖𝑈

∫
𝑣
(𝑟)‖𝐿

𝑣
(𝑝)
⟂𝑈

∫
𝑣
(𝑝)
⟂𝐿

𝑣2⟂Φ
(𝑟𝑝)
𝑗𝑘

𝜕2𝐻 
𝜕𝑣∥𝜕𝑣⟂

𝑑𝑣⟂ 𝑑𝑣∥,

(71)

and we use this to define the unassembled matrix row equation:∑
𝑚𝑛 

(
𝐾

(𝑟)‖𝑗𝑚𝑅(𝑝)
⟂𝑘𝑛 +𝑀

(𝑟)‖𝑗𝑚𝐽 (𝑝)
⟂𝑘𝑛 −𝑀

(𝑟)‖𝑗𝑚𝑃 (𝑝)
⟂𝑘𝑛 −𝑀

(𝑟)‖𝑗𝑚𝑁 (𝑝)
⟂𝑘𝑛

)
𝐺

𝑟𝑝

11𝑚𝑛

= 2
∑
𝑚𝑛 

𝑃
(𝑟)‖𝑗𝑚𝑈 (𝑝)

⟂𝑘𝑛𝐻
𝑟𝑝
𝑚𝑛
,

(72)

where we have defined the matrix elements

𝑅
(𝑠)
⟂𝑛𝑘 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜑(𝑠)
𝑛
(𝑣⟂)𝜑

(𝑠)
𝑘
(𝑣⟂) 𝑣2⟂𝑑𝑣⟂,

𝑁
(𝑠)
⟂𝑛𝑘 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜑(𝑠)
𝑛
(𝑣⟂)𝜑

(𝑠)
𝑘
(𝑣⟂) 𝑑𝑣⟂,

𝐽
(𝑠)
⟂𝑛𝑘 = −

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜕𝜑
(𝑠)
𝑛

𝜕𝑣⟂

𝜕𝜑
(𝑠)
𝑘

𝜕𝑣⟂
𝑣2⟂𝑑𝑣⟂, (73)

𝑃
(𝑠)
⟂𝑛𝑘 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜑(𝑠)
𝑛

𝜕𝜑
(𝑠)
𝑘

𝜕𝑣⟂
𝑣⟂𝑑𝑣⟂,

𝑈
(𝑠)
⟂𝑛𝑘 =

𝑣
(𝑠)
⟂𝑈

∫
𝑣
(𝑠)
⟂𝐿

𝜑(𝑠)
𝑛

𝜕𝜑
(𝑠)
𝑘

𝜕𝑣⟂
𝑣2⟂𝑑𝑣⟂.

Similarly, the PDE for 𝐻01 = 𝜕𝐻∕𝜕𝑣⟂, equation (31), has the weak 
form∑
𝑚𝑛 

(
𝐾

(𝑟)‖𝑗𝑚𝑅(𝑝)
⟂𝑘𝑛 +𝑀

(𝑟)‖𝑗𝑚𝐽 (𝑝)
⟂𝑘𝑛 −𝑀

(𝑟)‖𝑗𝑚𝑃 (𝑝)
⟂𝑘𝑛 −𝑀

(𝑟)‖𝑗𝑚𝑁 (𝑝)
⟂𝑘𝑛

)
𝐻

𝑟𝑝

01𝑚𝑛

= −4𝜋
∑
𝑚𝑛 

𝑀
(𝑟)‖𝑗𝑚𝑈 (𝑝)

⟂𝑘𝑛𝐹
𝑟𝑝
𝑚𝑛
.

(74)

To complete the set of Rosenbluth potentials, we solve the ellip

tic problem (29) for 𝐺02 = 𝜕2𝐺∕𝜕𝑣⟂2. Following steps similar to those 
above, we obtain the weak-form equation

−

𝑣
(𝑟)‖𝑈

∫
𝑣
(𝑟)‖𝐿

𝑣
(𝑝)
⟂𝑈

∫
𝑣
(𝑝)
⟂𝐿

(
𝑣2⟂

𝜕Φ(𝑟𝑝)
𝑗𝑘

𝜕𝑣∥

𝜕𝐺02
𝜕𝑣∥

+ 𝑣2⟂

𝜕Φ(𝑟𝑝)
𝑗𝑘

𝜕𝑣⟂

𝜕𝐺02
𝜕𝑣⟂

−𝑣⟂Φ
(𝑟𝑝)
𝑗𝑘

𝜕𝐺02
𝜕𝑣⟂

− 4Φ(𝑟𝑝)
𝑗𝑘

𝐺02

)
𝑑𝑣⟂𝑑𝑣∥ (75)

= −2

𝑣
(𝑟)‖𝑈

∫
𝑣
(𝑟)‖𝐿

𝑣
(𝑝)
⟂𝑈

∫
𝑣
(𝑝)
⟂𝐿

(
𝑣2⟂

𝜕Φ(𝑟𝑝)
𝑗𝑘

𝜕𝑣⟂

𝜕𝐻 
𝜕𝑣⟂

+ 2𝑣⟂Φ
(𝑟𝑝)
𝑗𝑘

𝜕𝐻 
𝜕𝑣⟂

+2Φ(𝑟𝑝)
𝑗𝑘

𝐻 −Φ(𝑟𝑝)
𝑗𝑘

𝐺20

)
𝑑𝑣⟂𝑑𝑣∥.

The corresponding row of the unassembled matrix therefore becomes∑
𝑚𝑛 

(
𝐾

(𝑟)‖𝑗𝑚𝑅(𝑝)
⟂𝑘𝑛 +𝑀

(𝑟)‖𝑗𝑚(𝐽 (𝑝)
⟂𝑘𝑛 − 𝑃

(𝑝)
⟂𝑘𝑛 − 4𝑁 (𝑝)

⟂𝑘𝑛)
)
𝐺

𝑟𝑝

02𝑚𝑛

= 2
∑
𝑚𝑛 

𝑀
(𝑟)‖𝑗𝑚(𝐽 (𝑝)

⟂𝑘𝑛 − 2𝑃 (𝑝)
⟂𝑘𝑛 − 2𝑁 (𝑝)

⟂𝑘𝑛)𝐻
𝑟𝑝
𝑚𝑛

+ 2
∑
𝑚𝑛 

𝑀
(𝑟)‖𝑗𝑚𝑁 (𝑝)

⟂𝑘𝑛𝐺
𝑟𝑝

20𝑚𝑛.

(76)

3.6. Velocity space integration in the spectral element scheme

To compute the boundary data for the elliptic problems obtained in 
the last section, we need to integrate a function 𝐹 = 𝐹 (𝑣′‖, 𝑣′⟂) multiplied 
by a kernel function  = (𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂): we wish to compute

𝐼 =

∞ 

∫
−∞

∞ 

∫
0 

(𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂)𝐹 (𝑣′‖, 𝑣′⟂)𝑣′⟂𝑑𝑣′⟂𝑑𝑣′‖. (77)

We expand 𝐹 in the Lagrange polynomial basis functions using equation 
(51) and thus obtain that

𝐼 =
∑
𝑟𝑝 

∑
𝑗𝑘 

𝐹
𝑟𝑝

𝑗𝑘
𝐼
(𝑟𝑝)
𝑗𝑘

(78)

with the integration over local elements

𝐼
(𝑟𝑝)
𝑗𝑘

=

𝑣
(𝑟)‖𝑈

∫
𝑣
(𝑟)‖𝐿

𝑣
(𝑝)
⟂𝑈

∫
𝑣
(𝑝)
⟂𝐿

(𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂)𝜑(𝑟)
𝑗
(𝑣′‖)𝜑(𝑝)

𝑘
(𝑣′⟂)𝑣

′
⟂𝑑𝑣

′
⟂𝑑𝑣

′‖. (79)

When assembling the integral over elements, one must recall that the 
nodal value of 𝐹 at element boundaries has an interpolating polynomial 
that contributes to the quadrature in two elements.
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4. Numerical-error-correcting terms

The numerical scheme for evolving the distribution function due to 
the Fokker–Planck collision operator is chosen here for performance and 
scalability, rather than for exact machine-precision satisfaction of the 
conservative properties (5)-(7). To ensure that the numerical scheme for 
the collision operator can also preserve the density, parallel velocity and 
total energy at each time step to machine precision, for time-evolving 
simulations we introduce ad-hoc conserving terms which make a cor

rection which is at most of order of the discretisation error. Noting the 
definitions of the plasma density 𝑛𝑠 and parallel flow 𝑢‖,𝑠,
𝑛𝑠 =∬ 𝐹𝑠 2𝜋𝑣⟂𝑑𝑣⟂ 𝑑𝑣∥, (80)

and

𝑛𝑠𝑢‖,𝑠 =∬ 𝑣∥𝐹𝑠 2𝜋𝑣⟂𝑑𝑣⟂ 𝑑𝑣∥, (81)

respectively, we define

𝐶𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
=𝐶∗

𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
−
(
𝑧0 + 𝑧1(𝑣∥ − 𝑢‖,𝑠) + 𝑧2

(
(𝑣∥ − 𝑢‖,𝑠)2 + 𝑣2⟂

))
𝐹𝑠,

(82)

where 𝐶∗
𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
denotes the numerically calculated finite-element col

lision operator given by 𝜕𝐹∕𝜕𝑡 in equation (60), and the coefficients 𝑧0 , 
𝑧1 and 𝑧2 are determined by the requirements that (5)-(7) are exactly 
satisfied. Instead of formulating the equations for {𝑧𝑗} in terms of total 
energy

𝜀𝑠 =
𝑚𝑠

2 ∬ (𝑣2∥ + 𝑣2⟂)𝐹𝑠 2𝜋𝑣⟂𝑑𝑣⟂ 𝑑𝑣∥, (83)

we write them in terms of pressure 𝑝𝑠 , using the definition 𝜀𝑠 = 3𝑝𝑠∕2+
𝑚𝑠𝑛𝑠𝑢

2‖,𝑠∕2. Then, the conservation laws (5)-(7) lead to the matrix equa

tion⎛⎜⎜⎝
𝑚𝑠𝑛𝑠 0 3𝑝𝑠
0 𝑝∥,𝑠 𝑞‖,𝑠
3𝑝𝑠 𝑞‖,𝑠 𝑅̃𝑠

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑧0
𝑧1
𝑧2

⎞⎟⎟⎠ =
⎛⎜⎜⎝

𝑚𝑠Δ𝑛𝑠
𝑚𝑠(𝑛𝑠Δ𝑢‖,𝑠 − 𝑢‖,𝑠Δ𝑛𝑠)

3Δ𝑝𝑠

⎞⎟⎟⎠ , (84)

where the vector components on the right hand side are the moments 
of 𝐶∗

𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
that should vanish up to discretisation error, i.e.,

Δ𝑛𝑠 =∬ 𝐶∗
𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
2𝜋𝑣⟂𝑑𝑣⟂𝑑𝑣∥,

Δ𝑢‖,𝑠 = 1 
𝑛𝑠 ∬ 𝑣∥𝐶

∗
𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
2𝜋𝑣⟂𝑑𝑣⟂𝑑𝑣∥,

Δ𝑝𝑠 =
𝑚𝑠

3 ∬
(
(𝑣∥ − 𝑢‖,𝑠)2 + 𝑣2⟂

)
𝐶∗
𝑠𝑠

[
𝐹𝑠,𝐹𝑠

]
2𝜋𝑣⟂𝑑𝑣⟂𝑑𝑣∥,

(85)

and the components of the matrix on the left-hand side are given by 
the moments of 𝐹𝑠. We have that the total pressure 𝑝𝑠 = (2𝑝⟂,𝑠 + 𝑝∥,𝑠)∕3
with the parallel and perpendicular pressures given by

𝑝∥,𝑠 =𝑚𝑠∬ (𝑣∥ − 𝑢‖,𝑠)2𝐹𝑠 2𝜋𝑣⟂𝑑𝑣⟂ 𝑑𝑣∥, (86)

and

𝑝⟂,𝑠 =
𝑚𝑠

2 ∬ 𝑣2⟂𝐹𝑠 2𝜋𝑣⟂𝑑𝑣⟂ 𝑑𝑣∥, (87)

respectively. The parallel heat flux is given by

𝑞‖,𝑠 =𝑚𝑠∬ (𝑣∥ − 𝑢‖,𝑠)((𝑣∥ − 𝑢‖,𝑠)2 + 𝑣2⟂)𝐹𝑠 2𝜋𝑣⟂𝑑𝑣⟂ 𝑑𝑣∥, (88)

and the higher-order moment

𝑅̃𝑠 =𝑚𝑠∬ ((𝑣∥ − 𝑢‖,𝑠)2 + 𝑣2⟂)
2𝐹𝑠 2𝜋𝑣⟂𝑑𝑣⟂ 𝑑𝑣∥. (89)

We will demonstrate in the next section that Δ𝑛𝑠, Δ𝑢‖,𝑠, and Δ𝑝𝑠 defined 
in equation (85) are indeed bounded by the discretisation error.

We note the similarity of these error-correcting terms to those em

ployed for similar reasons where the density, parallel flow, and pressure 
are required to be conserved exactly [13,39].

5. Numerical implementation and results

We have implemented an explicit form of the weak-form collision 
operator in Julia [40], in the drift-kinetic version of the pre-sheath 
plasma code ``moment_kinetics'' [41--43], using shared-memory paral

lelism implemented with MPI using features introduced in MPI-3 [44], 
in particular MPI_Win_allocate_shared [45]. Specifically, we have 
implemented the assembled weak-form problems defined by equations 
(60), (67), (68), (69), (72), (74), (76), using sparse matrices [46], and 
with appropriate calculations of the Rosenbluth potential boundary data 
using equations (19) and (37)-(41) with integration weights defined by 
(79). The basic quadrature used to calculate these weights is a tensor 
product of two 1D Gauss–Legendre quadratures, except near logarith

mic divergences, where Gauss–Laguerre quadratures are employed with 
changes of variables. We use Gauss–Legendre polynomials to define the 
Lobatto and Radau collocation grid points. We have implemented the 
scheme for arbitrary positive order of polynomials.

The source code for the implementation is available and documented 
[47]. The test and simulation results that are presented in the remainder 
of this section are supported by publicly available data [48].

5.1. Evaluation tests

We wish to test the three properties of the collision operator (5)-(7). 
To facilitate this test we define three quantities which measure the 
change in the moments of the distribution function due to the col

lision operator, given by equation (85). We test in a grid resolution 
scan whether or not the collision operator vanishes on a prescribed 
Maxwellian distribution up to expected discretisation error, i.e., whether 
or not the operator well satisfies

𝐶𝑠𝑠

[
𝐹𝑀𝑠,𝐹𝑀𝑠

]
= 0. (90)

We now proceed to describe the details of the test. In Fig. 1 we 
carry out the resolution test for varying 𝑁EL = 𝑁⟂ = 𝑁‖∕2 at fixed 
𝑁GR = 5, corresponding to 4th order polynomials, although we support 
any 𝑁GR ≥ 2. Here 𝑁EL is the number of elements in the 𝑣⟂ dimen

sion and half the number of elements in the 𝑣∥ dimension. The quan

tity 𝑁GR is the number of points per 1D element, in both the parallel 
and perpendicular dimensions. We take the maximum velocity to be 
𝑉‖ = 𝑉⟂ = 6𝑐ref , with 𝑐ref =

√
2𝑇ref ∕𝑚ref , where 𝑇ref and 𝑚ref are the 

reference temperature and reference mass, respectively. Note that re

ducing 𝑉‖ and 𝑉⟂ for a fixed integrand reduces the accuracy of the 
numerical integration because the true velocity integrals should extend 
to infinite velocities. We choose to carry out the test for a species of mass 
𝑚𝑠∕𝑚ref = 1 with a Maxwellian with a normalised density 𝑛𝑠∕𝑛ref = 1, 
a normalised parallel flow 𝑢‖,𝑠∕𝑐ref = 1, and a normalised temperature 
𝑇𝑠∕𝑇ref = 1. In Fig. 1, and in the remainder of the paper, we plot nor

malised quantities, with the normalisations given in Table 1. 
In Fig. 1, we plot both the infinity norm of the error 𝜖∞ and the 𝐿2

norm of the error 𝜖2 of calculating the collision operator with respect to 
the expected value (which is zero). Here, the infinity norm of the error 
in a normalised distribution 𝐹 is defined by

𝜖∞(𝐹 ) = max𝐯|𝐹 − 𝐹EXACT|, (91)

with 𝐹EXACT the normalised, exact, analytically computed value. The 𝐿2
norm of the error is defined by

𝜖2(𝐹 ) =

√√√√ ∫ (𝐹 − 𝐹EXACT)2𝑣⟂𝑑𝑣⟂𝑑𝑣∥
∫ 𝑣⟂𝑑𝑣⟂𝑑𝑣∥

, (92)

where the integration is carried out numerically over the finite range of 
velocities on the grid. We see that the infinity norm gives a larger value 
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Table 1
List of normalisations used 
in the numerical implemen

tation of the self-collision 
operator.

Quantity Normalisation 
𝑛𝑠 𝑛ref
𝑢‖,𝑠 𝑐ref
𝑝𝑠 𝑚ref 𝑐

2
ref

𝑣∥ 𝑐ref
𝑣⟂ 𝑐ref
𝐹𝑠 𝑛ref ∕𝜋3∕2𝑐3ref
𝐺𝑠 𝑛ref 𝑐ref
𝐻𝑠 𝑛ref ∕𝑐ref

Fig. 1. The numerical error for a test carried out with 𝑁GR = 5 points per ele

ment. The infinity norm of the error (𝜖∞, see (91)) and 𝐿2 norm of the error (𝜖2, 
see (92)) of evaluating the collision operator are shown and compared to the 
expected scalings for differentiation and integration (93) and (94), respectively. 
This test does not use the numerical-error-correcting terms that are introduced 
in section 4, in order to show the numerical errors in the conserved moments 
native to the finite-element scheme.

than the 𝐿2 norm in all cases by a factor of an order of magnitude. This 
is due to numerical oscillations near 𝑣⟂ = 0 where the differential equa

tions become singular. The error in computing the collision operator 
decreases according to expected scaling for error in differentiation(

1 
𝑁EL

)𝑁GR−1
. (93)

The quantities Δ𝑛𝑠, Δ𝑢‖,𝑠, and Δ𝑝𝑠 approach zero rapidly at (or better 
than) the expected scaling for numerical integration errors(

1 
𝑁EL

)𝑁GR+1
. (94)

We have carried out this test using multiple other values of 𝑁GR and 
demonstrated the same results. To demonstrate the attained perfor

mance of the explicit collision operator, in Fig. 2, we plot the timing 
data (in milliseconds) for completing the initialisation and evaluation 
of the collision operator on 2 cores. The expected scaling for the initial

isation is 𝑁3
EL, by virtue of the calculation of the integration weights for 

the boundary data. The expected scaling for the evaluation of the col

lision operator depends on which operation dominates the calculation. 
If it is the computation of the boundary data (using equations (37)-(41) 
with integration weights defined by (79)) it is 𝑁3

EL, whereas if it is the 
elliptic solve or the assembly of the right hand side of equation (60) 
then the scaling would be expected to be 𝑁2

EL due to the sparse nature 
of these operations. We see that a scaling close to 𝑁2

EL is achieved for 
the evaluation step. 

To understand the dominant source of the numerical error in the col

lision operator, we find it useful to plot the infinity and 𝐿2 norm error 
measures of the numerically calculated Rosenbluth potentials 𝜕𝐻∕𝜕𝑣∥ , 

Fig. 2. For the test shown in Fig. 1 carried out on 2 cores, timing data for the 
initialisation (init) and a single evaluation of the collision operator (step) is 
given in milliseconds.

Fig. 3. The infinity norm of the error 𝜖∞ in computing the Rosenbluth potentials 
for a shifted Maxwellian distribution, for 𝑁GR = 5.

Fig. 4. The 𝐿2 norm of the error 𝜖2 in computing the Rosenbluth potentials for 
a shifted Maxwellian distribution, for 𝑁GR = 5.

𝜕𝐻∕𝜕𝑣⟂, 𝜕2𝐺∕𝜕𝑣∥2, 𝜕𝐺∕𝜕𝑣⟂, 𝜕2𝐺∕𝜕𝑣∥𝜕𝑣⟂, and 𝜕2𝐺∕𝜕𝑣⟂2. The exact 
values are known for shifted Maxwellian distributions, see, e.g., Ap

pendix B. We plot the error in our numerical calculation of the potentials 
data for 𝑁GR = 5 in Figs. 3 and 4. The 𝐿2 norm error is smaller by one 
or two orders of magnitude than the infinity norm error. This is due 
to numerical oscillations near 𝑣⟂ = 0. However, in both cases the er

rors decay to zero approximately at the rate given by (94). Note that 
our numerical calculation of the boundary data does involve a numer

ical differentiation of 𝐹 , see equations (37)-(41), which may explain 
why the rate of convergence is slower for some Rosenbluth potentials. 
For completeness, in Appendix C we show the numerical error resulting 
from computing the potentials from direct integration.
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Table 2
List of resolution parameters used in the numeri

cal simulation of the self-collision operator, time 
per step in the simulation in milliseconds, and the 
number of cores used in the simulation.

Simulation #1 #2 #3 
𝑉‖∕𝑐ref = 𝑉⟂∕𝑐ref 2.25 3 4
𝑁EL =𝑁⟂ =𝑁‖∕2 4 8 16
𝜈𝑠𝑠Δ𝑡 10−3 10−3 0.25 × 10−3
time/step (ms) 7 21 89 
# cores 4 16 64 

We take the results in Figs. 3 and 4 to indicate that the dominant 
source of numerical error in evaluating the collision operator comes 
from numerical differentiation, rather than from the errors in obtain

ing the Rosenbluth potentials. Indeed, comparable levels of error to that 
seen in computing the collision operator may be obtained by simply us

ing the weak method to differentiate 𝐹 to find the second derivatives in 
𝑣∥ and 𝑣⟂.

5.2. Relaxation to a Maxwellian distribution

It is important to test whether or not the numerical self-collision op

erator can provide a stable, steady-state numerical solution which is 
close to a Maxwellian distribution, with positive-definite entropy pro

duction, equation (8). In this section we show tests where we integrate 
in time the collisional relaxation problem (46), in weak form (60), both 
with and without the numerical-error-correcting terms (82). We show 
that the numerical-error-correcting terms are only necessary to ensure 
that we can obtain a stable solution for low numerical resolution. We 
impose only natural boundary conditions on 𝐹 by neglecting the bound

ary terms introduced by integration by parts in the projection onto the 
weak basis. For explicit expressions for these terms, see equations (58) 
and (59).

For the time evolving tests, we initialise the normalised distribution 
function 𝐹 to

𝐹 = 𝑛0 exp

[
−
𝑣2∥ + (𝑣⟂ − 𝑐ref )2

𝑐2ref ∕4 

]
, (95)

with 𝑛0 a dimensionless factor calculated to ensure that the density 
of 𝐹 satisfies 𝑛 = 1 (see equation (80)). The form in equation (95) 
was chosen to provide a substantially non-Maxwellian initial distribu

tion function. The time integration scheme is the Runge–Kutta strong

stability-preserving 4-stage method [49--51]. We use a collision fre

quency 𝜈𝑠𝑠 = 𝛾𝑠𝑠𝑛ref ∕𝑚2
𝑠
𝑐3ref , and we run for a time of 200∕𝜈𝑠𝑠. We use 

the resolutions detailed in Table 2 to generate three different simula

tions with increasing resolution and maximum velocity on grid, keeping 
𝑁GR = 5 and varying 𝑉‖ = 𝑉⟂ and 𝑁EL. 

5.2.1. Collisional evolution without numerical-error-correcting terms

In Fig. 5, we show time traces of the change in the density, parallel 
flow and pressure over the course of a simulation where the numerical

error-correcting terms are not employed. The pressure is not well con

served at long times for low resolution. This is to be anticipated from 
the results in Fig. 1 where the change in the pressure was not as small 
as the change in the density. The velocity remains well conserved here 
because the simulation is symmetric in 𝑣∥. Despite the lack of exact 
numerical conservation of the moments, the collision operator without 
numerical-error-correcting terms still pushes the distribution towards a 
Maxwellian distribution, as shown in Fig. 6, where we show the infin

ity norm of 𝐹 −𝐹𝑀 (𝑡), 𝐿∞
(
𝐹 − 𝐹𝑀 (𝑡)

)
=max𝐯 ||𝐹 − 𝐹𝑀 (𝑡)||, where the 

Maxwellian distribution is constructed with the time-evolving values of 
the moments. The maximum in the infinity norm is taken over the set 
of nodal values of 𝐹 , 𝐹 𝑟𝑝

𝑗𝑘
. Simulations with increasing numerical reso

lution have a smaller 𝐿∞
(
𝐹 − 𝐹𝑀

)
, suggesting a strong convergence. 

Fig. 5. The changes in the first three moments of the distribution function 𝑛𝑠, 
𝑢‖,𝑠, and 𝑝𝑠 as a result of time evolution with the Fokker–Planck collision opera

tor defined by equation (60), i.e., without the numerical-error-correcting terms. 
The pressure moment is not well conserved at low resolution, as would be ex

pected from Fig. 1. The resolutions for simulations #1, #2, and #3 are provided 
in Table 2.

Fig. 6. The infinity norm of 𝐹 − 𝐹𝑀 (𝑡), 𝐿∞
(
𝐹 − 𝐹𝑀 (𝑡)

)
= max𝐯 ||𝐹 − 𝐹𝑀 (𝑡)||, 

where the Maxwellian is computed at each timestep with the updated values of 
the pressure, velocity and density moments. Despite the loss of pressure conser

vation shown in Fig. 5, this figure indicates that 𝐹𝑠 becomes increasingly close 
to a Maxwellian distribution. The resolutions for simulations #1, #2, and #3 
are provided in Table 2.

These results show that numerical-error-correcting terms are thus only 
required to fix the solution to a Maxwellian distribution with the exact 
same density, mean velocity and pressure as the initial condition. 

5.2.2. Collisional evolution with numerical-error-correcting terms

We now show the result of evolving equation (60) with the numerical

error-correcting terms (82). In Fig. 7, we show time traces of the change 
in the density, parallel flow and pressure over the course of the simu

lation. The small errors in the moments increase with increasing reso

lution, suggesting conservation accurate to machine precision, with the 
error coming from round-off errors.

In Fig. 8 we show the infinity norm 𝐿∞
(
𝐹 − 𝐹𝑀 (𝑡)

)
, demonstrating 

a strong convergence, with very similar values for the infinity norm as 
in Fig. 6. This suggests that the numerical-error-correcting terms act to 
conserve the moments to machine-precision without a detrimental effect 
on the shape of the distribution function.

Finally, in Fig. 9 we show the entropy production for the simulation 
using numerical-error-correcting terms, calculated using the definition 
(8) and using the following approximation for the logarithm of the dis

tribution function

ln𝐹 =
∑
𝑟𝑝 

∑
𝑖𝑗 

ln
(|𝐹 𝑟𝑝

𝑗𝑘
|+ 𝜖

)
Φ(𝑟𝑝)

𝑗𝑘
, (96)
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Fig. 7. The changes in the first three moments of the distribution function 𝑛𝑠, 
𝑢‖,𝑠, and 𝑝𝑠 as a result of time evolution with the Fokker–Planck collision op

erator defined by equations (60) and (82) (i.e., with the numerical conserving 
terms). The moments are well conserved, despite the low resolution used. The 
resolutions for simulations #1, #2, and #3 are provided in Table 2.

Fig. 8. The infinity norm of 𝐹 − 𝐹𝑀 , 𝐿∞
(
𝐹 − 𝐹𝑀

)
= max𝐯 ||𝐹 − 𝐹𝑀

||, for the 
test including numerical-error-correcting terms. This figure indicates that 𝐹 be

comes increasingly close to 𝐹𝑀 before converging on a steady-state numerical 
Maxwellian distribution. The resolutions for simulations #1, #2, and #3 are 
provided in Table 2.

Fig. 9. The entropy production 𝑆̇, for the test including numerical-error

correcting terms. The entropy production 𝑆̇ is defined in equation (8), where 
ln𝐹 is calculated using an approximation, equation (96). Note that 𝑆̇ remains 
positive and tends to 0+. The resolutions for simulations #1, #2, and #3 are 
provided in Table 2.

where 𝜖 = 10−15. The approximation (96) is adequate if the solution 
is converging with increasing resolution in a strong sense. Fig. 9 shows 
positive-definite entropy production, although there is no guarantee that 
𝑆̇ should be a positive-definite quantity in our numerical scheme.

6. Discussion

In this paper we have investigated a particular finite-element, 
continuous-Galerkin, weak-form representation of the explicit nonlinear 
Fokker–Planck collision operator. We choose to use the Rosenbluth--

MacDonald--Judd form of the Fokker–Planck operator to permit the use 
of sparse elliptic solves for determining the Rosenbluth potentials of the 
nonlinear operator. We have demonstrated that this choice can lead to 
an optimal scaling of the cost of evaluating the operator for a single 
time step ∝ 𝑁2

EL, with 𝑁EL the number of elements in a single veloc

ity space dimension, 𝑣∥ or 𝑣⟂. We have implemented and tested the 
method for arbitrary number of points per element 𝑁GR ≥ 2, but we 
only present results for 𝑁GR = 5 for brevity. We also demonstrated a 
successful time-evolving simulation with low resolution, demonstrating 
that the self-collision operator can successfully relax the distribution 
function to a stable steady state that is close to a Maxwellian distribu

tion.

Table 2 indicates that the time per step of the collision operator is po

tentially small enough to be of the correct order of magnitude to permit 
the use of the collision operator in drift-kinetic turbulence simulations 
where the spatial domain is fully distributed in memory. In future work, 
the time evolving ``moment kinetics'' framework will be leveraged to in

clude the Fokker–Planck collision operator in 1, 2, and 3 dimensional 
simulations of plasma on open field lines. The extension of the operator 
here to include cross-species collisions is readily achievable by adding 
further contributions to the Rosenbluth potentials.

To help permit the collision operator to be routinely used alongside 
other physics features we could further optimise the implementation 
for speed to accommodate larger problem sizes. This might be achieved 
with an extension from shared-memory-only parallelism to allow for 
distributed-memory parallelisation across nodes. The use of distributed 
memory to parallelise the collision operator calculation is motivated by 
the observation that the dominant costs which contribute to the time 
taken to evaluate the operator are the calculation of the boundary data 
and the assembly of the right-hand side of equation (60). Both of these 
steps are embarrassingly parallel.

Alternatively, we might consider potential optimisations of the nu

merical method. First, the boundary data for the elliptic solves may be 
determined using a multipole expansion of the formal definition of 𝐺
and 𝐻 , equations (16) and (17), respectively. This method may permit 
the evaluation of the boundary data using only an order unity num

ber of velocity integrals, providing the maximum value of 𝑣∥ and 𝑣⟂
on the grid, 𝑉‖ and 𝑉⟂, respectively, are sufficiently large. Second, the 
boundary data may be evaluated at fewer locations and a larger-scale 
interpolation of the Rosenbluth potentials on the boundary might be 
constructed. This might save computation time without sacrificing sig

nificant accuracy, if 𝑉‖ and 𝑉⟂ are large enough for the Rosenbluth 
potentials to have a simple functional form on the boundary. Third, one 
could choose to use a different interpolation scheme defining the right

hand side of equation (60). One could consider using the quadrature 
rules commonly employed in spectral element codes that yield diago

nal mass matrices [52] to reduce the number of operations due to the 
nonlinear stiffness matrices defined by equations (61) and (62). Fourth, 
to enable stable solutions with timestep sizes not limited by diffusion 
in 𝑣∥ and 𝑣⟂, one could consider replacing the explicit time-integration 
method presented here with an implicit time integrator, see, e.g., [53].

Finally, it is useful to consider the benefits and limitations of the 
finite-element method presented here for Fokker–Planck collisions, to 
assess the suitability of the method for integration with a solver that 
treats the Vlasov part of the kinetic equation and the large-scale elec

tric and magnetic fields. The primary benefit of the higher-order finite 
element method is the potential for spectrally accurate solutions in the 
presence of boundary layers in velocity space. However, the method 
does not guarantee positivity of the solution. The structure of the finite

element mass and stiffness matrices means that sparse matrices can be 
used. To store the matrices needed for the 2D Poisson solvers for the 
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Rosenbluth potentials, we only require O
(
𝑁2

EL𝑁
4
GR

)
matrix entries, and 

for each spatial point we will require to store an order unity number of 
arrays of the size of the 2D distribution function 𝐹 , i.e., O

(
𝑁2

EL𝑁
2
GR

)
values. Had we chosen to use velocity coordinates with explicit spatial 
variation (e.g., magnetic moment 𝜇 = 𝑣2⟂∕2|𝐁|), then the coefficients 
in the equations for the Rosenbluth potentials would depend on spatial 
position and we would need to store a matrix of size O

(
𝑁2

EL𝑁
4
GR

)
for 

each location in the spatial grid. Compared to a linear advection opera

tor, the nonlinear collision operator in two velocity coordinates is more 
expensive to evaluate. As a result, a model which combines both non

linear collisions and linear advection will likely be limited by the cost 
of evaluating the Fokker–Planck operator, unless care is taken to design 
methods where the Fokker–Planck operator is evaluated infrequently.
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Appendix A. Evaluating the gyroaveraged functions

To see how to evaluate the required gyroaveraged functions 𝐼𝐺1 , 
𝐼𝐻0, 𝐼𝐻1, and 𝐼𝐻2, defined in equations (42)-(45), consider

𝐼𝐺0 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑔 𝑑𝜗′. (A.1)

Expanding 𝑔, we have that

𝐼𝐺0(𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂) =
1 
2𝜋

𝜋

∫
−𝜋 

((
𝑣∥ − 𝑣′‖

)2
+ 𝑣2⟂ + 𝑣′⟂

2 − 2𝑣⟂𝑣′⟂ cos
(
𝜗′ − 𝜗

))1∕2
𝑑𝜗′.

(A.2)

Here we can recognise an elliptic integral. Suitable rearrangement and 
relabelling gives us

𝐼𝐺0(𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂) = 2 
𝜋
𝑈1∕2𝐸(𝑚) (A.3)

with 𝑈 and 𝑚 functions of (𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂) defined by equations (20) and 
(21), respectively, and the elliptic integral of the second kind is defined 
by equation (23). Noting that 𝐞⟂ ⋅ 𝐞′⟂ = cos(𝜗′ − 𝜗), the integral for 𝐼𝐺1
evaluates to

𝐼𝐺1(𝑣∥, 𝑣⟂, 𝑣′‖, 𝑣′⟂) =
− 2 

𝜋
𝑈1∕2

(
2 −𝑚

3𝑚 
𝐸(𝑚) − 2

3
(1 −𝑚)

𝑚 
𝐾(𝑚)

)
,

(A.4)

with the elliptic integral of the first kind defined by equation (22), and 
we have used the identity

𝜋∕2

∫
0 

(1 − 2 sin2 𝜃)
√
1 −𝑚 sin2 𝜃 𝑑𝜃 =

2 −𝑚

3𝑚 
𝐸(𝑚) − 2

3
(1 −𝑚)

𝑚 
𝐾(𝑚).

(A.5)

The remaining integrals are

𝐼𝐻0 =
2 
𝜋
𝑈−1∕2𝐾(𝑚), (A.6)

𝐼𝐻1 = − 2 
𝜋
𝑈−1∕2

(
𝑚− 2
𝑚 

𝐾(𝑚) + 2 
𝑚
𝐸(𝑚)

)
(A.7)

and

𝐼𝐻2 =
2 
𝜋
𝑈−1∕2

(
3𝑚2 − 8𝑚+ 8

3𝑚2 𝐾(𝑚) + 4𝑚− 8
3𝑚2 𝐸(𝑚)

)
. (A.8)

Here we have used that

𝜋∕2

∫
0 

(
1 − 2sin2 𝜃

)(
1 −𝑚 sin2 𝜃

)−1∕2
𝑑𝜃 =

𝑚− 2
𝑚 

𝐾(𝑚) + 2 
𝑚
𝐸(𝑚),

(A.9)

and

𝜋∕2

∫
0 

(
1 − 2sin2 𝜃

)2 (
1 −𝑚 sin2 𝜃

)−1∕2
𝑑𝜃 =

3𝑚2 − 8𝑚+ 8
3𝑚2 𝐾(𝑚) + 4𝑚− 8

3𝑚2 𝐸(𝑚).

(A.10)
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Appendix B. Rosenbluth potentials for shifted-Maxwellian 
distributions

For the shifted Maxwellian distribution of species 𝑠, given by equa

tion (9), the Rosenbluth potential 𝐺𝑠′ (𝐯) is given by [4] (Chpt. 5, Sec. 
5.2, eqn. (5.49))

𝐺𝑠(𝐯) =
𝑛𝑠𝑣th,𝑠

2𝜂 

(
2𝜂 √
𝜋
exp

[
−𝜂2

]
+ (1 + 2𝜂2) erf(𝜂)

)
, (B.1)

and

𝐻𝑠(𝐯) =
𝑛𝑠

𝑣th,𝑠

erf(𝜂)
𝜂

, (B.2)

with 𝜂 = |𝐯− 𝐮𝑠|∕𝑣th,𝑠. The results for derivatives of 𝐺𝑠 and 𝐻𝑠 may be 
obtained analytically by direct differentiation. In the drift-kinetic limit 
𝐮𝑠 = 𝑢‖,𝑠𝐛.

Appendix C. Computing the Rosenbluth potentials by direct 
integration

A more direct, but less efficient, method for computing the Rosen

bluth potentials is to use the integral expressions (37)-(41) for all (𝑣∥ , 𝑣⟂)
rather than just the boundary values. Here we show the results of such a 
calculation to demonstrate the correct implementation of (37)-(41) and 
the results in Appendix A. 

Fig. C.10. The infinity norm of the errors 𝜖 of the potentials 𝜕𝐻∕𝜕𝑣∥, 𝜕𝐻∕𝜕𝑣⟂, 
𝜕𝐺∕𝜕𝑣⟂, 𝜕2𝐺∕𝜕𝑣⟂2, 𝜕2𝐺∕𝜕𝑣∥2, 𝜕2𝐺∕𝜕𝑣⟂𝜕𝑣∥ for a Maxwellian input distribu

tion, compared to the expected scalings for differentiation and integration, equa

tions (93) and (94), respectively.

In Fig. C.10 we plot the infinity-norm errors on the calculation by 
direct integration of the derivatives of the Rosenbluth potentials for a 
Maxwellian input, for which the results are known analytically [4] (see, 
e.g., Appendix B). We see that the integration error becomes small for 
increasing resolution, indicating that the definitions of the integrands 
are correct. However, the errors eventually deviate from the expected 
scaling. This is due to problems carrying out the integral accurately in 
the region on the integrand where 𝐯′ is such that 𝐹𝑠(𝐯′) ∼ O(1). This 
problem might be addressed with an improved integration quadrature, 
or by using higher than double precision to compute the integrand. Note 
that this difficulty does not affect the integration of the potentials in 
the farfield region at the velocity space boundary -- meaning that near

machine-precision accuracy can be achieved in the numerical method 
presented in the main text. This is evident from Figs. 3 and 4.

Data availability

Data supporting the results presented in this study are publicly avail

able https://doi.org/10.5287/ora-g7mrxgeej.
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