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A B S T R A C T

Instabilities of Alfvén eigenmodes (AEs) are of significant concern because they can enhance the cross-field
transport of fusion-born alpha particles beyond the neoclassical level in magnetic fusion plasmas. The
threshold value of alpha-particle pressure for exciting AEs depends critically on the damping rate of AEs. The
damping mechanisms include kinetic damping due to interactions with thermal particles, continuum damping
due to AE frequency crossing Alfvén continuum, and radiative damping due to emitting kinetic Alfvén waves
(KAWs). The radiative damping is substantial and can even prevail in high-temperature burning plasmas [1]. We
revisit the radiative damping analytic theory for TAE in plasmas with low positive magnetic shear, considering
TAE with an eigenfrequency near the bottom of TAE-gap and with poloidal harmonics of the same sign (even
TAE). In contrast to earlier papers, we provide the damping calculations in real space rather than Fourier space.
This approach is straightforward technically and more enlightening from a physics standpoint for benchmarking
numerical calculations of radiative damping. The parametric dependence of the resulting damping rate agrees
with that of Refs. [2-5], but it has a smaller numerical factor in front of it.

Introduction

Magnetic fusion research has now reached the point at which
burning thermonuclear plasma becomes possible with significant pop-
ulations of fusion-born alpha particles. Consequently, there is a need to
assess collective phenomena that may affect alpha-particle confinement.
Excitation of weakly-damped Alfvén eigenmodes (AEs) is of particular
concern because they can enhance alpha particle transport far beyond
the neoclassical level. The threshold value of alpha-particle pressure for
exciting AEs depends critically on the damping rate of AEs. There are
three main damping mechanisms of AEs: (1) their interaction with
thermal electrons and ions, (2) coupling of Alfvén eigenmodes to the
Alfvén continuum, and (3) transformation of Alfvén eigenmodes into
kinetic Alfvén waves (KAW). The last process, dubbed radiative damp-
ing, will likely dominate in high-temperature plasmas of ITER [1]. From
the theory standpoint, the damping mechanisms are tractable individ-
ually. The goal of this paper is to revisit the radiative damping.

We present a technique that is more compact and transparent than
the past rather intricate calculations of the radiative damping rate in
Refs [2–5], where the authors used either ballooning approximation [2,
3] or Fourier-transformed basic equations with the WKB-approximation
in Fourier space [4,5]. In contrast, we use a real-space formalism, in

which the Alfvén eigenmode represents a smooth radially localized
source that emits the short wavelengths kinetic Alfvén waves. The WKB
approximation then applies only to the emitted wave rather than to the
total field of the Alfvén eigenmode and KAW. Similar to Refs. [2–5], the
separation of spatial scales between the AE and KAW makes the radia-
tive losses depend on this separation exponentially. However, we find
that the pre-exponential numerical factor differs from that of Refs. [2,5].

To be specific, we consider Toroidal Alfvén Eigenmode (TAE) in a
large aspect ratio tokamak (ε≪1) with circular magnetic surfaces in the
limit of large mode numbers and low magnetic shear (S≪1) [6]. TAEs
are known to reside within gaps in the Alfvén continuum frequency
spectrum. The gap accommodates multiple TAEs when S < ε [7].
However, there is only one TAE per gap when S > ε, which we assume
here to be the case. The frequency of that mode is only slightly above the
lower tip of the TAE-gap, and the mode radial width is much smaller
than the distance between the neighboring gaps. Because of that, the
mode is tractable within a single-gap approximation. Such a mode has
only two poloidal components, and the mode frequency is real in the
ideal MHD limit.

The TAE radiative damping is due to two nonideal effects (finite ion
Larmor radius and finite parallel electric field). These effects couple TAE
to kinetic Alfvén waves (KAW) described by the following dispersion
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relation [8]:

ω2 = k2‖mV
2
A

(

1+ k2⊥ρ2i
(
3
4
+
Te
Ti

))

. (1)

Here, k2⊥ = k2r + k2ϑ, ρ2i =
2Ti
miω2

Bi
is square of thermal ion Larmor radius,

and the parallel wave-vector of the m-th harmonic with toroidal mode
number n has a radial dependence determined by the safety factor q(r) =

rBζ/RBθ:

k‖m(r) =
1
R

(

n −
m
q(r)

)

. (2)

Unlike ideal shear Alfvén waves (including ideal TAE), the kinetic
Alfvén waves have a non-zero radial group velocity and, therefore,
propagate across the field. These outgoing KAWs, coupled to TAE, take
away some TAE energy thus causing the TAE “radiative damping”.

To explain the coupling between TAE and KAW, we consider Fig. 1
showing Alfvén continuum for two toroidally coupled poloidal har-
monics, and the regions of KAW propagation. First, Fig. 1 shows sche-
matically which ways the cross-field KAW energy flux can go. The sign
“+” in front of the finite Larmor radius term in (1) tells us that KAWwith
poloidal mode number m can only exist and propagate above the Alfvén
continuum curve with the same m. The propagation areas of KAWs
emitted at the TAE frequency are shown in grey in Fig. 1. There are two
different areas in the vicinity of a TAE-gap: one for KAW with mode
number m and the other – for KAW with mode number m − 1.

Basic equations and separation of scales

In contrast to cylindrical geometry, where there is no linear coupling
between shear Alfven modes with different azimuthal numbers, the
poloidal components of the mode become coupled in a torus. Most of the
coupling is between the neighboring poloidal components. As a result, in
the limit of low shear and large aspect ratio, each eigenmode involves
predominantly two poloidal components. The coupling creates gaps in
the Alfvén continuum where the discrete Toroidal Alfven Eigenmodes
reside.

The gaps form where the local frequencies coincide for the cylin-
drical Shear Alfven modes with the poloidal mode numbers m and m − 1
and the same toroidal number n, i.e., ω = − k‖m(rm)VA(rm) =

k‖m− 1(rm)VA(rm), where k‖m(r) = [n − m /q(r)]/R is the component of the
wave vector parallel to the magnetic field, VA is the Alfven velocity, and
R is the tokamak major radius. The safety factor at the gap location
(r= rm) is

q(rm) =
(

m −
1
2

)/

n. (3)

For every poloidal harmonic m there is also a location r = rm− 1where
that harmonic couples to its lower sidebandm − 1.The distance between
the surfaces r = rm and r = rm− 1 depends on the magnetic shear S = (r
/q)dq/dr and can be estimated as

|rm − rm− 1| ∼ rm/(nqS). (4)

Because of the low shear, this distance exceeds the width of the mode
significantly, which justifies the neglect of the m+ 1 component in our
analysis. In other words, we treat TAE within a ‘single-gap’ approxi-
mation. In addition, we assume that plasma pressure is negligibly small
and that the equilibrium magnetic field has circular flux surfaces.

The radiative damping of the TAE mode is associated with kinetic
contributions (non-ideal corrections) to the equations for the two
coupled poloidal components of the mode (φm and φm− 1). These con-
tributions are due to the finite ion Larmor radius and finite parallel
electric field. They introduce fourth order radial derivatives in the
governing equations [9,10,6]:

ρ2 d
4

dr4
φm + Lmφm +

ε̂
4q2R2

d2

dr2
φm− 1 = 0 (5)

ρ2 d
4

dr4
φm− 1 + Lm− 1φm− 1 +

ε̂
4q2R2

d2

dr2
φm = 0 (6)

Here, the toroidicity coupling coefficient is ε̂ ≡ (5 /2)(r /R), the
differential operator Lm is defined as

Lmφm ≡
d
dr

(
ω2

V2
A
− k2‖m

)
dφm

dr
−
m2

r2

(
ω2

V2
A
− k2‖m

)

φm (7)

and the non-ideal parameter is

ρ2 ≡ 1
(2qR)2

Ti
miω2

Bi
⋅
(
3
4
+
Te
Ti

)

.

Without the non-ideal terms, Eqs. (5), (6) involve two very different
radial scales as Fig. 2 shows. The outer scale Δout = rm/m characterizes
the uncoupled cylindrical harmonics φm and φm− 1 away from the gap
(but still not as far as the upper sideband coupling location rm+1),
whereas the inner scale Δin = εrm

m ≪Δout refers to the close vicinity of the
TAE-gap where there is strong toroidal coupling between φm andφm− 1.

The non-ideal contributions (fourth order radial derivatives) are
essential only within the narrow inner scale, where it is allowable to
ignore the non-derivative terms in Eqs (5) and (6). With this simplifi-
cation, we find that the mode equations can be integrated twice and

Fig. 1. Radial structure of toroidal Alfvén continuum with poloidal harmonics
m and m-1 (same n) and the areas of propagation of KAWs with harmonics m
and m-1 (shaded areas).

Fig. 2. Radial structure of the poloidal harmonics in even TAE: normalized
perturbed plasma velocity versus r/a.
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reduced to [10]

λ2Uʹ́ + (g+ z)U+ V = Cm, (8)

λ2Vʹ́ + (g − z)V + U = − Cm− 1, (9)

where Cm and Cm− 1 are the integration constants.
We herein use the following notations:

U ≡
∂φm

∂z

V ≡
∂φm− 1

∂z
z = 4n[q(r) − qm]/ε̂

g ≡
(
ω2 − ω2

0
)/

ε̂ω2
0

ω0(rm) =
VA

2qR

λ2 = (4/ε̂)3m
2S2

4r2m
Ti

miω2
Bi

[
3
4
+
Te
Ti

]

≪1

(10)

At this point, it is instructive to mention two essential features of TAE
in the low shear limit and for λ = 0. First, the normalised eigenfrequency
of TAE g is very close to − 1 for this mode. More specifically,

g = − 1+
π2S2
8

. (11)

Second, the TAE with eigenfrequency below the centre of the TAE-
gap frequency ω0 has two dominant poloidal harmonics of the same
sign, i.e., this TAE has even parity [6] with

Cm = Cm− 1. (12)

We will explain these features for completeness by reproducing their
derivation in Ref [6]. We will then use them effectively in our calcula-
tion of radiative damping.

TAE structure for λ = 0

Eqs. (8) and (9) become algebraic for λ = 0. This gives the following
straightforward inner-layer solution for φm and φm− 1:

φin
m = −

gCm + Cm− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − g2

√ tan− 1 z
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − g2

√ +
Cm

2
ln
⃒
⃒z2+

(
1 − g2

)⃒
⃒+ const, (13)

φin
m− 1 =

gCm− 1 + Cm
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − g2

√ tan− 1 z
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − g2

√ +
Cm− 1

2
ln
⃒
⃒z2 +

(
1 − g2

)⃒
⃒+ const. (14)

As seen from Eqs. (13) and (14), φmand φm− 1 exhibit jumps at the ther
inner layer, i.e.,

Δφin
m = − π gCm + Cm− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − g2

√ , (15)

Δφin
m− 1 = π gCm− 1 + Cm

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − g2

√ , (16)

These jumps must match the jumps in the outer solution of Eqs. (5)
and (6) for φmand φm− 1. Because there is no significant coupling between
φm and φm− 1 in the outer area, one can ignore the small ε̂ as well as ρ2
there. By expanding k‖m(r) about the gap surface in the low-shear limit,
we rewrite Eq. (5) in the following form:

d
dx

x
dφm

dx
− x

φm

S2
= x

dφm

dx
, (17)

where x = nq(r) − m+ 1
2 . The term x dφm

dx on the right-hand side of this
equation can be treated as a perturbation. Thus, to lowest order, we
neglect this term and write the solution of Eq. (17) as

φout
m = − CmK0(|x / S|) (18)

where K0is the zeroth-order Macdonald function [11]. The integration
constant Cm in Eq. (18) ensures that dφm

dr matches the asymptotic solution
of Eqs. (8) and (9).

We note that the lowest order outer solution is an even function of x.
To find the odd correction to φm, we substitute Eq. (18) into the right-
hand side of Eq. (17) and integrate Eq. (17) (with the boundary condi-
tions φm( − ∞) = φm(+ ∞) = 0. We then find that φm has a disconti-
nuity at small values of x:

φout
m

⃒
⃒
x→− 0 − φout

m

⃒
⃒
x→+0 = Cm

π2S
4

(19)

A similar procedure applied to φm− 1gives

φout
m− 1

⃒
⃒
x→− 0 − φout

m− 1

⃒
⃒
x→+0 = − Cm− 1

π2S
4

(20)

By matching Eqs. (19) and (20) to (15) and (16) we find the above-
stated features (11) and (12).

Evaluation of radiative damping

The mode with Cm = Cm− 1 and g + 1≪1 is nearly symmetric, i.e.,

U+ V >> U − V (21)

It is thus convenient to rearrange Eqs. (8) and (9) to

λ2(U+ V)ʹ́ + (g+1)(U+V) + z(U − V) = 0 (22)

λ2(U − V)ʹ́ + (g − 1)(U − V) + z(U+V) = 2Cm (23)

By dropping off the first term in (23) and using (23) to express U − V
via U+ V in (22), we obtain

λ2(U+ V)ʹ́ + (g+1)(U+V) +
z2

2
(U+V) = Cmz (24)

We now split U+ V into F̃+ F0, i.e.,

U+ V = F̃ + F0 (25)

where

F0 =
2Cmz

z2 + 2g + 2
(26)

is the TAE spatial structure, and F̃ is the radiated field to be calculated.
We thus obtain the following inhomogeneous equation to solve:

λ2F̃
ʹ́
+ (g+ 1)F̃ +

z2

2
F̃ = − λ2Fʹ́

0 (27)

We note that the reduction of Eqs. (22) and (23) to (27) differs from
the earlier analysis of those equations in Refs. [2–5]. More specifically,
in Refs. [2–5], those equations were Fourier transformed, taking
advantage of the linear z-dependence in the coefficients, and were
combined into a second-order differential equation in Fourier repre-
sentation. The authors then used a WKB approach in Fourier space to
solve the second-order equation with the ensuing need to interpret the
WKB result at low wavenumbers, where the approximation is prob-
lematic. Our real-space derivation of Eq. (27) and its subsequent WKB
solution is free from such vulnerability because we use the WKB
approximation exclusively for the short-wavelength radiated field, for
which the TAE provides a known spatially smooth source. It is then
apparent that the radiation is exponentially small because its wave-
length is much shorter than the width of the source.

We consider the following WKB fundumental solutions for homog-
enious Eq. (27):
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ψ+ =
1̅
̅̅
k

√ exp(iΦ)

ψ − =
1̅
̅̅
k

√ exp(− iΦ)

Φ ≡

∫z

0

kdx

k ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

g + 1
λ2

+
z2

2λ2

√

(28)

The small value of λ ensures that these fundamental solutions have
very short wavelenth.

The WKB-eigenfunctions ψ+ and ψ − represent the waves propagating
in positive and negative directions, respectively. The inhomogeneous
solution can then be written as

F̃ = −
1

(ψʹ
+ψ − − ψʹ

− ψ+)

⎛

⎝ψ+

∫z

− ∞

Fʹ́
0ψ − dz − ψ −

∫z

∞

Fʹ́
0ψ+dz

⎞

⎠ (29)

or equivalently,

F̃=
i
2

⎛

⎝ 1̅
̅̅
k

√ exp(iΦ)

∫0

− ∞

Fʹʹ
0exp(− iΦ)

dz̅̅
̅
k

√ −
1̅
̅̅
k

√ exp(− iΦ)

∫0

∞

Fʹʹ
0exp(iΦ)

dz̅̅
̅
k

√

⎞

⎠

+
i
2

⎛

⎝ 1̅
̅̅
k

√ exp(iΦ)

∫z

0

Fʹʹ
0exp(− iΦ)

dz̅̅
̅
k

√ −
1̅
̅̅
k

√ exp(− iΦ)

∫z

0

Fʹʹ
0exp(iΦ)

dz̅̅
̅
k

√

⎞

⎠

(30)

Taking into account expressions (19) and (20) for the jumps in the
outer solution, we now have the following matching condition for the
jumps of the inner and outer solutions in terms of F0 and F̃:

∫∞

− ∞

(2Cm − zF0 − zF̃)dz= π2SCm (31)

Without F̃, this condition, together with (26), gives the TAE disper-
sion relation (11) with a real frequency.

We then need only the imaginary part of F̃ to calculate the radiative
damping rate as a small imaginary part of the mode frequency. The
imaginary part of F̃ comes entirely from the first-line terms in (30) so
that

ImF̃ =
i
2

⎛

⎝sinΦ(z)
̅̅̅̅̅̅̅̅̅
k(z)

√

∫∞

− ∞

Fʹ́
0(ź )

sinΦ(ź )
̅̅̅̅̅̅̅̅̅̅
k(ź )

√ dź

⎞

⎠. (32)

We note that

F0 =
Cmz
k2λ2

, (33)

which transforms (32) to

Im F̃ = −
Icm
2λ2

(
sinΦ(z)

̅̅̅̅̅̅̅̅̅
k(z)

√

∫ ∞

− ∞

sinΦ(ź )
̅̅̅̅̅̅̅̅̅̅
k(ź )

√ ź dź
)

(34)

via integrating by parts and keeping only the largest term (derivatives of
Φ).

We now include F̃ into (31) to obtain

g + 1 =
π2S2
8

+
S
4Cm

Im
∫∞

− ∞

zF̃dz

(
ω2 − ω2

0
)
/

ε̂ω2
0 + 1 =

π2S2
8

⎧
⎨

⎩
1 − i

a
π

⎡

⎣
∫∞

− ∞

sinΦ(x)
(1+ x2)1/4

xdx

⎤

⎦

2⎫
⎬

⎭

(35)

with ω = ωReal + iγ.
This equation gives the following expression for the mode damping

rate ( − γ):

−
γ

ω0
=

πS2 ε̂
16

a

⎡

⎣
∫∞

− ∞

sinΦ(x)
(1+ x2)1/4

xdx

⎤

⎦

2

, (36)

where

a ≡
1 − g2ω=ωReal̅̅̅

2
√

λ
=

π2S2

4
̅̅̅
2

√
λ
>> 1 (37)

and

Φ(x) ≡ a
∫x

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ y2

√
dy. (38)

In order to evaluate the exponentially small integral in Eq. (36), we
introduce a new integration variable Z so that x = sinhz. We then have

∫∞

− ∞

sinΦ(x)
(1+ x2)1/4

xdx = 2Im
∫∞

0

exp
[
i
a
4
sinh2z+ i

a
2
z
]
(coshz)1/2sinhzdz

(39)

We note that the integral in Z along the imaginary axis from 0 to iπ/2
is real, which allows us to shift the integration contour upward to iπ/2, i.
e., set z = iπ/2+ t to obtain

∫∞

− ∞

sinΦ(x)
(1+ x2)1/4

xdx = 2Im
∫∞

0

exp
[

− i
a
4
sinh2t+ i

a
2
t −

πa
4

]
(isinht)1/2icoshtdt (40)

At a >> 1, only small values of t contribute to this integral so that

∫∞

− ∞

sinΦ(x)
(1+ x2)1/4

xdx = 2Im
∫∞

0

exp
[
− i

a
3
t3 −

πa
4

]
(it)1/2idt

=
2
3

̅̅̅̅̅̅
3π
a

√

exp
[
−

πa
4

]
(41)

We finally combine Eqs. (41) and (36) and (37) into

−
γ

ω0
=

π2S2 ε̂
12

exp
[
−

πa
2

]

a ≡
π2S2

4
̅̅̅
2

√
λ
>> 1

λ2 ≡ (4/ε̂)3m
2S2

4r2m
Ti

miω2
Bi

[
3
4
+
Te
Ti

]

≪1

(42)

All local parameters in Eq. (42) need be evaluated at the gap location
rmdefined by Eq. (3).

It is noteworthy that the exponent in the derived expression (42) for
the damping rate is roughly the ratio of the TAE inner width to the short
wavelength of the radiated KAW. The parametric dependence of the
damping rate agrees with the result of Refs, [2–5], but the numerical
factor in front of the exponent here is 1/12 instead of 1/8.

Expression (42) is suitable for benchmarking numerical codes in a
limited but well-defined parameter range described in our work. That
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parameter range may look challenging for the codes as happens often in
extreme limiting cases. Yet, if successful, such limited testing would
suggest that the codes are likely accurate under less challenging
conditions.

It is desirable to generalize Eq. (42) to cover other relations between
the shear and the aspect ratio and other modes that may exist within the
gap, including the odd TAE mode. However, such generalization is less
than straightforward. It goes beyond the scope of the present paper, the
main goal of which is to offer a new technical approach to evaluating
radiative damping with an opportunity for testing codes, albeit in a
limited but well-defined parameter space. We believe that such gener-
alization deserves a separate effort.
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