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 A B S T R A C T

This research utilizes established cyclic deformation models to simulate the Bauschinger effect observed in 
copper monocrystal cantilever experiments during the initial bending and straightening phases. Crystal plas-
ticity finite element simulations employing Armstrong-Frederick, Orowan-Sleeswyk, and various other backstress 
models have drawbacks to reproduce the experimental force–displacement curves accurately since they are not 
able to reproduce the isotropic hardening measured during cantilever straightening. However, the Armstrong-
Frederick model combined with Voce-type hardening and a newly proposed modified Orowan-Sleeswyk model has 
proven to be effective. In this work, we propose a modified Orowan-Sleeswyk model, based on recent studies, 
where not all the geometrically necessary dislocations (GND) recombine during the straightening phase, but 
instead reorient to achieve a net zero-strain gradient with ongoing hardening during load reversal.
1. Introduction

Copper has excellent thermal conductivity and adequate mechanical 
strength for high thermal stresses, therefore it is often used as a stress-
relieving interlayer at the bond interface between the radiation shield 
and the heat sink in plasma-facing components (PFC) of fusion reactors 
such as Wendelstein-7X, JET, and ITER [1,2]. Cyclic high-heat-flux 
loads caused by pulsed plasma operations generate a repeated variation 
in thermal stress in the PFC structure. Under these circumstances, the 
copper bond layer experiences alternating loads that cause plastic strain 
accumulation responsible for hardening during deformation (expansion 
or contraction) or softening when the sense of deformation changes 
(from expansion to contraction or vice-versa), leading to cycle fatigue 
of the material [2].

The Bauschinger effect refers to the reduction in yield strength 
observed when the direction of the applied load is reversed or when 
the load path is changed [3]. For cyclic deformations, it could explain 
stress saturation at relatively low stresses, frequently forming persis-
tent slip bands (PSBs) due to extrusions/intrusions that can lead to 
fatigue cracks [4]. In polycrystals, this effect is well understood and is 
mainly attributed to polarized dislocations in front of the crystal grain 
boundaries, as supported by experimental evidence [5,6].

In single-crystals, the dislocation structures responsible are still 
under debate [5]. Currently, there are two main explanations for
the Bauschinger effect. The first involves cells formed by dislocations 
that produce long-range internal stresses (LRIS). This phenomenon 
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was first studied by Mughrabi [7] and Pedersen [8] who proposed 
a structure called dislocation cell, formed of regions with high yield 
stress/dislocation densities (cell walls) in combination with lower yield 
stress/dislocation densities regions (cell interiors); this structure re-
mains nearly invariable during cycles. The second is based on complex 
distributions of dislocation obstacles that allow movement of disloca-
tions in one direction but not in others until high strain levels are 
produced [9,10].

This discussion has remained open for several years, Kassner et al.
[11] support the idea of cell structures based on compression and 
tension experiments on monocrystals of copper, nickel and aluminium 
but noted that the LRIS were smaller than initially expected and did not 
discard the idea of the Orowan-Sleeswyk model. Levine et al. [4] worked 
with the compression of monocrystal copper micropillars, measuring 
low LRIS associated with cell structures and concluding that both 
models (Mughrabi and Orowan-Sleeswyk) have importance. The discus-
sion is more complex when we have curvature as during cantilever 
experiments. The lattice curvature allows the formation of geomet-
rically necessary dislocations (GND) that increase the impact of the
Orowan-Sleeswyk model. In addition, the interaction of the curvature 
with extrusions or intrusions in the metal creates slip bands that act 
as obstacles to the dislocations and are particularly complex to model 
during the first load cycles [5,12].
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On the other hand, other models have appeared such as Armstrong-
Frederick model and its variations [13,14], that are not based on disloca-
tions like the two previous ones (Mughrabi and Orowan-Sleeswyk). These 
models are based on crystal slip, a much simpler quantity to calculate, 
reducing the computation time and complexity. They have been widely 
used in the literature for polycrystals [15,16] and monocrystals [17]. 
They have also been used in combination with the Orowan-Sleeswyk 
model in [18] but in this case, an equation with the same structure as 
the Armstrong-Frederick model is used to model the isotropic hardening 
(non-softening) and the Orowan-Sleeswyk model is responsible for the 
Bauschinger effect.

Recent studies indicate that the Bauschinger effect and hardening 
are different during initial load cycles of cantilever experiments [19,
20]. In these studies, a monocrystal copper cantilever undergoes load 
and straightening cycles. The results showed a more pronounced
Bauschinger effect than in polycrystal copper or monocrystal after 
many cycles, furthermore, isotropic hardening occurred between cy-
cles. Consequently, Ugi et al. [20] illustrates the evolution of GND 
in a cantilever experiment during initial cycles. The GND distribution 
contradicts the idea that the structure of the dislocation cell remains 
constant throughout the full bending/straightening cycle. The GND 
pile-ups formed during the first bending are converted to a highly 
complex structure during the straightening, with the dislocation density 
being distributed throughout the cantilever base giving rise to the 
isotropic hardening. Dislocation dynamics simulations provide qualita-
tive information [21], but are computationally expensive for cantilever 
experiments, making crystal plasticity codes a more practical approach 
to modelling these types of experiments [22].

In Demir et al. [19], it is exposed the results of a Bauschinger ex-
periment using a single-crystal copper cantilever. Based on these exper-
imental results, this study has modelled the Bauschinger effect during 
initial bending/straightening cycles, comparing the results between two 
well-known types of model: Armstrong-Frederick [13] combined with 
hardening laws and GND-based models [9].

The modelling process used the OXFORD-UMAT code [23] (code 
available on [24]), which was designed to analyse various types of 
materials for the Spherical Tokamak for Energy Production reactor. The 
code incorporates models for plasticity, GND calculus and hardening. 
The GND calculations follow the method proposed by Demir et al. [22].

2. Cantilever experiment

Demir et al. [19] studied the Bauschinger effect [3] of a monocrystal 
copper cantilever (25.4 × 8.64 × 7.05 μm, Fig.  1(b)) consisting of three 
total cycles of bending and straightening.

The cantilever was produced from a single-crystal copper sample 
grown in a Bridgman furnace. First, a cylindrical sample with a di-
ameter of 100 μm was crafted using wire electro-discharge grinding 
and subsequently etched in a 40% HNO3 solution. Finally, focused ion 
beam (FIB) milling shaped the cantilever beam from this cylindrical 
specimen, using a 500 pA current at 30 keV to finish all surfaces [19]. 
The initial Euler angles [25] were 𝜙1 = 260.0◦, 𝛷= 101.1◦, 𝜙2 = 248.2◦
and the corresponding Miller indices were [5 2̄ 1̄] for the longitudinal 
beam axis (z-axis), [4̄ 1̄1 2] for the transverse direction (y-axis), and [5 
2 21] for the loading axis (x-axis) as shown in Fig.  1(b).

The cantilever was bent by a HysitronR indenter with a spherical 
indenter that produced a displacement of 3 μm at a speed of 1 μm s−1

in displacement-controlled mode. The indentation region was situated 
at a distance of 17.3 μm from the base. The size of the indented 
region (approximately 2 μm3) was much smaller than the bent volume 
(approximately 180 μm3), having only a small influence on the strength 
of the cantilever during deformation.

The bending and straightening process consists of three stages in 
each cycle: (i) the indenter bends the cantilever (bending), (ii) the 
indenter stops applying pressure and gradually releases the load to zero 
2 
(unloading), and (iii) the cantilever is loaded in the reverse direction 
until it is straightened to its original position (straightening).

Fig.  1(a) illustrates the force–displacement measurements of the 
experiments in the first three consecutive cycles. There is a notable 
increase in hardening during bending in successive cycles. There are 
also drops in force during the 1st bending, which appear as discontinu-
ities in the blue line. These drops are attributed to the formation of slip 
bands (see slip bands in Fig.  1(b)), which cause a plastic displacement 
of the cantilever with less resistance than usual. Once formed, these 
slip bands act as obstacles to dislocations, contributing to increase the 
hardening [12].

During the straightening process, the yield strength is significantly 
lower than the yield strength observed during bending. Demir et al. [19]
estimates a stress reduction of 73% (1st cycle), 76% (2nd cycle) and 
83% (3rd cycle) relative to the bending yield stress. This observed 
reduction in the yield strength during straightening is due to internal 
backstresses that support the load reversal. They arise from sets of GND 
accumulated during forward bending that disappear (through the glide 
in the reverse direction which causes the annihilation with dislocations 
of the opposite sign) as the cantilever returns to the original position.

3. Crystal plasticity framework

A detailed description of the crystal plasticity simulation code used 
in this study (OXFORD-UMAT) can be found in [23]. The code was 
applied in combination with the finite element software Abaqus [26], 
while the specific methodology for GND calculation is outlined in [22]. 
This section presents an overview of the crystal plasticity kinematics 
and constitutive laws governing slip behaviour in the material.

3.1. Crystal plasticity kinematics

The deformation gradient in a crystal under stress can be defined by 
𝑭 𝒕𝒐𝒕 = 𝑭 𝒆𝑭 𝒑, where 𝑭 𝒆 is the mechanical elastic deformation gradient, 
𝑭 𝒑 the plastic deformation gradient.

The mechanical elastic deformation gradient 𝑭 𝒆 is calculated using 
the Jaumann stress rate [27] and a method (explained in [23]) which 
uses the total deformation components minus the plastic deformation 
components.

The plastic deformation gradient 𝑭 𝒑 is calculated from the plastic 
velocity gradient 𝑳𝒑, which is the sum of the slip rates 𝛾̇𝑎 times the 
Schmid tensor 𝑺𝒂 of each slip system 𝑎, which is the dyadic product 
𝒔𝒂 ⊗ 𝒏𝒂, where 𝒔𝒂 is the slip direction and 𝒏𝒂 the slip plane normal of 
the plastically deformed lattice [28]: 
𝑳𝒑 = 𝑭̇ 𝑝𝑭−𝟏

𝒑 =
∑

𝑎
𝛾̇𝑎 𝒔𝒂 ⊗ 𝒏𝒂 =

∑

𝑎
𝛾̇𝑎 𝑺𝒂. (3.1)

However, the slip system undergoes elastic deformations, transforming 
the slip and normal direction to a deformed configuration (𝒏𝒂𝒆 , 𝒔𝒂𝒆 ): 

𝒔𝒂𝒆 = 𝑭 𝒆 𝒔𝒂; 𝒏𝒂𝒆 = 𝑭−𝑻
𝒆 𝒏𝒂 = 𝒏𝒂 𝑭−𝟏

𝒆 . (3.2)

The rotation, 𝒈, is applied to use the experiment reference frame 
during calculations (Bunge convention), where 𝜙1, 𝛷, and 𝜙2 represent 
the Euler angles [29], for further details see Appendix  A. The temporal 
evolution of the crystal orientation is computed by updating 𝒈 from an 
initial time 𝑡 to a subsequent time 𝑡+𝛥𝑡, where 𝛥𝑡 represents the discrete 
time increment. This update can be expressed as: 
𝒈𝑡+𝛥𝑡 = 𝒈 =

(

𝑰 + 𝜟𝜴𝒆 𝛥𝑡
)

𝒈𝑡. (3.3)

Using the orientation rates according to [30]: 𝒈̇ = 𝜟𝜴𝒆 𝒈.
In which 𝜟𝜴𝒆 is the elastic spin obtained by subtracting the plastic spin 
from the total spin: 

𝜟𝜴𝒆 = 𝜟𝜴 − 𝜟𝜴𝒑;

⎧

⎪

⎨

⎪

⎩

𝜟𝜴𝒑 =
∑

𝑎
𝑾 𝒂𝛾̇𝑎

𝜟𝜴 = 𝑳 −𝑳𝑻

2

(3.4)
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Fig. 1. (a) Force–displacement bending and straightening cycles of the cantilever experiment [19]. The plateaus observed at 0 μN in the force–displacement curves correspond to 
the retraction phase of the indenter, during which it disengages from the copper cantilever. Consequently, these regions do not reveal meaningful data regarding the mechanical 
properties of the copper specimen. (b) SEM image of the experiment at end of the first bending straightening cycle, indicating the dimensions of the cantilever. The distances from 
the base and the top of the cantilever where the indenter was applied are shown in yellow. The areas with slip bands created by active slip systems are shown in blue.  (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
𝑾 𝒂 = 1
2
(

𝒔𝒂𝒆 ⊗ 𝒏𝒂𝒆 − 𝒏𝒂𝒆 ⊗ 𝒔𝒂𝒆
)

. (3.5)

Where 𝑾 𝒂 is the antisymmetric matrix of the Schmid tensor, and 𝛾̇𝑎 is 
the slip rate, which is determined by various plastic models. 𝑳 is the 
velocity gradient of the total strain, defined by 𝑳 = 𝑭̇ 𝑭−𝟏.

The set of equations is solved through a semi-implicit algorithm im-
plemented in a user-defined material subroutine (OXFORD-UMAT [23]) 
for the finite element software Abaqus, which uses the Foward-Gradient 
algorithm [31] to obtain the approximate initial and backup solution 
for the Cauchy stress.

3.2. Constitutive laws

The constitutive laws depend on the elasticity and the slip rate 
responsible for the plasticity (Eq. (3.1)). Elasticity relates the rotation-
free objective Jaumann rate of stress, ∇𝝈 [32], to the vectorized form of 
elastic deformation rate 𝒅𝑒, writing the 4th rank elasticity tensor C for 
the deformed configuration [33] in Voigt notation: 
∇
𝝈 = C ∶ 𝒅𝑒; C = 𝑹C0 𝑹𝑇 (3.6)

where C is a 6 × 6 matrix obtained by applying the rotation matrix 
𝑹 to the elastic stiffness constant C0 [34], thus adjusting it from the 
crystalline reference to the experimental one (see Appendix  B). The 
stiffness constant C0 for a face-centered cubic material (FCC) such as 
copper is given by three elastic constants 𝐶11, 𝐶12, 𝐶44 [35]

The slip rates of the slip system ‘‘𝑎’’ are calculated using the 
hyperbolic-sine law [36], where 𝛼 and 𝛽 were assumed to be constants 
adjusted according to [35], 𝜏𝑎𝑒𝑓𝑓  is the effective resolved shear stress 
(RSS) in each slip system, and 𝜏𝑎𝑐  the critical resolved shear stress 
(CRSS), which depends on the initial Statistically Stored Dislocations
(SSD) density and needs to be calibrated: 
𝛾̇𝑎 = 𝛼 sinh(𝛽

(

|

|

|

𝜏𝑎𝑒𝑓𝑓
|

|

|

− 𝜏𝑎𝑐
)

) sign(𝜏𝑎𝑒𝑓𝑓 ) (3.7)

in which the effective RSS is given by the RSS, 𝜏𝑎, minus the backstress 
term, 𝜒𝑎: 
𝜏𝑎𝑒𝑓𝑓 = 𝜏𝑎 − 𝜒𝑎. (3.8)

The prefactors of the slip law are computed based on physical param-
eters according to: 

𝛼 = 𝜌𝑚 𝑏2 𝜈0 exp
(

− 𝛥𝐹
𝐾𝐵𝑇

)

; 𝛽 = 𝛥𝑉 𝑎

𝐾𝐵 𝑇
. (3.9)

The model parameters for crystal orientation, elastic constants, and the 
slip law are given in the table below:
3 
 Parameter Definition Unit Value [35] 
 𝜙1 Undeformed euler angle 1 Degrees 260  
 Φ Undeformed euler angle 2 Degrees 101.1  
 𝜙2 Undeformed euler angle 3 Degrees 248.2  
 𝐶11 Elastic constant 1 MPa 168⋅103  
 𝐶12 Elastic constant 2 MPa 121.4⋅103  
 𝐶44 Elastic constant 3 MPa 75.4⋅103  
 𝛼 Constant value 1/s 10−5  
 𝛽 Constant value 1/MPa 0.2  
 Δ𝐹 Activation energy for slip eV 0.5  
 𝜈0 Attempt frequency 1/s 1011  
 Δ𝑉 Activation volume b3 50  
 b Burgers vector μm 2.56⋅10−4  
 𝜌𝑚 Mobile dislocation density μm−2 0.5  
 𝐾𝐵 Boltzmann constant eV K−1 8.61⋅10−5  
 T Temperature K 300  

4. GND model

Heterogeneity in crystal deformation causes the formation of the
Geometrically Necessary Dislocations (GND) responsible of hardening and 
backstress (lower yield strength when cantilever straightening) [9,37].

GND density (𝜚𝐺𝑁𝐷) [38] is the sum of the length of dislocations 
per unit volume that is obtained by the lattice incompatibility in 
the crystalline structure. GND density is calculated according to the 
formula [39]:
𝜦 = −

(

∇ × 𝑭 𝑝
)𝑇 =

∑

𝑎
𝜌𝑎𝐺𝑁𝐷𝑏

𝑎𝒔𝑎 ⊗ 𝒍𝑎

=
∑

𝑎
(𝜌𝑎𝐺𝑁𝐷,𝑒𝑑𝑔𝑒𝑏

𝑎𝒔𝑎 ⊗ 𝒕𝑎 + 𝜌𝑎𝐺𝑁𝐷,𝑠𝑐𝑟𝑒𝑤𝑏
𝑎𝒔𝑎 ⊗ 𝒔𝑎) (4.1)

where 𝜦 is the Nye tensor that represents lattice incompatibility, 𝑏𝑎 is 
the length of the Burgers vector of the slip system 𝑎, 𝒍𝑎 is the dislocation 
line. Note that the line direction is the slip direction 𝒔𝑎, and transverse 
direction 𝒕𝑎, for screw and edge dislocations, respectively.

GND density was calculated from the lattice incompatibility in 
Eq. (4.1) considering only active slip systems and using generalized 
singular value decomposition to solve the system [22].

5. Modelling Bauschinger effect

Various models have been proposed based on slip 𝛾 or GND to model 
the Bauschinger effect [4,7,9,13,20], (see scheme in Fig.  2).
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Fig. 2. Scheme of the models analysed in this study.
5.1. Armstrong-Frederick model

The Armstrong-Frederick (A-F ) model is a phenomenological model 
that integrates the concepts of proportional hardening and saturation 
into the backstress term 𝜒𝑎 in Eq. (3.8), providing greater precision 
during cyclic loading: 
̇𝜒𝑎 = 𝐴 ̇𝛾𝑎 − 𝐴𝐷

|

|

̇𝛾𝑎|
|

𝜒𝑎 (5.1)

where ̇𝜒𝑎 represents the backstress rate, ̇𝛾𝑎 is the slip rate, 𝐴 and 𝐴𝐷
are parameters associated with direct hardening and dynamic recovery 
respectively that need to be adjusted [18]. The backstress 𝜒𝑎 evolves 
quasi-linear at the beginning of deformation, curving progressively 
until a saturation value of 𝐴∕𝐴𝐷.

The A-F model was first applied to crystal plasticity by [40] and was 
later adopted by other researchers in their own crystal plasticity frame-
works. Several variations have been proposed, such as the Chaboche
model (Eq. (5.2)) [41] that introduced a combination of linear and 
non-linear hardening terms or the Ohno-Wang model (Eq. (5.3)) [42]:

𝜒̇a =
NB
∑

k=1
𝜒̇a
k ; ̇𝜒𝑎

𝑘 = 𝐴𝑘 ̇𝛾𝑎 − 𝐴𝐷𝑘
|

|

̇𝛾𝑎|
|

𝜒𝑎
𝑘

where 𝐴𝐷𝑘 = 0 for only linear hardening terms. (5.2)

𝜒̇a = A𝛾̇a − AD

(

|𝜒a
|

A∕AD

)M
𝜒a

|

|

𝛾̇a|
|

. (5.3)

All these models are empirical and were applicable to the macroscopic 
length scale to capture the Bauschinger effect and cyclic ratcheting, but 
they are not expected to capture the underlying mechanisms at a lower 
length-scale [18]. Section 6.1 demonstrates how these models present 
important limitations to capture the level of observed hardening dur-
ing the first cycles of deformation [19]. To overcome this limitation, 
we combine A-F type models with linear SSD hardening or Voce-type 
hardening models that include isotropic hardening during bending and 
straightening without contributing to backstress.

5.1.1. A-F combined with linear SSD hardening
The critical resolved shear stress (CRSS) is defined by Taylor rela-

tion (Eq. (5.4))  [37] that depends on the dislocations density in which 
𝜏0𝑐  is the initial strength or friction stress: 

𝜏𝑎𝑐 = 𝜏0𝑐 + 𝛼𝐺𝑏
√

𝜚𝑎𝑆𝑆𝐷. (5.4)

The evolution of statistically stored dislocation (SSD) density is given 
by [36]: 
𝜚̇𝑎 = 𝑘 𝛾̇𝑎 (5.5)
𝑆𝑆𝐷 | |

4 
where 𝜏𝑎𝑐  is the CRSS on slip system 𝑎, 𝜌𝑎𝑆𝑆𝐷 is the SSD density, 𝐺 is the 
shear modulus, 𝛼 and 𝑘 are geometrical parameters being 𝛼 = 0.25 and 
𝑘 needs to be adjusted.

5.1.2. A-F combined with voce-type hardening
Voce-type hardening [43,44] is an experimentally-based hardening 

model composed of a hardening rate and a saturation term. It also 
considers latent hardening interactions between slip systems: 

𝛥𝜏𝑎𝑐 =
∑

𝑏
𝐻𝑎

𝑏𝛥ℎ
𝑏; 𝛥ℎ𝑏 = ℎ0

(

1 −
𝜏𝑏𝑐
𝑠𝑠

)𝑚
|

|

|

𝛾̇𝑏||
|

𝛥𝑡 (5.6)

where ℎ0 is the hardening rate, 𝑠𝑠 is the saturation slip strength that 
represents the saturation of hardening, 𝑚 is the hardening exponent and 
𝐻𝑎

𝑏  is the hardening interaction matrix of the slip system𝑏 in the slip 
system𝑎.

In our models, the Voce-type hardening will be used to represent the 
linear hardening observed experimentally. Given that Demir et al. [19] 
did not observe any decrease in the hardening during the initial cycles, 
we assumed 𝑠𝑠 ≫ 𝜏𝑏𝑐  i.e. 𝜏𝑏𝑐 ∕𝑠𝑠 ≈ 0, simplifying the expression to: 

𝛥𝜏𝑎𝑐 =
∑

𝑏
𝐻𝑎

𝑏𝛥ℎ
𝑏; 𝛥ℎ𝑏 = ℎ0

|

|

|

𝛾̇𝑏||
|

𝛥𝑡. (5.7)

5.2. Orowan-Sleeswyk model

The Orowan-Sleeswyk model [9,10] proposes a Taylor’s hardening 
relation to represent the kinematic hardening produced by GND: 

𝜒𝑎 = 𝐶𝑑 ⋅ 𝛼𝐺𝑏
√

𝜚𝑎𝐺𝑁𝐷 ⋅ 𝑃 𝑎𝑎 ⋅ sign( ̇𝛾𝑎) = 𝐶𝑑 ⋅ 𝛼𝐺𝑏
√

𝜚𝑎𝐺𝑁𝐷 ⋅ sign(𝛾𝑎) (5.8)

where 𝑃 𝑎𝑎 = sign( ̇𝛾𝑎) ⋅ sign(𝛾𝑎), 𝐶𝑑 denotes a geometric factor that 
requires adjustment, 𝛼 = 0.25 is a geometrical factor, 𝐺 the shear 
modulus, 𝑏 the Burgers vector magnitude and 𝜌𝑎𝐺𝑁𝐷 the GND density.

𝑃 𝑎𝑎 is the reversibility term [45] to determine the sign of 𝜒𝑎 respect 
to the sign of the resolved shear stress 𝜏𝑎. 𝑃 𝑎𝑎 is positive (𝜒𝑎 causes 
kinematic hardening) when both signs of accumulated slip 𝛾𝑎 and slip 
rate ̇𝛾𝑎 are the same, and negative (𝜒𝑎 causes kinematic softening) 
otherwise. The overall sign of 𝜒𝑎 is: 
sign(𝜒𝑎) = 𝑃 𝑎𝑎 ⋅ sign(𝜏𝑎) = 𝑃 𝑎𝑎 ⋅ sign( ̇𝛾𝑎) = sign(𝛾𝑎). (5.9)

In contrast to the mathematical approach of the A-F model, Orowan-
Sleeswyk model tries to apply our knowledge of dislocation structures. 
According to Mughrabi et al. [7], two explanations for hardening and 
softening can be found due to GND. (i) GND obstacles are dislocation 
cell walls and the hardening results from short-range interactive forces 
between the walls and the mobile dislocations, while the initial drop 
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in the yield strength occurs as a consequence of the glide of the GND 
during the reverse loading, which produces some relaxation of the 
dislocations cell walls and the plasticity generated in the interior of 
the cell. (ii) The pile-up of GND in certain regions during deformation 
causes stress on the slip systems and prevents further slip (strain 
hardening). For a cantilever, the region corresponds to the neutral axis 
of the cantilever. During the reverse loading, the backstress induced 
by the dislocations previously formed facilitates the transition towards 
equilibrium, contributing to the observed softening.

5.2.1. SSD modification in the Orowan-Sleeswyk model
The examination of load/straightening experimental curves for the 

cantilever (see Section 2) reveals an excessive increase in hardening 
during the straightening process, despite the anticipated reduction in 
yield stress caused by backstress.

HR-ESBD measurements on the monocrystal copper cantilever [20] 
found the creation of complex dislocation structures, caused by changes 
in the direction of some of the GND that remain instead of recombining 
during straightening. In this article, we attribute to these dislocations 
the excess of hardening generated.

This study proposes to consider these dislocations as responsible 
for the unexpected hardening observed by [19] during initial cycles. 
Because developing a dislocation dynamics code to calculate the new 
orientation of the GND could be complex and computationally expen-
sive, an alternative was to approximate them as randomly oriented and 
transform these GND into SSD. 
𝛥𝜌𝑎𝑆𝑆𝐷 = 𝜆|𝛥𝜌𝑎𝐺𝑁𝐷| (if 𝛥𝜌𝑎𝐺𝑁𝐷 ⋅ 𝜌𝑎𝐺𝑁𝐷 < 0) (5.10)

where 𝛥𝜌𝑆𝑆𝐷 is the change of SSD density, 𝛥𝜌𝐺𝑁𝐷 is the change of 
GND density, 𝜆 is the percentage of GND density converted to SSD 
density. The SSD density increment causes hardening through the 
Taylor hardening (Eq. (5.4)).

5.3. Finite Element Method (FEM)

The bending and straightening of the above models were simulated 
using finite element method. The 𝑥-axis displacement was applied over 
two lines of nodes on opposite faces of the cantilever at 17.3 μm
from the base (see Fig.  3(a)). The line of nodes were used instead of 
simulating the indenter to simplify the calculations after finding similar 
results in the comparative study of Appendix  E.

The following boundary conditions were imposed on the model 
during the successive cycles:

1. Bending obtained by displacing the cantilever -3 μm along the 𝑥-
axis in the indentation region during 3 s (as in Demir et al. [46]).

2. 3 s rest by deactivating the load.
3. Straightening obtained by displacing the cantilever 3 μm along 
the 𝑥-axis in the opposite direction in the indentation region 
during 3 s.

4. 3 s rest by deactivating the load.
15,600 quadratic tetrahedral elements (C3D20) were applied in 

simulations. For further details about convergence see Appendix  C. The 
parameters of the Bauschinger models were adjusted using the Nelder–
Mead optimization algorithm [47]. The optimization minimizes a dis-
tance function between the force–displacement values obtained from 
experimental data and those derived from simulations [48]. Nelder–
Mead was chosen among other optimization methods due to its sim-
plicity of use by not requiring mathematical derivatives of the distance 
function and its rapid convergence in a limited number of iterations, 
a crucial factor given the computationally intensive nature of FEM 
simulations.

The parameter values 𝑝𝑖 used to adjust the models are defined by: 

𝑝𝑖 = argmin

(

∑ ∫ ∣ 𝐹𝐹𝐸𝑀 (𝑢, 𝑝𝑖) − 𝐹𝐸𝑋𝑃 (𝑢) ∣ 𝑑𝑢
)

(5.11)

𝑝𝑖 𝑐𝑦𝑐𝑙𝑒𝑠 ∫ ∣ 𝐹𝐸𝑋𝑃 (𝑢) ∣ 𝑑𝑢

5 
where 𝐹𝐹𝐸𝑀  is the force obtained in the model, 𝐹𝐸𝑋𝑃  is the force 
measured experimentally, and 𝑢 is the displacement of the indenter or 
the displacement of the nodes in the case of the FEM model.

6. Results and discussion

This section presents the results derived from the Bauschinger mod-
els applied to the cantilever experiment. The results obtained from the
Armstrong-Frederick based models are detailed in Section 6.1, while the 
results from the GND-based models are in Section 6.2.

As mentioned in Cantilever Experiment (Section 2), slip bands are 
formed during the 1st bending due to the activation of dislocation 
sources [49], but their impact during formation is extremely complex. 
For this reason, our analysis focuses on the subsequent 2nd and 3rd 
cycles, where no additional slip bands are created. Once the most 
suitable models are selected and their parameters adjusted, they will be 
applied to the 1st cycle trying to estimate the impact associated with 
the slip bands’ formation.

6.1. Armstrong Frederick based models

A-F relate the slip to the hardening and backstress, the accumulated 
slip 𝛾 for a slip system is defined through the Schmid factor and the 
CRSS (𝜏𝑐) of the slip system [28].

Fig.  3(b) shows the initial vector components of the stress during 
cantilever modelling (𝜎𝑧 = [5̄ 2 1], 𝜎𝑥 = [5 2 21], on crystal coordi-
nates). We can observe how the tensile load 𝜎𝑧 dominates 𝜎𝑥 as we 
approach the cantilever base (blue zone).

Appendix  D includes the table with each slip system (𝑛𝑎, 𝑠𝑎), their 
Schmid factor, and Fig.  D.1 shows the accumulated slip 𝛾 during the 
2nd bending, demonstrating that the main slip activity comes from the 
two slip systems with the highest Schmid factor, which are shown in 
more detail in Fig.  4 for the 2nd and 3rd cycle (slip system (11̄1)[101̄]
with Schmid factor 0.49, and slip system (1̄11)[101] with Schmid factor 
0.43).

Furthermore, in Fig.  1(b), we can identify two different directions 
in the slip bands, which seems to confirm the result of our model with 
two clear main slip systems as responsible for the formation of the 
hardening and backstress.

Table 6.1 includes the parameters that have been calibrated for 
the A-F models using the Nelder–Mead optimization algorithm (Sec-
tion 5.3, Eq. 5.3). Given that copper has a face-centred cubic structure 
with symmetry in its crystalline lattice, the properties are uniform 
across the different slip systems. The initial CRSS 𝜏0𝑐 = 43 MPa was 
adjusted to be the same for all models, this value takes into account all 
the previous hardening suffered in the previous deformation (1st cycle 
and sample treatment), explaining why it deviates from the values of 
the literature (19–25 MPa [50]).

 Bauschinger 
model

Hardening 
model

Parameters adjusted  

 A-F with 
saturation 
(Eq. (5.1))

None 𝐴 = 2050 MPa s−1, 
𝐴𝐷 = 30 s−1

 

 A-F with no 
saturation 
(Eq. (5.1))

None 𝐴 = 2050 MPa s−1, 
𝐴𝐷 = 0 s−1

 

 A-F (Eq. 
(5.1))

Linear (Eq. 
(5.5))

𝐴 = 1030 MPa s−1, 
𝐴𝐷 = 25 s−1, 
𝑘 = 1970 μm−2

 

 A-F with no 
saturation 
(Eq. (5.1))

Voce-type 
(Eq. (5.7))

𝐴 = 1150 MPa s−1, 
ℎ0 = 400 MPa, 
𝐴𝐷 = 0 s−1, 𝜏𝑏𝑐 ∕𝑠𝑠 = 0

 



A. Martinez-Pechero et al. Acta Materialia 289 (2025) 120886 
Fig. 3. (a) Boundary conditions for the FEM model during bending/straightening (in yellow, distances from the base and the top of the cantilever where the indenter was applied, 
in orange, dimensions of the base, in green, line of nodes where the load was applied, in red, direction of the load). (b) Diagram showing load orientation in FCC crystal coordinates. 
The dominant stress component along the cantilever is also indicated in blue.  (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
Fig. 4. (a) The slip accumulated 𝛾 in the (1̄11)[101] slip system after 2nd bending. (b) 𝛾 in (11̄1)[101̄] after 2nd bending. (c) 𝛾 in (1̄11)[101] after 3rd bending. (d) 𝛾 in (11̄1)[101̄]
after 3rd bending. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
 

-

Fig.  5 compares the force–displacement profiles of the 2nd and 3rd 
bending/straightening cycles of the A-F models with the experimental 
data. The initial A-F model (green curves), defined by Eq. (5.1) of 
Section 5.1, exhibits favourable agreement with the experimental data 
(blue curves) during the bending/straightening of the 2nd cycle (Fig. 
5(a, b)), but there is a notable absence of hardening during the 3rd 
cycle (Fig.  5(c, d)). This limitation is attributed to the saturation term 
𝐴𝐷, which maintains the value of 𝜒𝑎 constant once it reaches 𝜒𝑎 =
𝐴∕𝐴𝐷 (Eq. (5.1)). While the A-F model can be effective in simulat-
ing cyclic fatigue experiments, it proves inadequate for initial cycles 
characterized by large strains in opposite directions without saturation. 
This limitation is evident in our case, where there is isotropic hardening 
between cycles.

Similar behaviour was observed in the model proposed by Ohno 
and Wang (Section 5.1), which differ mainly in the curvature of the 
force–displacement representation (depends on the exponent ‘‘𝑀 ’’ of 
the Eq. (5.3)) until it stabilizes at 𝜒𝑎 = 𝐴∕𝐴𝐷 and then remains 
constant. A-F model without saturation (𝐴𝐷 = 0) is represented in 
(purple curves). The notable increase in hardening during 2rd bending 
6 
(Fig.  5(a)) results in an excessive softening of the 2rd straightening
(Fig.  5(b)). Furthermore, there is no curvature in the force–displacement
graph which is similar during the 2rd and 3rd cycles. This similarity 
between cycles demonstrates the cyclic nature of the model, which is 
unable to capture the increased hardening during the 3rd cycle.

The Chaboche model [41] aggregates various backstresses 𝜒a
k , de-

rived from both the Armstrong-Frederick (A-F) model with and without 
saturation. 

𝜒̇a =
NB
∑

k=1
𝜒̇a
k ; ̇𝜒𝑎

𝑘 = 𝐴𝑘 ̇𝛾𝑎 − 𝐴𝐷𝑘
|

|

̇𝛾𝑎|
|

𝜒𝑎
𝑘 where 𝐴𝐷𝑘 = 0 for some ̇𝜒𝑎

𝑘 .

(6.1)

The results would reflect a mixture between the green and purple 
curves in Fig.  5. In Fig.  5(c), the experimental force–displacement slope 
during the 3rd bending closely resembles that obtained during the 2nd 
bending. The Chaboche model is expected to exhibit a steeper slope 
compared to the A-F model during the 3rd bending. However, this slope 
would not be similar to that obtained during the 2nd bending, as certain 
backstresses 𝜒𝑎

𝑘 become saturated during the 2nd cycle, resulting in 
some 𝜒̇a = 0.
k
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Fig. 5. Comparison of experimental data with A-F type models.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
Another approach was to combine A-F models with Linear Taylor 
hardening (orange curves, Section 5.1.1). Although the 2nd bending 
cycle (Fig.  5(a)) demonstrates good agreement with the experimental 
data, a reduction of the backstress term, 𝜒𝑎, was necessary during the 
calibration of the model to avoid excessive hardening. However, this 
reduction in 𝜒𝑎 in conjunction with linear hardening produces a higher 
yield strength during the 2nd straightening compared to experimental 
data. Furthermore, the 3rd bending cycle exhibits insufficient harden-
ing compared to the experiment, since the linear Taylor hardening is 
proportional to 

√

𝜌𝑎𝑆𝑆𝐷 ∝
√

𝛾𝑎 (see Eq. (5.4)).
With the A-F models without saturation, the same shape was ob-

served between the 2nd and 3rd cycles (bending and straightening); 
however, the saturation of the force–displacement curve during
straightening was less than the experimental curves, and there was no 
hardening between cycles. The introduction of linear Taylor harden-
ing increases the curvature of the force–displacement curves during 
the straightening of the cantilever, but it does not provide enough 
hardening during the 3rd bending.

Finally, the A-F model was combined with Voce-type hardening with-
out saturation (black curves, Section 5.1.2, Eq. (5.7)). The results agree 
well with the experiment, demonstrating the necessity of including 
isotropic hardening in A-F models.

Clarification is necessary about the saturation of the Voce-type hard-
ening. Although in our parameterization there is no saturation (𝐴𝐷 = 0
in Eq. (5.1) and 𝜏𝑐∕𝑠𝑠 → 0 in Eq. (5.6)), saturation is necessary for 
fatigue experiments of many cycles [2,41]. The saturation is negligible 
for the slip, 𝛾𝑎, accumulated during the first cycles (𝐴∕𝐴𝐷 and 𝑠𝑠 are 
much higher than the stresses reached during the experiments), but it 
is necessary to recalculate it once there are more cycles with more slip 
accumulation.
7 
6.2. Orowan-Sleeswyk models

The GND densities of the two most active slip systems (1̄11)[101]
and (11̄1)[101̄] during the simulations are shown in Fig.  6. They were 
calculated by solving the Nye tensor in its matrix form (see Section 4), 
the results show the highest concentration in the base of the cantilever, 
since it is the region where the curvature is the highest.

During the 2nd bending, it can be observed how a slip band of 
positive GND is formed in both slip systems (see Fig.  6(a, b)). Applying 
the formulation of Dai et al. [51] for small strains, we can check the 
sign of the edge GND using an analytical expression. 

𝜚𝑎𝐺𝑁𝐷,𝑒 = − 1
𝑏𝑎

𝛁𝛾𝑎 ⋅ 𝒔𝑎. (6.2)

For (1̄ 1 1)[1 0 1], the direction of 𝛁𝛾𝑎 is along −x (see Fig.  4(a)) 
that corresponds to [5̄ 2̄ 2̄1] in the crystal system for the Euler angles 
𝜙1 = 260.0◦, 𝛷 = 101.1◦ and 𝜙2 = 248.2◦ [19]: 

sign(𝜚𝑎𝐺𝑁𝐷,𝑒) = −𝛁𝛾𝑎 ⋅ 𝒔𝑎 = −[5̄ 2̄ 2̄1] ⋅ [1 0 1] = + (6.3)

For (1 1̄ 1)[1 0 1̄], the direction of 𝛁𝛾𝑎 is +x (see Fig.  4(a, b)) that 
corresponds to [5 2 21]: 
sign(𝜚𝑎𝐺𝑁𝐷,𝑒) = −𝛁𝛾𝑎 ⋅ 𝒔𝑎 = −[5 2 21] ⋅ [1 0 1̄] = + (6.4)

The same procedure can be used for the sign of GND during the 3rd 
bending, in this case, 𝜌𝐺𝑁𝐷 < 0.

Fig.  6 shows a high concentration of GND at the base of the 
cantilever during the 2nd and 3rd bending cycles, reaching densities 
of ∼ ±130 μm−2 for (1̄ 1 1)[1 0 1] and ∼ ±160 μm−2 for (1 1̄ 1)[1 0 1̄]. 
The maximum total value of GND (the sum of all GND) is ∼ |103| μm−2, 
a value of the same order of magnitude as the values obtained through 
KAM images [19]. During 2nd and 3rd straightening, the GND density 
was very low. This happens because the GND is calculated from the 



A. Martinez-Pechero et al. Acta Materialia 289 (2025) 120886 
Fig. 6. Edge GND profiles of the two more active slip systems (1̄ 1 1)[1 0 1] and (1 1̄ 1)[1 0 1̄] after the 2nd and 3rd cycles. Please, be aware that the colour scale is adjusted 
in the straightening figures (c,d,g,h) where the GND density is significantly smaller and difficult to appreciate the distribution with the bending colour scale.  (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
plastic strain gradient, 𝑭 𝒑, and when the cantilever returns to its 
original position, the strain disappears.

Fig.  7 shows the force–displacement curves for the
Orowan-Sleewyck model with and without SSD modification during the 
2nd and 3rd cycles of the experiment.

The golden curve represents the force–displacement obtained from 
the Orowan-Sleeswyk model. There is a good match with the experi-
mental data during the 2nd bending Fig.  7(a) presenting slightly low 
yield stress but reaching the maximum force measured experimentally. 
However, during the 2nd straightening (Fig.  7(b)), we observed a lower 
strain hardening than experiments and the maximum force reached 
is approximately the initial yield value presented in curve Fig.  7(a), 
which is expected since this force occurs when the beam is straight and 
𝜌𝐺𝑁𝐷 ∼ 0 μm−2.

The 3rd cycle is shown in Fig.  7(c) (bending) and Fig.  7(d) (straight-
ening), the shape of the curve is similar to the 2nd cycle with slightly 
8 
more hardening during bending and more backstress during straight-
ening, these shapes are reasonable since the deformation is similar but 
in opposite direction. The slightly higher hardening can be attributed 
to the GND that remain in the corners after the previous cycle.

Table 6.2 includes the parameters that have been adjusted using 
the Nelder–Mead optimization algorithm (Section 5.3). The Orowan-
Sleeswyk models were calibrated with a geometrical factor 𝐶𝑑 = 3.6
(Eq. (5.8)). For comparison, the value reported by Sleeswyk with a low 
carbon steel alloy [10,52] was 𝐶𝑑 ∼ 10. In both cases the material 
was FCC and there were bands (slip for copper and Lüdder for steel) 
with 𝜌𝐺𝑁𝐷 ∼ 103 μm2 around them. Nevertheless, the model seems 
incomplete when we compare straightening curves with the exper-
iment, which presents an excessive hardening no explained for the 
Orowan-Sleeswyk formula (Eq. (5.8)).

We examined the possibility that dislocations do not disappear 
during straightening. Ugi et al. [20] did HR-ESBD measurements of the 
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Fig. 7. Comparison of experimental data with Orowan-Sleeswyck model and Orowan-Sleeswyck with SSD conversion.  (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
monocrystal copper cantilever, and they observed that during straight-
ening some GND changed their orientation, forming complex structures 
whose contribution to strain hardening ∼0 (because dislocations do not 
have a clear orientation). In general, only ∼25% GND were recombined 
instead of total recombination, as shown by the Orowan-Sleeswyk 
model combined with the GND calculus model (see Section 4).

 GND model Parameters adjusted  
 Orowan-Sleeswyk (Eq. (5.8)) 𝐶𝑑 = 3.6  
 Orowan-Sleeswyk (Eq. (5.8)) with SSD 
(Eq. (5.10))

𝐶𝑑 = 3.6 and 𝜆 = 0.72 

Orowan-Sleeswyk model with SSD (red curves) includes a representation 
of the previously mentioned complex dislocation structures. As dis-
cussed in Section 5.2.1, we approximate these structures as increase 
in the SSD density, giving a random orientation to these GND when 
they change. The hardening produced by the SSD increment is given by 
Taylor equation (Eq. (5.4)). The percentage of GND density converted 
to SSD density during straightening was adjusted to 72% (parameter 
𝜆), a value close to the ∼75% GND that remain after straightening in 
the experiment described in [20].

The force–displacement profile shows good agreement with the ex-
perimental data (Fig.  7) that reproduce the hardening expected during 
straightening. The highest mismatch is presented in the 3rd straight-
ening, where the experimental slope is lower than the rest of the 
straightening cases; the reason that we found most probable comes 
from the indentation process, which is not perfectly perpendicular after 
3 consecutive cycles and requires an adaptation of the cantilever to the 
indenter shape, reducing the stiffness of the structure.
9 
6.3. Modelling bending/straightening 1st cycle

Once the parameterization of the models was adjusted for the 2nd 
and 3nd cycles, where slip bands are completely formed, they were 
applied to the 1st cycle to estimate the impact associated with the 
slip band formation process. The models and parameters applied were 
those that have proven capable of reproducing the Bauschinger effect 
during initial cycles: A-F combined with Voce-type model and ‘‘modified’’ 
Orowan-Sleeswyk model by SSD density conversion. For modelling the 1st 
cycle only the parameter CRSS was changed to 30 MPa, which differs 
from the 43 MPa of the 2nd cycle. The increase in the 2nd cycle is due 
to the hardening during the 1st cycle.

Fig.  8(a) presents the force–displacement results from the 1st bend-
ing. Experiment results show less hardening (∼540 μN) than simulations 
(∼950 μN for Orowan-Sleeswyk + SSD conversion and ∼1100 μN for 
A-F+Voce). The experimental curve also exhibits several drops or dis-
continuities, with the largest drop ∼1000 μN. These drops, attributed 
to slip bands formation (see Fig.  1b), appear responsible for the dif-
ferent stress–strain experimental response in 1st cycle compared to the 
2nd and 3rd. Confirming this hypothesis, our simulations, which do 
not include the slip bands effect, show similar hardening in the 1st, 
2nd and 3rd cycles. Once formed, the slip bands act as obstacles to 
dislocations [12], increasing the hardening of posterior cycles.

Fig.  8(b) presents the force–displacement results from the straight-
ening process. The absence of drops indicates that the slip bands 
formation mainly occurs during the bending of 1st cycle. These re-
sults discard the hypothesis that the force drops are due to cantilever 
adaptation to the indenter, as the cantilever must also adapt during 
the 1st straightening to the indenter on the opposite beam face. The 
experimental data and simulations show good agreement.
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Fig. 8. Comparison of 1st cycle experimental data with ‘‘modified’’ Orowan-Sleeswyck with SSD conversion and A-F model with Voce type hardening.
Fig. 9. Comparison of maps of total GND density between simulations and experimental estimations using KAM analysis based on three nearest neighbours [46] after the 1st cycle.
The effect of slip bands on total GND distribution is analysed by 
comparing simulated GND density (Fig.  9) with experimental estima-
tions from kernel average misorientation (KAM) analysis [46]. KAM 
data was calculated from the misorientation gradient of each EBSD data 
point of the Cu cantilever relative to its first, second and third nearest 
neighbour points. It measures local lattice curvature, and thus, GND 
density. The calculation of the GND density from the lattice curvature, 
as described in [53], uses elastic rotation gradients to determine the 
incompatibility of the lattice (valid only for small deformations [54]), 
employing L1 minimization to identify 9 unknown GND densities that 
accommodate a given lattice curvature. In contrast, our model uses the 
10 
plastic deformation gradient 𝐹𝑝 and a restricted solution for 18 possible 
GND densities described in [22].

Fig.  9 shows an ‘‘X-shape’’ GND distribution in both simulations 
and KAM analysis. The simulations exhibit a more uniform distribution 
across the cantilever, while the KAM analysis reveals higher concen-
trations within the slip bands. During straightening, both simulations 
and KAM analysis show a significant reduction in GND density at 
the cantilever’s corners and edges. The KAM image shows high GND 
concentrations due to the slip bands but it is noteworthy that the KAM 
analysis is designed for small strains.
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Although slip bands were not directly simulated, the model repro-
duces a very similar GND distribution, suggesting it represents a state 
preceding the abrupt slips observed believing it could be obtained 
experimentally using a lower strain rate. While the geometric effect 
of the slip bands in Eqs.  (5.8) and (5.10) is evident, the current lack 
of activation of dislocation sources [49] prevents separating this effect 
from the constants 𝐶𝑑 and 𝜆.

We conclude that our models still have room for improvement. It 
represents a step towards creating shape and size-independent models 
(due to the use of GND), but requires considering dislocation sources 
to model and predict GND concentration.

6.4. Comparison of A-F model with Voce-type hardening and Orowan-
Sleeswyk model with SSD

The force–displacement profiles of both models demonstrate that 
the two alternatives are able to reproduce the Bauschinger effect during 
initial cycles (Figs.  5, 7).

The Orowan-Sleeswyk model with SSD conversion introduces the 
physical concept of dislocations such as GND and SSD and their evolu-
tion. These models allow us to better understand the internal processes 
in the material for more complex experiments or other materials. 
On the other hand, the A-F with Voce-type hardening is based on a 
mathematical approach that considers the relationships between stress, 
slip 𝛾, and different parameters that need adjustment.

The Orowan-Sleeswyk model requires solving Nye’s dislocation ten-
sor, making it computationally more complex and prone to convergence 
issues (especially at the corners), while the A-F model performs better 
for coarser meshes and is more practical if the goal is to model material 
fatigue over multiple cycles.

Numerous studies have corroborated that hardening saturates after 
several cycles or higher strains [2,41]. In the initial cycles, there was no 
saturation, so adjustment of the saturation parameters in the A-F model 
with Voce-type hardening was not necessary (𝐴𝐷 ∼ 0 in Eq. (5.1) and 
𝜏𝑐∕𝑠𝑠 ∼ 0 in Eq. (5.6)). However, when the models are used in a cyclic 
regimen, the A-F with Voce-type hardening requires calibration of four 
parameters. In contrast, the modified Orowan-Sleeswyk model does not 
need additional parameters since the hardening and Bauschinger effect 
are proportional to √𝜌𝐺𝑁𝐷, attenuating the slope for higher values of 
𝜌𝐺𝑁𝐷.

6.5. Improvement to the Orowan-Sleeswyk model with SSD after multiple 
cycles

We propose enhancements to the Orowan-Sleeswyk model with SSD 
conversion, incorporating strain rate influence, slip bands effects and 
cracking due to fatigue accumulation. These enhancements are derived 
from a literature review and require validation through additional 
multi-cycle cantilever experiments.

• Strain rate influence: Comparing the experiments of the data used 
in Demir et al. [19] and Ugi et al. [20], the load rate was different. 
In Demir et al. the load rate was 1 μm s−1 for a 25.4 × 8.64 
× 7.05 μm cantilever, while in Ugi et al. the load rate was 5 
nm s−1 for a 20.6 × 5.0 × 5.0 μm cantilever. The difference in 
the strain rate might be responsible for less isotropic hardening 
during the straightening in Ugi et al. since there is more time for 
the dislocations to recombine.
However, this lower strain rate also led to fewer slip band forma-
tions in the Ugi et al. cantilever, occurring only at the cantilever’s 
corner. Slip bands play an important role as dislocation obstacles 
increasing the strain hardening during the initial cycles but also 
in dislocation recombination by reducing hardening after multi-
ple cycles (reaching dislocation density saturation) and initiating 
fatigue cracks, as shown in [55,56].
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The SSD conversion mechanism (Eq. (5.10)) should be positively 
correlated with the strain rate, however, it also should be pos-
itively correlated with any dislocation saturation term derived 
from slip band formation.

• Slip Bands effects: Essmann et al. [57] identified slip bands in 
single-crystal copper during uniaxial loading fatigue experiments 
and subsequently proposed the EGM model [55] to explain the 
slip bands formation, dislocation recombination, and crack de-
velopment over multiple loading cycles. The formation of slip 
bands is attributed to the interaction between strain with material 
extrusions and intrusions. During the initial loading cycles, the 
dislocation structure exhibits a disorganized pattern, resulting 
in an accumulation of dislocations over consecutive cycles. This 
process reaches saturation after approximately 50 cycles, in which 
steady-state cyclic deformation is established due to dislocation 
recombination within the slip bands, achieving a balance between 
dislocation multiplication and recombination [58].
During steady-state, dislocations form intricate clusters called 
‘‘veins’’ outside the slip bands, similar to structures observed in 
the early cycles. Within the slip bands, edge dislocation density 
varies, forming high-density and low-density areas known as 
‘‘cells’’. The cell characteristics may differ in cantilevers compared 
to uniaxial loading experiments due to curvature effects, which 
create distinct tensile and compressive regions separated by a 
neutral axis.
Modelling dislocation recombination through slip bands can be 
achieved by incorporating an attenuation term inside Eq. (5.10). 
However, accurate local strain prediction after multiple cycles 
requires modelling slip bands, including both dislocation sources 
(extrusions and intrusions) [49] and the recombination mecha-
nisms that occur inside the slip bands [59].

• Cracking due to fatigue accumulation: Strain accumulation within 
slip bands leads to crack initiation when edge dislocations from 
separate slip systems recombine. The extrusions or intrusions 
must be left over debilitating the structure [58]. Cracks can form 
at the interface between slip bands and the surrounding material 
or in the rugosity that is formed in the surface of the material 
due to slip bands [55]. In polycrystals, cracks might also occur at 
crystal interfaces [60]. In cantilevers, the neutral axis of curvature 
acts as a dislocation barrier, potentially functioning similar to 
polycrystal interfaces.

In summary, understanding strain rate effects on fatigue accumu-
lation, slip bands and crack formation is crucial for enhancing the
Orowan-Sleeswyk model with SSD conversion. The literature shows that 
loading rate variations affect slip band formation and dislocation be-
haviour, which are crucial for crack development. Additional cantilever 
experiments with extended cycles are needed to validate these proposed 
improvements and expand our understanding of dislocation processes.

7. Conclusions

In this study, we applied well-established models in cyclic de-
formations to reproduce the Bauschinger effect observed in a cop-
per monocrystal cantilever experiment during the initial bending and 
straightening cycles. These models were implemented with the
UKAEA’s Crystal Plasticity Finite Element code (OXFORD-UMAT);
UMAT files, documentation, and examples are available in the GitHub 
link with open public access [24]. The principal findings are as follows.

• The Armstrong-Frederick model and their variants (Chaboche, Ohno 
and Wang) failed to replicate the experimental data. The pa-
rameters necessary to attenuate the straightening phase result in 
excessive saturation during subsequent cantilever bending, reach-
ing a point where the resistance no longer increases. While these 
models are very useful for understanding multiple deformation 
cycles, they are not suitable for reproducing the initial cycles.
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• The combination of Armstrong-Frederick and Voce-type hardening
models has proven effective in simulating the initial cycles. The 
results reveal the confluence of two forms of hardening: the re-
versible type represented by the Armstrong-Frederick model, which 
arises during bending and contributes to the Bauschinger effect, 
and the irreversible type represented by the Voce-type hardening
model.

• The Orowan-Sleeswyk model failed to replicate the experimental 
data. Although the hardening is appropriate during the bending, 
the values obtained during the straightening are well below the 
experimental results. This discrepancy can be attributed to the 
near-zero density of geometrically necessary dislocations (GND) 
when the cantilever is straight, as per the GND formulation.

• In this study we propose to enhance the Orowan-Sleeswyk model 
by integrating the conversion of certain GND into statistically 
stored dislocations (SSD). This alternative has proven to be effec-
tive in simulating the initial cycles. According to recent research 
suggesting that a percentage of GND do not recombine during 
the straightening phase, but rather reorient, leading to increased 
hardening, our innovation involves considering that a percentage 
of the GND density reduced is converted to SSD density and 
incorporating it into the model.

• Both models: Armstrong-Frederick with Voce-type hardening and
Orowan-Sleeswyk with SSD are valid alternatives with similar ac-
curacy to reproduce the hardening and Bauschinger effect during 
the initial cycles. Some of the most significant differences in the 
choice of one or the other are: Orowan-Sleeswyk with SSD allows 
us to better understand the internal physical mechanisms of the 
material and is easier to adjust because there are no saturation pa-
rameters as the kinematic hardening is proportional to the square 
root of the GND density, however, it is more computationally 
complex and prone to convergence issues. On the other hand,
Armstrong-Frederick and Voce-type hardening works better with 
coarser meshes but it is complicated to adjust several saturation 
parameters that vary after several cycles or big strains.

• Future research derived from this study should focus on two main 
areas: Studying how slip bands formation affects the hardening 
and Bauschinger effect across initial and posterior cycles, and 
investigating the impact of GND and SSD in polycrystalline ma-
terials. Additional cantilever experiments with extended cycles 
will be necessary to validate and expand our understanding of 
dislocation dynamics.
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Appendix A. Crystal to sample transformation

Crystal to sample transformation, 𝒈, defines the passive transforma-
tion from the crystal to the sample reference frame (see Eq. (A.1) which 
is given in Box  I). 𝒈 is computed by the Bunge angles (𝜑1, 𝛷, 𝜑2).

Appendix B. Rotation matrix for elastic constants

The transformation of the elastic matrix in the crystal reference C0
into the elasticity matrix in the deformed configuration C is given by 
C = [𝑹]

[

C0
]

[𝑹]𝑇 .
[𝑹] a 6 × 6 special transformation matrix 6 × 6 constructed from 

the crystal to the sample transformation matrix (𝑔𝑖𝑗) [34] (see Eq.  (B.1) 
which is given in Box  II). 

Appendix C. Convergence study

Fig.  C.1 illustrates the convergence study of the cycles for different 
mesh sizes:

Appendix D. Slip systems activation

The activation of the slip systems depends on the Schmid factor 𝑚
and CRSS. The Schmid factor (𝑚) for a stress 𝜎 is given by the product 
𝑚 = (𝜎 ⋅ 𝑠𝑎) ⋅ (𝜎 ⋅ 𝑛𝑎)∕(|𝜎 ⋅ 𝑠𝑎| ⋅ |𝜎 ⋅ 𝑠𝑎|), where 𝑛𝑎 and 𝑠𝑎 are the normal 
and slip direction of the slip system, respectively. The calculation of 
the Schmid factor for the main stress component 𝜎𝑧 in the cantilever 
experiment (see Fig.  3(b)) is presented in Table  D.1:

The Schmid factor is higher in slip systems (1 ̄1 1) [1 0 ̄1] and (1̄ 1 1) 
[1 0 1]. In Fig.  D.1, we can observe the amount of slip after applying 
the second bending. We can see how 𝛾 decreases in subsequent slip 
systems, being almost imperceptible compared to the two main ones. 
The explanation for this occurrence is that the plasticity generated by 
the slip of (1 1̄ 1) [1 0 1̄] and (1̄ 1 1) [1 0 1] induces stress relaxation, 
preventing the activation of subsequent slip systems. For this reason, 
we focus our analysis of slip and dislocations only on the first two (see 
Figs.  4 and 6).
Table D.1
Schmid factors of slip systems respect to 𝜎𝑧 = [5̄, 2, 1].
 Slip normal Slip direction Schmid factor 

respect to 
𝜎𝑧 = [5̄, 2, 1]

 

 (1, 1̄, 1) [1, 0, 1̄] 0.49  
 (1̄, 1, 1) [1, 0, 1] −0.43  
 (1, 1, 1̄) [1, 1̄, 0] 0.38  
 (1̄, 1, 1) [1, 1, 0] −0.32  
 (1, 1̄, 1) [1, 1, 0] 0.24  
 (1, 1̄, 1) [0, 1, 1] −0.24  
 (1, 1, 1̄) [1, 0, 1] −0.21  
 (1, 1, 1) [1, 1̄, 0] −0.19  
 (1, 1, 1) [1, 0, 1̄] 0.16  
 (1, 1, 1̄) [0, 1, 1] −0.16  
 (1̄, 1, 1) [0, 1, 1̄] 0.1  
 (1, 1, 1) [0, 1, 1̄] −0.02  
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𝒈 =
⎡

⎢

⎢

⎣

cos𝜑1 cos𝜑2 − sin𝜑1 sin𝜑2 cos𝛷 sin𝜑1 cos𝜑2 − cos𝜑1 sin𝜑2 cos𝛷 sin𝜑2 sin𝛷
−cos𝜑1 sin𝜑2 − sin𝜑1 cos𝜑2 cos𝛷 − sin𝜑1 sin𝜑2 + cos𝜑1 cos𝜑2 cos𝛷 cos𝜑2 sin𝛷

sin𝜑1 sin𝛷 −cos𝜑1 sin𝛷 cos𝛷

⎤

⎥

⎥

⎦

𝑇

. (A.1)
Box I. 
[𝑹] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝑔11)2 (𝑔12)2 (𝑔13)2 2 𝑔11 𝑔12 2 𝑔13 𝑔11 2 𝑔12 𝑔13
(𝑔21)2 (𝑔22)2 (𝑔23)2 2 𝑔21 𝑔22 2 𝑔23 𝑔21 2 𝑔22 𝑔23
(𝑔31)2 (𝑔32)2 (𝑔33)2 2 𝑔31 𝑔32 2 𝑔33 𝑔31 2 𝑔32 𝑔33
𝑔11 𝑔21 𝑔12 𝑔22 𝑔13 𝑔23 𝑔11 𝑔22 + 𝑔12 𝑔21 𝑔13 𝑔21 + 𝑔11 𝑔23 𝑔12 𝑔23 + 𝑔13 𝑔22
𝑔31 𝑔11 𝑔32 𝑔12 𝑔33 𝑔13 𝑔11 𝑔32 + 𝑔12 𝑔31 𝑔13 𝑔31 + 𝑔11 𝑔33 𝑔12 𝑔33 + 𝑔13 𝑔32
𝑔21 𝑔31 𝑔22 𝑔32 𝑔23 𝑔33 𝑔22 𝑔31 + 𝑔21 𝑔32 𝑔21 𝑔33 + 𝑔23 𝑔31 𝑔22 𝑔33 + 𝑔23 𝑔32

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B.1)

Box II. 
Fig. C.1. Convergence study for 2nd and 3rd cycles.
 
 

 
 
 
 
 

 

 
 

 
 
 

 
 
 
 
 

Appendix E. Comparison of Node Line and indenter

In this section, we analyse if incorporating the indenter into the
model significantly alters the results compared to a line of element
nodes (Node Line) as a substitute for the indenter. Modelling the inden-
ter provides a more accurate representation of the contact mechanics,
including stress distributions and potential deformation of both the
indenter and the material being tested. However, Demir et al. [19]
determined that the volume affected by the indenter contact is very
small (2 μm3) compared to the deformed volume of the cantilever (180
μm3), suggesting that its effect can be neglected.

In our models, the indenter was represented with a spherical tip
of approximately 5 μm of radius. In Abaqus, the contact was mod-
elled with ‘‘hard normal’’ and ‘‘rough friction’’. Fig.  E.1 compares the
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force–displacement responses of modelling the indenter and using the
Node Line representation. The results demonstrate minimal differences
between the two loading methods.

The spherical indenter exhibited slightly higher resistance, poten-
tially due to its contact point of 1.5 μm of radius. This contact point
generates less torque and promotes greater force dissipation in the
contact area compared to the distributed load of the Node Line, thus
requiring more force to achieve equivalent displacement.

Fig.  E.2 presents the stress profiles of the indenter and the Node
Line. The continuous Node Line applies a distributed load, which
creates a larger moment arm relative to the cantilever’s fixed end. In
contrast, the spherical indenter applies a concentrated force, resulting
in a smaller effective lever arm. This localized pressure in the contact
region induces higher local stress concentrations, as evidenced by peak
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Fig. D.1. Accumulated slip 𝛾 after the 2nd bending of all the slip systems.
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Fig. E.1. Comparison of force–displacement response using a line of nodes or an indenter during the 2nd cycle.  (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
Fig. E.2. Stress profile of the cantilever after the 2nd cycle with Node Line (left) and Indenter (right).
stress values that are nearly two orders of magnitude compared to those 
observed in the Node Line simulations (as indicated by the maximum 
values on the colour gradient scale in Fig.  E.2).

Using an indenter instead of a Node Line causes convergence issues 
in simulations when the indenter detaches from the sample, typically 
occurring between cycles. This may be due to the ‘‘rough friction’’ con-
tact, which may not effectively handle the sliding of the indenter during 
unloading. As a result, the Node Line is a more practical approach for 
modelling the cycles with a reduced loss of precision.
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