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1. Introduction

The FM-CW (frequency-modulated continuous-wave) reflectometry diagnostic is
a well established technique for density profile measurement with successful
implementations on various medium and large size tokamaks, such as DIII-D [1],
Tore Supra [2,3], ASDEX Upgrade [4,5] and JET [6]. Even though there have
been significant improvements in the reflectometry hardware design [2,7] and data
extraction techniques [5,8, 9] over the last two decades, the measured density profiles
on fusion experiments still require further improvements in the data analysis front
in order to improve the accuracy of the reconstructed profile. As an example of a
demanding application, the LFS (Low Field Side) reflectometer being built for ITER
has as its first operation priority to achieve a minimum radial accuracy of 5 mm [10].
Improving the accuracy on the reconstructed density profile also improves the accuracy
of extracted parameters for physical studies such as transport, MHD instabilities and
turbulence.

The data analysis for FM-CW profile reflectometry can be divided into three
topics: the initialization technique as initially investigated in [11]; the recursive profile
reconstruction algorithm as originally proposed by Bottollier-Curtet[12] with minor
revisions in [13, 14] and a thorough review with some improvements in [15]; and the
description of blind areas, as focused in this contribution.

Both O-mode and X-mode density profile reconstruction techniques rely on the
assumption of a monotonic cut-off frequency profile. However, there are many plasma
perturbations that introduce hollow areas in the cut-off frequency profile, breaking
the aforementioned assumption. Inside these hollow areas, the probing microwaves
exhibit no specular reflections and thus they are referred to as blind areas. Even
though no reflection occurs inside the blind areas, the higher probing frequencies
that propagate through these areas carry information about them. For isolated
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perturbations, the perturbation signature in the reflectometer signal is related to
the size of the perturbation. In this contribution, large perturbations are considered,
which are out of the Born approximation validity and the probing electric field over
the perturbation is no more similar in magnitude to the unperturbed case. This
situation can occur during massive gas and pellet injections [16], MHD activity [17]
and in hollow profiles that emerge during the initiation of heating systems [18] or even
due to relativistic effects [19].

If the reconstruction method does not incorporate identification and reconstruc-
tion tools for the blind regions, big discrepancies can appear in the reconstructed
profile. An example is shown in figure 1 using a simulated phase under the WKB ap-
proximation as the input signal and profiles typical of Tore Supra with a low magnetic
field strength of 2 T at the plasma center.
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Figure 1: Synthetic example of input versus reconstructed density profiles with
a blind area. The profile was reconstructed with the standard Bottollier-Curtet
algorithm and a constant correction, as in [13-15], using three different treatments
in the phase signal. The radial axis is defined from zero at the plasma edge and
increasing towards the plasma center.

It is clear from figure 1 that the unmodified standard reconstruction algorithm
is unable to reconstruct the density perturbation. Furthermore, if the oscillations are
smoothed, the perturbation can be neglected entirely, or even worse, a radial shift can
be introduced in the reconstructed profile after the perturbation if the time-of-flight
jump is filtered out, which is the case for the dashed green line in figure 1.

2. Reconstruction of blind areas using database of perturbation
signatures

The profiles of the blind areas can be reconstructed by inverting a database of
perturbation signatures in the time-of-flight signal. Various perturbations were
investigated with 1D full-wave simulations in reference [20], and the conclusion was
that the full-wave effects simulated in 1D (tunneling, wave-trapping, scattering and
interference) were restricted to a probing frequency band of about 1 GHz around the
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time of flight jump over the blind area. As long as a corresponding experimental signal
is treated outside of the bandwidth affected by full-wave effects, the experimental
time-of-flight can be assumed well described by the WKB simulated signal, which
significantly simplifies the construction of a database.

An initial database was constructed for a simple sine shaped valley and a
broad range of all parameters (fprob,fee;V feut,-Wwidth,depth) including coverage for O-
mode since the f.. domain starts at zero. The database inversion procedure was
successfully tested in a noise-free synthetic example. As covered in detail in [20],
it also demonstrated how a single database can accommodate a broad range of
plasma conditions and it was also used to infer the dependencies of the reconstruction
accuracy across the full database domain. As expected, the reconstruction accuracy
decreases when the perturbation signal is smaller, as is the case for the highest cutoff
gradients and widths. In practice, the biggest contribution for the inversion accuracy
is expected to be the precision on the estimations of the perturbation width, gradient,
the unperturbed profile and the experimental noise level, rather than the intrinsic
precision of the calculated database.

To demonstrate the potential of this method to reconstruct blind areas, figure 2
shows the first experimental application of a database inversion for the Tore Supra
discharge 32029, where magnetic islands have been identified.
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Figure 2: The reconstructed density profiles using the standard
reconstruction method on the perturbed and unperturbed measurements
versus the new method to reconstruct blind areas introduced in this paper.

The perturbation being investigated builds up from previous observations of
MHD activity with reflectometry [21,22]. In this circumstance, the focus is on the
reconstruction of the magnetic island on the ¢ = 2/1 rational surface, as located by
the equilibrium code [22].

According to simulations of magnetic islands [23,24], they are formed by a
positive perturbation followed by a negative perturbation along the probing path.
Furthermore, the shape of the negative perturbation corresponds to the shape of
the positive perturbation. In this case, the experimental unperturbed signal is also
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well determined since the island is intermittent with an directly observable frequency.
In this case, a reduced database was constructed based only on the specific plasma
parameters present on the application of the database, with the cutoff profile already
including the positive perturbation since it’s conventionally probed, and the valley
shape assumed symmetrical to the positive probed section. Next, the simulated signals
with different valley depths are compared to the experimental signal to find a best
match.

It is clear from observing figure 2 that the new reconstruction scheme for the
blind area describes much better the magnetic island and eliminates a reminiscent
tail of lower density.

3. Final remarks and future prospects

As it was demonstrated, the standard profile reconstruction algorithm adds a
significant error in the density profile around and after the blind areas if no special
technique is applied around the perturbed region. This contribution showed a brief
summary of the work started in [20] that aimed at laying the foundations for this novel
technique to describe the blind areas. More detailed explanations of the reconstruction
steps will also be found in the coming extended version of this proceeding in a special
issue of the Plasma Science and Technology journal.

This technique was verified to be very accurate in the absence of noise and
with precise input of parameters when tested on synthetic data. Thus, the final
reconstruction accuracy is expected to be related to available signal-to-noise ratio
and the accuracy in which the perturbation width, shape and the local parameters
of Vf.: and f. have been determined, which will vary significantly according to
each application. Based exclusively on the comparison of the database signal to the
noise level of the experimental signal, the experimental application shown in figure
2 had an error bar of 33% of the estimated valley depth. A detailed consideration
of the resulting error-bars propagating from the assumptions of the valley shape and
estimations of the width and cut-off gradient will be the focus of future publications
where the use of an ultra-fast sweeping rate [25] with the technique to stack multiple
sweeps [5] is expected to improve the extracted perturbation signal.

Even though the main physical characteristics of the blind regions have been well
described by the 1D simulations present in this contribution, future 3D simulations [26]
will be necessary to verify any additional tridimensional geometrical aspects. After
all, the probing beam area and shape, plus the shape of the perturbations, make in
conjunction a system too complex to be completely described in one dimension. These
geometrical aspects influence the amplitude signal across the perturbation bandwidth
and the appearance and dynamics of scattering and resonances. Understanding these
effects will help to better extract the signals from the blind area, apply any correction
due to the 3D structures and ultimately will lead to a more accurate employment of
the database inversion technique. This research on the geometrical aspects will also
intersect with the application on improved initialization techniques that observe the
time-of-flight and amplitude evolution in the presence of perturbations.
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