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ABSTRACT

Non-linear magnetohydrodynamic (MHD) simulations play an essential role in active research and understanding of tokamak plasmas for
the realization of a fusion power plant. The development of MHD codes such as JOREK is a key aspect of this research effort. In this paper,
we present an operational version of the full-MHD model implemented in JOREK, a significant advancement from the reduced-MHD model
used for previous studies, where assumptions were made on the perpendicular dynamics and the toroidal magnetic field. The final model is
presented in detail, and benchmarks are performed using both linear and non-linear simulations, including comparisons between the new
full-MHD model of JOREK and the previously extensively studied reduced-MHD model, as well as results from the linear full-MHD code
CASTOR3D. For the cases presented, this new JOREK full-MHD model is numerically and physically reliable, even without the use
of numerical stabilization methods. Non-linear modeling results of typical tokamak instabilities are presented, including disruption and
edge-localized-mode physics, most relevant to current open issues concerning future tokamaks such as ITER and DEMO.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0018208

I. INTRODUCTION

Industrial electricity production using nuclear fusion power
would greatly contribute to the reduction of greenhouse gas emissions
and of long-lived radioactive nuclear waste, while providing electricity
to society without the limit of an exhaustible natural resource. A favor-
able candidate for industrial fusion reactors is the tokamak device.
Tokamaks use a helical magnetic field that winds itself around a toroi-
dal vacuum chamber. The periodic nature of the torus ensures that
charged particles, which approximately follow magnetic field lines, are
not lost at the end of open field lines like in linear plasma devices.
However, this periodicity can be subject to resonance and instabilities.
Large-scale instabilities typically involve both the plasma and the

magnetic field and are often studied in the fluid picture using magne-
tohydrodynamics (MHD).

There is a wide variety of MHD instabilities in tokamak plasmas,
some of which can reduce or limit the operational capabilities of the
machine. Edge-localized-modes (ELMs) are instabilities that eject
plasma from the confined region onto the material surfaces of the first
wall of the machine; these instabilities can lead to large heat-fluxes that
may reduce the lifetime of the material surfaces.1–4 Toroidal Alfv�en
eigenmodes (TAEs) can be excited by the 3.5MeV alpha-particles
born from fusion reactions; these can significantly limit the plasma
pressure and are a concern for future reactors where the burning
plasma will produce a large amount of alpha-particles.5–8 Global
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MHD instabilities, during which the entire plasma is affected, can lead
to disruptions; during such events, the kinetic and magnetic energies
of the plasma can be transferred to the wall, leading to material heat-
fluxes and/or wall-currents that can damage the machine and its struc-
ture.9–14 In order to study, understand, and predict these instabilities,
non-linear MHD simulations are performed using numerical codes
such as JOREK,15,16 M3D-C1,17,18 NIMROD,19,20 XTOR,21

BOUTþþ,22,23 MEGA,24,25 and HALO.7

Previous studies of MHD instabilities with the JOREK code relied
on a reduction of the full-MHD system. This reduction, known as
reduced MHD, assumes that the toroidal magnetic field is constant in
time and that the perpendicular velocity (perpendicular with respect
to the magnetic field) is approximately poloidal.26,27 The latter
assumption is mostly kept for simplicity in formulating the equations.
It does not enforce incompressibility of the fluid (i.e., r �~v 6¼ 0), and
parallel dynamics is retained (i.e.,~vjj 6¼ 0), which is essential for a reli-
able description of tokamak instabilities.28,29 The former assumption,
however, leads to a physical simplification of the representation of
tokamak dynamics. In particular, fixing the toroidal magnetic field in
time removes some of the waves from the model, commonly referred
to as fast magneto-sonic waves. These fast-waves propagate by com-
pressing the magnetic field and the fluid in the direction perpendicular
to the magnetic field. They are inherently stable with a wavelength and
amplitude much smaller than the macro-instabilities of interest in
tokamak devices. However, these waves can pollute and restrict the
solution of numerical codes, and modeling codes often rely on distinct
formulations or numerical stabilization to avoid numerical issues with
these fast waves. Therefore, reduced-MHD is a powerful model in the
sense that fast-waves are entirely removed from the system, and it is
clearly sufficient to describe the non-linear dynamics of most tokamak
instabilities.

However, it is already widely acknowledged that some tokamak
instabilities, particularly internal kink instabilities, cannot properly be
captured by reduced-MHD,30 and so, including a full-MHD model (as
opposed to reduced-MHD) in JOREK is necessary. In this paper, we
present the full-MHD model implemented in JOREK and applied to
linear and non-linear instabilities. A first implementation of the full-
MHD model had already been presented in Ref. 31. Unfortunately,
this initial study suffered implementation issues that restricted simula-
tions to low-beta instabilities only. All numerical issues have now been
resolved, such that modeling of all instabilities of interest is now possi-
ble. Section II of this paper presents the key numerical methods and
the full-MHD physics model. Section III addresses the linear bench-
mark of the model for several types of MHD instabilities and how it
compares to the reduced-MHD model. Section IV demonstrates the
capability of the code to deal with large non-linear instabilities such as
ELMs and disruptions. Finally, Sec. V summarizes the work and lays
out the further improvements required for future studies of tokamak
instabilities.

II. PHYSICS MODEL AND NUMERICAL METHODS

In this section, we describe the essential physical and numerical
ingredients of the full-MHD model implemented in JOREK, including
visco-resistive and diffusive effects, sources, diamagnetic rotation and
neoclassical friction, boundary conditions, and normalization.

A. Numerical methods

Before introducing the physics model, some of the key numerical
methods of the JOREK code are presented. These methods are the
same as in previous publications,16,32 but they are repeated here to
point out their role in the numerical stability of the full-MHDmodel.

JOREK uses a finite-element grid in the poloidal plane, with finite
Fourier series in the toroidal direction. The finite elements are qua-
drangular bi-cubic Bezier elements using a nodal formulation that
ensures continuity of variables and their derivatives across elements
(commonly defined as C1- or G1 continuity).32 This is also valid for
the poloidal space coordinates (R,Z) such that the elements are iso-
parametric. The Fourier series used in the toroidal direction can be
chosen with arbitrary toroidal periodicity, meaning that with three
Fourier modes and a toroidal periodicity of 4, the physical toroidal
mode numbers simulated would be n¼ 4, 8, and 12. Typically, when
simulating linear stability scans, a single Fourier mode is used, while
scanning the toroidal periodicity. For non-linear simulations, multiple
Fourier modes are used, with a periodicity of 1 or 2.

The time discretization used in JOREK is fully implicit, with a
choice between the Crank–Nicolson or the Gear scheme. In the simu-
lations presented here, the Gear scheme33 was used. These methods
result in a linearized system of equations, for which a sparse matrix
needs to be inverted. This is done either with a direct solve or using a
pre-conditioned GMRES (Generalized Minimal Residual Solver) itera-
tive solver. In practice, the direct solve approach is only used for the
toroidally axisymmetric kinetic equilibrium n¼ 0, while for non-linear
cases, the GMRES method is employed. The GMRES pre-conditioner
is equivalent to a Block-Jacobi pre-conditioner, which is obtained by
solving each toroidal harmonic block of the matrix individually (i.e.,
without the harmonic coupling), which is done in parallel with a direct
solve. The direct solve (either for the pre-conditioner harmonic-blocks
or for the whole system) is done using open-source solvers such as
MUMPS,34 PASTIX,35 or STRUMPACK.36

The weak formulation method37 is used for all equations, which
are multiplied by a test-function and integrated over the element surfa-
ces. One of the main advantages of the weak formulation is that it
allows integration by parts of divergence terms, which allows the
removal of all second order derivatives from the system. This is a sig-
nificant advantage when using C1-continuous finite-elements such as
those implemented in JOREK32 since all terms in the equations are
guaranteed to be smoothly represented, thus improving numerical sta-
bility. The weak Form method, similar to a variational form approach,
has stabilizing properties, which are thought to be important in this
study.

The equations are normalized using two constants: vacuum per-
meability l0 and the central density q0, as in previous JOREK publica-
tions.16 This normalization is similar to the Alfv�en time normalization
such that for a deuterium plasma with central particle density
no ¼ 6� 1019m�3, a normalized time unit corresponds to approxi-
mately 0.5 ls. Note that this is a pseudo-normalization, where not all
variables are dimensionless in the final formulation. In particular, the
magnetic field is not normalized.

B. Basis of the full-MHD formulation

In order to ensure that the magnetic field satisfies Gauss’s law
r �~B ¼ 0, we defined the magnetic field as
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~B ¼ F
R
~e/ þr� ~A; (1)

where~A is the magnetic vector potential and F¼ FðwÞ is a toroidally axi-
symmetric equilibrium function, defined to satisfy the initial
Grad–Shafranov equilibrium (w is the poloidal magnetic flux). F is con-
stant in time, and thus, the evolution of the toroidal magnetic field is
determined by ~A alone. Note: this differs from the reduced MHD defini-
tion of B/ ¼ F0=R, where F0 is constant both in space and time. It
should be noted that this formulation of the magnetic field ensures
r �~B ¼ 0 exactly, without any approximation, since r �~B includes
derivatives of ~A only up to second order, which are well defined in bi-
cubic finite-elements. At the boundary between two elements, although
second-order derivatives lose their continuity, the conditionr �~B ¼ 0 is
still satisfied, from the left element’s variables and from the right element’s
variables, individually. Additionally, the weak formmethod allows the for-
mulation of all equations avoiding the second-order derivative.

The other variables of the system are the velocity vector field ~v,
the mass density q, and the temperature T. The resistive MHD model
is described by

@~A
@t
¼ ~v �~B � g~J �rU; (2)

q
@~v

@t
¼ �q~v � r~v þ~J �~B �rp; (3)

@q
@t
¼ �r � q~vð Þ; (4)

@p
@t
¼ �~v � rp� cpr �~v; (5)

where g is the resistivity. The current is defined as~J ¼ r�~B and the
total pressure as p ¼ qT . The ratio of specific heats c is taken to be
that of a monatomic gas, 53.

C. Choice of gauge

In Eq. (2), U is the electric potential obtained from uncurling
Faraday’s law r� ½@t~A ¼ �~E�. As the curl operator annihilates the
gradient operator that acts on the electric potential, this information is
lost in the curl operation so that a choice of Gauge is necessary to
determine U. Since the magnetic field and electric field are invariant
with respect to the transformation ~A

0 ¼ ~A þrW and U0 ¼ U� @tW
(for any scalar function W), a convenient choice is to use Weyl’s
gauge,38 whereU0 ¼ 0 is chosen such that

U ¼ @tW; (6)

which simplifies the induction equation (2) to give

@~A
@t
¼ ~v �~B � g~J : (7)

In practice, this means that if an external electric field is applied
to the plasma, the magnetic vector potential will shift in time (even in
the stationary equilibrium state).

D. Diffusion coefficients and sources

In addition to the resistivity g, physical diffusion coefficients are
also included for all other variables. The perpendicular diffusion of

density and temperature needs to be balanced in order to retain the
initial Grad–Shafranov equilibrium, and thus, sources are also intro-
duced for density and temperature. The visco-resistive MHD equa-
tions are, thus, written as

@~A
@t
¼ ~v �~B � g ~J �~S j

� �
; (8)

q
@~v

@t
¼ �q~v � r~v þ~J �~B �rpþ lr2~v � Cq~v; (9)

@q
@t
¼ �r � q~vð Þ þ r � D?r?qþ Djjrjjq

� �
þ Sq; (10)

@p
@t
¼ �~v � rp� cpr �~v þr � j?r?T þ jjjrjjT

� �
þ ST ; (11)

where the particle diffusion and the thermal conductivity have been
split into perpendicular and parallel components, D? and Djj and j?
and jjj, respectively. The parallel and perpendicular gradient operators
are defined as

rjj ¼
1

jBj2
~B ~B � r½ �;

r? ¼ r�rjj:

The current source~S j keeps the current profile steady for long simula-
tions.~S j also includes the bootstrap current source, which evolves as a
function of the pressure gradient and is particularly essential for cyclic
instabilities such as ELMs. Instead of a current source~S j, it is also pos-
sible to use a loop voltage as boundary conditions. The particle source
Sq and the heating source ST, which are generally used only to balance
against axisymmetric equilibrium diffusive terms, can also be used for
other purposes. A good example is to use a time-evolving particle
source Sq to model pellet injections. In Sec. IV, Sq is used to mimic a
massive-gas-injection (MGI) disruption. Note that since the continuity
equation (10) has been used in the derivation of the momentum equa-
tion (9), the particle source term must also be kept there. If ignored,
large particle sources such as pellets would also lead to an artificial
injection of momentum. The diffusive terms from the continuity
equation, although generally much smaller, are also kept in the
momentum equation. This is represented by the last term in Eq. (9),
where Cq ¼r � ðD?r?qþ DjjrjjqÞ þ Sq.

The physical diffusive coefficients are non-constant. Radial pro-
files for D? and j? can be used to mimic various levels of cross field
kinetic turbulent transport, which cannot be described by MHD. This
is important for situations such as the H-mode, where cross field tur-
bulent transport is known to be strongly reduced in the pedestal
region, at the plasma edge. In simulations of ELMs, for example, a
radial drop in D? and j? is localized in the pedestal region to sustain
the large pedestal pressure gradient of pre-ELM conditions. There are
two possible choices to maintain the background equilibrium profiles.
Considering the density profile, for example, the perpendicular diffu-
sion coefficient can be chosen as D?ðwÞ � D0ð@q=@wÞ�1, like in
Refs. 39 and 40, such that the density diffusive flux D?rq is constant
radially, meaning that a spatially constant source will sustain the pro-
file. In that case, if the particle source is too large (or too weak), the
density profile will, then, increase (or decrease) rigidly. Alternatively,
an arbitrary diffusion profile can be chosen, in which case the particle
source needs to be spatially adapted to compensate for radially varying
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density losses. In most linear tests (as in Sec. III), this does not matter
much since the background equilibrium is typically fixed (i.e., only
toroidal modes n > 0 are evolved). However, for non-linear tests in
Sec. IV, the first method is used to maintain profiles in a steady state,
until the 3D non-linear perturbations are introduced.

Both the viscosity and resistivity have a Spitzer-like dependence
on temperature, g ¼ g0T

�3=2 and l ¼ l0T
�3=2, respectively, where

g0 and l0 are the values of resistivity and viscosity on the magnetic
axis. The parallel particle diffusion is typically kept zero, while the par-
allel thermal conductivity is formulated using the Braginskii model
jjj ¼ j0T5=2, for which j0 has well-defined physical amplitudes for
ion and electron temperatures. Since the present model only includes
a single temperature, the value of j0 is typically chosen to be the aver-
age of ion and electron temperature coefficients.

At present, numerical (or hyper-) diffusion is not needed in the
model for any equation, even with strongly non-linear cases, as will be
shown in Sec. IV. In future works, it may be adequate to introduce
hyper-resistivity for physical reasons.13

E. Extended MHD

For many tokamak applications, additional non-ideal effects are
necessary to address certain physical properties of non-linear MHD
instabilities. In particular, rotation effects can have a significant impact
on the linear stability and the non-linear dynamics of MHD instabilities.
The toroidal momentum induced by the neutral-beam injection (NBI)
can be significant, particularly in small and medium-size spherical toka-
maks like COMPASS, NSTX-U, and MAST-U, although this rotation
becomes marginal in larger devices such as ITER.41 The diamagnetic
rotation42 has a damping effect on the stability of high toroidal mode
numbers and plays a major role in the dynamics of quasi-periodic relax-
ations, such as ELMs and neoclassical tearing modes (NTMs).43–48

Finally, neoclassical poloidal rotation also plays an important role in the
rotation of precursor modes in ELMy H-mode simulations.49

The full system of extended MHD equations, including diffusion,
sources, and rotation effects, is described by

@~A
@t
¼ ~v �~B þ mi

2eq
rjjp� g ~J �~S j

� �
; (12)

q
@~v

@t
¼ �q ~v þ~vi�ð Þ � r~v þ~J �~B �rp

þ lr2 ~v � SNBIð Þ þ r �Pneo � Cq~v; (13)

@q
@t
¼ �r � q ~v þ~vi�ð Þ½ � þ r � D?r?qþ Djjrjjq

� �
þ Sq; (14)

@p
@t
¼ �~v � rp� cpr �~v þr � j?r?T þ jjjrjjT

� �
þ ST ; (15)

where the ion diamagnetic velocity and the neoclassical poloidal fric-
tion tensor are defined, respectively, as

~vi� ¼
mi

2eqB2
~B �rp; (16)

r �Pneo ¼ lneoq
B2

B2
h

vh � vneoð Þ~eh; (17)

vneo ¼ �
kimi

2eBh
rT �~Bð Þ �~eh; (18)

withmi and e being the ion mass and charge, respectively, ki being the
neoclassical heat diffusivity, and ~eh ¼ ~Bh=j~Bhj being the unit vector
along the poloidal magnetic field ~Bh ¼ BR~eR þ BZ~eZ . The poloidal
velocity is, thus, defined as vh ¼ ð~v þ~vi�Þ �~eh. Note that factor 2 in
the definition of the diamagnetic and neoclassical velocities comes
from the assumption that, with a single total temperature T, the ion
pressure is assumed to be simply pi ¼ p=2.

Note that the diamagnetic effects have been implemented taking
into account the gyro-viscous cancellation and the gyro-viscous heat-
flux cancellation, which eliminates several diamagnetic terms in the
momentum and energy equations.46,47 This diamagnetic cancellation
is the common form, which assumes a constant magnetic field, not the
full (more complex) form where the cancellation involves the magneti-
zation velocity instead of the diamagnetic velocity.50 The diamagnetic
term in the induction equation (12) is obtained using the standard
drift ordering, as in Ref. 46, where the total electric field

~E ¼ �~v �~B þmi

eq
~J �~B �r?p
� �

�mi

eq
rjjpe þ g~J (19)

is reduced to the form

~E ¼ �~v �~B �mi

eq
rjjpe þ g~J (20)

by neglecting the perpendicular force-balance mi
eq ð~J �~B �r?pÞ,

which is a manner of neglecting the Hall effects. This is the form used
in Eq. (12), assuming that pe ¼ p=2.

It is not clear at present how the drift ordering approximations
(particularly the absence of Hall terms) affect the non-linear dynamics
of tokamak instabilities. It is reasonable to assume that linear stability
is not affected, since with unperturbed equilibrium quantities, the
assumption that ~J �~B ¼ r?p should hold. However, in non-linear
cases, where the magnetic field (and current) and pressure are strongly
perturbed away from their equilibrium balance, the Hall effects may
become important. However, a detailed study of the limitation of this
assumption is beyond the scope of this work and will be addressed in
future work.

With the full-MHD model described above, fast-waves can pol-
lute the solution and lead to numerical instabilities. The diamagnetic
velocity was found to be particularly challenging, with short-wave
oscillations on the scale of grid elements. It was found that the diamag-
netic terms from the rR and rZ projections of the induction equa-
tion (i.e., the AR and AZ equations) are the source of these numerical
oscillations, and neglecting those terms can strongly improve numeri-
cal stability, while retaining the stabilizing effects of the diamagnetic
terms, which are clearly dominated by the toroidal component of the
induction equation. Work is currently on-going to implement numeri-
cal stabilization methods, such as Taylor–Galerkin (TG) and varia-
tional-multi-scale (VMS) stabilization,51,52 which could improve the
numerical stability of diamagnetic terms in the AR and AZ equations.

F. Projection and coordinate system

The momentum and induction equations each need to be
projected in order to obtain individual equations for each of their
vector-field components. Although the projection could simply be
made along the orthogonal cylindrical basis vectors (~eR; ~eZ ; ~e/), this
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is numerically not the most stable choice, particularly for the momen-
tum equation.

The magnetic vector potential, the velocity field, and the mag-
netic field are decomposed as

~A ¼ AR~eR þ AZ~eZ þ
1
R
A/~e/; (21)

~v ¼ VR~eR þ VZ~eZ þ V/~e/; (22)

~B ¼ BR~eR þ BZ~eZ þ B/~e/; (23)

which means that the toroidally axisymmetric component of A/ is
equivalent to the magnetic poloidal flux w, and the toroidal compo-
nents V/ and B/ are the actual physical components of the velocity
and magnetic field, respectively. Note that if an electric field is present
(for example, if a loop voltage is used as boundary conditions), then
A/ will shift rigidly with time, but the normalized scalar wn will not
change (assuming that the equilibrium is stationary).

While the induction equation is simply projected along the vec-
tors (~eR; ~eZ ; ~e/), the momentum equation is projected along the
vectors (~eR; ~eZ ; ~B). As noted in Ref. 31, this choice of projection is
essential for the numerical stability of the model. By removing the
~J �~B term in the equation for V/, the ~B projection is thought to
remove unnecessary fast magneto-sonic wave components that pollute
the solution otherwise. Note that this projection does not entirely remove
the fast magneto-sonic waves from the system, and they are still sup-
ported by the two other momentum equation projections and the induc-
tion equations. However, removing unnecessary information about the
toroidal propagation of fast magneto-sonic waves from this equations
seems favorable to the numerical stability of simulations. Separation of
different waves is also used in other MHD formulations.53,54

G. Boundary conditions

There are two types of boundary conditions, depending on
whether a boundary surface is aligned to a magnetic flux-surface or
not. If a boundary coincides with a flux-surface, then all variables are
fixed in time (Dirichlet), although this can be relaxed for the density
and temperature. If a boundary intersects magnetic field lines, then a
mixture of conditions is applied: the Dirichlet condition is enforced
for the magnetic vector potential ~A, free outflow of density is allowed
(Neumann), while Mach-1 and sheath boundary conditions are
applied to velocity and temperature, respectively, such that

~vjj ¼ ~v �~b ¼ 6cs ¼
ffiffiffiffiffiffi
cT

p
; (24)

nT~vjj þ jjjrjjT ¼ cshnT~vjj; (25)

where~b is the unit vector along the magnetic field ~B; c ¼ 5=3 is the
ratio of specific heats, and csh is the ion sheath transmission factor,
which is typically taken between 4.5 and 10.0, depending on the ion or
electron temperature and on transient energy fluxes.55

III. COMPARISON OF FULL-MHD AND REDUCED-MHD

In this section, we address a series of linear benchmarks for toka-
mak instabilities to compare the new full-MHDmodel against the pre-
viously implemented reduced-MHD. Linear benchmarks are
conducted for core MHD instabilities and edge peeling-ballooning
instabilities, both in circular and X-point plasmas. A comparison of
peeling-ballooning modes is provided for the spherical tokamak

MAST, for which it is widely, and wrongly, presumed that reduced-
MHD cannot describe ELM and filament physics accurately, even
though no geometrical approximation is required for the energy-
conservative derivation of reduced-MHD.56,57

A. Linear benchmark for core n¼ 1 modes

The first two linear benchmarks are a low-b m¼ n¼ 1 internal
kink mode and a low-b m¼ 2, n¼ 1 tearing-mode. Both instabilities
were studied in previous publications, and they are included here for
completeness and clarity. Both equilibria are similar but differ in the
q-profile: the internal kink mode has a q-profile in the range [0.7, 1.6],
crossing q¼ 1 at wn¼0.5, while the tearing mode has a q-profile in the
range [1.7, 3.9], crossing q¼ 2 at wn¼0.3. The Grad–Shafranov equi-
librium quantities and profiles for these two cases are described in
more detail in Ref. 31. The tearing mode is in a low-temperature
regime (Ti ¼ 0.25 eV) with a magnetic field of 1T and a major radius
of 10 m, with ion gyroradius qi¼ 0:7� 10�4 m and ion collision time
si¼ 0:5� 10�6 s.

Both cases are run for a scan in resistivity. The kink mode is
run with resistivity alone (without viscosity and without particle or
thermal diffusion), while the tearing mode is run including all diffu-
sions, with l0 ¼ 10�8 kgm�1 s�1; D? ¼ 0:7m2 s�1, and j? ¼ 1:7
�10�8 kgm�1 s�1. For simplicity, the resistivity and viscosity are
taken to be spatially constant for both cases to ease comparison with
other codes. Note that only the toroidal mode n¼ 1 is simulated here
such that coupling with higher toroidal modes is not present in these
linear benchmarks.

Figures 1 and 2 show the benchmark of the internal kink mode
and the tearing mode, respectively, compared to the reduced-MHD
model. Poloidal cross sections of n¼ 1 perturbed quantities are shown
for the toroidal magnetic potential A/ and the temperature (for the
full-MHD model), and the growth rates of the modes are plotted as a
function of resistivity, compared to the reduced-MHD model. A com-
parison is also made against CASTOR3D, which is also a full-MHD
code.59,60 Both cases agree with linear theory in the ideal (low resistiv-
ity) regimes, with a g1=3 scaling for the internal kink mode61 and a
g3=5 scaling for the tearing mode.62

Although the agreement between reduced-MHD and full-MHD
is reasonable for both cases, the reduced-MHDmodel starts to deviate
from the full-MHD solution at low resistivity for the internal kink
mode. This is a typical case where reduced-MHD is expected to fail:
for internal kink modes at finite-b.30 Although this is a low bN ¼ 0.4%
case, reduced-MHD already seems to be affected. At higher-b, the
deviation becomes more pronounced.

B. Where reduced-MHD fails

The internal kink mode at finite-b is a good example to illustrate
why full-MHD is absolutely necessary for the modeling of some toka-
mak instabilities, particularly core MHD, which is highly relevant to
disruptions, one of the main focuses of current research and experi-
ments. In this benchmark, the results of the linear calculation of an
n ¼ m ¼ 1 internal kink instability obtained by the reduced-MHD
model of JOREK, the full-MHD model of JOREK, and the linear full-
MHD code CASTOR3D59,60 are compared for different values of b.
The equilibrium characteristics of this circular plasma, together with
the diffusive parameters used for the simulation, are as follows:
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Major radius R0 10.0 m
Minor radius a 1.0 m

Central safety factor qaxis 0.73
Location of q¼ 1 wnjq¼1 0.51

Vacuum magnetic field Bvac 1.0 T
Total plasma current Ip 0.3 MA

Plasma beta bN 0.0%–2.2%
Plasma volume V 197.0 m3

Resistivity (constant) g 10�6 Xm
Viscosity (constant) l 5.2 � 10�9 kgm�1 s�1

Particle diffusion D? 0.0
Perpendicular conductivity j? 0.0

Parallel conductivity jjj 0.0

Note that the viscosity here was used only for the JOREK runs,
while it is zero for CASTOR3D. As shown in Fig. 3, the full-MHD
model of JOREK and CASTOR3D agrees well on the linear growth
rates, while the reduced-MHDmodel fails to reproduce these results at
finite values of b. This shortcoming of the reduced-MHD model is
expected due to the neglect of parallel magnetic field fluctuations.30

Qualitative differences between the results of the reduced- and full-
MHD models are also seen in nonlinear simulations of low mode
number core instabilities.

C. Peeling-ballooning modes in a circular plasma

The second linear benchmark presented here is the so-called
CBM18 case. It is a circular plasma unstable to peeling-ballooning
modes, with bN � 1:3%. This case is run for individual toroidal mode

FIG. 1. n¼ 1 internal kink mode benchmark: poloidal cross sections of the normalized perturbation of (a) the toroidal magnetic potential A/ and (b) the temperature. (c)
Comparison of the growth rates of the kink mode with the reduced-MHD model and with the linear MHD code CASTOR, as a function of resistivity. [Associated dataset avail-
able at https://doi.org/10.5281/zenodo.3971940 (Ref. 58).]

FIG. 2. n¼ 1 tearing mode benchmark: poloidal cross sections of the normalized perturbation of (a) the toroidal magnetic potential A/ and (b) the temperature. (c)
Comparison of the growth rates of the tearing mode with the reduced-MHD model and with the linear MHD code CASTOR, as a function of resistivity. [Associated dataset avail-
able at https://doi.org/10.5281/zenodo.3971940 (Ref. 58).]
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numbers between n¼ 1 and n¼ 20. The resistivity for this test-case is
set to g0 ¼ 6� 10�6 Xm, while all other diffusion coefficients are set
to zero.

Figure 4 shows the benchmark of the CBM18 case, when com-
pared to the reduced-MHD model, and also results from MISHKA
and CASTOR, which are linear full-MHD codes.59,63,64 MISHKA sol-
ves the linear incompressible ideal full-MHD model, while CASTOR
solves the resistive full-MHD model (also using g0 ¼ 6� 10�6 Xm).
Poloidal cross sections of n¼ 20 perturbed quantities are shown for
the toroidal magnetic potential A/ and the temperature (for the
JOREK full-MHD model), and the growth rates of the modes are plot-
ted as a function of the toroidal mode number. The stability threshold
of n¼ 4 is well reproduced by the full-MHD model, and the same
asymptotic increase in growth rates is observed with both models. The
agreement with reduced-MHD and with the linear MHD calculations
is reasonable.

D. Peeling-ballooning modes in an X-point plasma

Next, an X-point plasma is run for peeling-ballooning instabil-
ities. This is an artificial equilibrium similar to a JET plasma. It is run
using the kinetic stationary background equilibrium flows (n¼ 0),
together with a single toroidal harmonic, which is changed from n¼ 1
up to n¼ 20. The equilibrium characteristics, together with the diffu-
sive parameters, are as follows:

Major radius R0 3.0 m m
Minor radius a 0.7 m
Elongation j 1.7
Triangularity d 0.0

Central safety factor qaxis 0.95
Edge safety factor q95 1.8

Vacuum magnetic field Bvac 1.0 T
Total plasma current Ip 0.95 MA

Plasma beta bN 2.5%
Plasma volume V 50.0 m3

Pedestal width Dwped 8.0%
Pedestal density ne 0.5� 1020 m�3

Pedestal temperature Tped
e 350 eV

Resistivity g0 2.7�10�6 Xm
Viscosity l0 3.7 � 10�8 kgm�1 s�1

Particle diffusion D? 2.2 m2 s�1

Perpendicular conductivity j? 5.5 � 10�8 kgm�1 s�1

Parallel conductivity jjj 55.0 kgm�1 s�1

where the D? and j? values are given on the magnetic axis, with a
radial profile that drops by a factor 10 at the top of pedestal. Note that,
in this list, bN is defined as bt=ða:Bt :IpÞ, and Dwped is given as a nor-
malized quantity, relative town.

Figure 5 shows the benchmark of the X-point JET-like case,
when compared to the reduced-MHD model. Poloidal cross sections
of n¼ 20 perturbed quantities are shown for the toroidal magnetic

FIG. 3. n¼ 1 internal kink mode benchmark at finite b: growth rates of the internal
kink mode are compared between the reduced- and full-MHD models of JOREK,
together with the linear full-MHD code CASTOR3D. As b is increased, reduced-
MHD fails to capture the linear growth of the kink mode, as expected from theory.30

[Associated dataset available at https://doi.org/10.5281/zenodo.3971940 (Ref. 58).]

FIG. 4. Circular ballooning mode benchmark: poloidal cross sections of the normalized perturbation of (a) the toroidal magnetic potential A/ and (b) the temperature. (c)
Ballooning mode growth rates as a function of the toroidal mode number, compared to the JOREK reduced-MHD model, to the MISHKA ideal full-MHD model, and to the
CASTOR resistive full-MHD model. [Associated dataset available at https://doi.org/10.5281/zenodo.3971940 (Ref. 58).]
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potential A/ and the temperature (for the full-MHD model), together
with the initial pedestal pressure gradient. The growth rates of the
modes are plotted as a function of the toroidal mode number and
compared with reduced-MHD. Note that this X-point case is run
including the non-static background equilibrium, with stationary flows
and Mach-1 boundary conditions, so that this level of agreement with
reduced-MHD is excellent.

E. Peeling-ballooning modes in a spherical tokamak

The next benchmark of interest is the MAST plasma discharge
#24763. This case was the subject of previous studies using reduced-
MHD.65 It is typically assumed that reduced-MHD is not adequate to
study MHD instabilities in spherical tokamaks. The first derivations
by Strauss26 relied on a large inverse aspect-ratio assumption to dem-
onstrate the validity of the reduced-MHD ansatz in tokamaks, but it
was later demonstrated that the large inverse aspect-ratio is not needed
to ensure energy conservation.56,57 Nevertheless, this original large
inverse aspect-ratio assumption has affected the reputation of the
model even until now. Of course, there are instabilities where reduced-
MHD fails, like the high-b internal kink mode, but for ELM physics, it
seems not to be the case. As such, this benchmark is a validation of
reduced-MHD as much as the new full-MHDmodel.

The MAST discharge #24763 is a nearly symmetrical double X-
point equilibrium, with the following characteristics and diffusion
coefficients:

Central safety factor qaxis 0.58
Edge safety factor q95 4.4

Vacuum magnetic field Bvac 0:4T
Total plasma current Ip 0:85MA

Plasma beta bN 3.0%
Plasma volume V 8:3m3

Pedestal width Dwped 2.2%
Pedestal density ne 0:4� 1020m�3

Pedestal temperature Tped
e 220 eV

Resistivity g0 3:0� 10�6 Xm
Viscosity l0 3:4� 10�8 kgm�1 s�1

Particle diffusion D? 2:4m2 s�1

Perpendicular conductivity j? 5:0� 10�8 kgm�1 s�1

Parallel conductivity jjj 500:0 kgm�1 s�1

where the D? and j? values are given on the magnetic axis, with a
radial profile that drops by a factor 10 at the top of pedestal.

This MAST benchmark is also run including the complete non-
static equilibrium with flows and Mach-1 boundary conditions. Figure 6
shows poloidal cross sections of n¼ 20 perturbed quantities for the
toroidal magnetic potential A/ and the temperature (for the full-
MHD model), together with the initial pedestal pressure gradient.
The growth rates of the modes are plotted as a function of the
toroidal mode number and compared with reduced-MHD. The agree-
ment between both models shows that not only the new full-MHD
model behaves as expected but also reduced-MHD is capable of captur-
ing the linear stability of peeling-ballooning modes for spherical toka-
maks. As will be shown later in Sec. IV, the non-linear dynamics of
ELM filaments is also very similar between reduced- and full-MHD.

F. Diamagnetic effects and neoclassical friction

The diamagnetic terms were tested using the X-point JET-like
benchmark presented above. Figure 7(a) shows the growth rate with
and without diamagnetic effects, as a function of the toroidal mode
number, for both reduced- and full-MHD. The agreement between
the two models is reasonable, showing the expected stabilization of
high-n modes.

FIG. 5. X-point peeling-ballooning mode benchmark: poloidal cross sections of (a) the normalized equilibrium pressure gradient with the separatrix contour in white, (b) the nor-
malized perturbation of the toroidal magnetic potential A/, (c) the normalized perturbation of the temperature, and (d) comparison of the peeling-ballooning mode growth rates
with the reduced-MHD model, as a function of the toroidal mode number. [Associated dataset available at https://doi.org/10.5281/zenodo.3971940 (Ref. 58).]

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 102510 (2020); doi: 10.1063/5.0018208 27, 102510-8

VC Author(s) 2020

https://doi.org/10.5281/zenodo.3971940
https://scitation.org/journal/php


The neoclassical friction terms, as well as the toroidal momentum
source, are tested using the same X-point case, to be compared against
the reduced-MHDmodel. Figure 7(b) shows the comparison of veloc-
ity profiles in the toroidal and poloidal directions. This case is the
same X-point JET-like plasma, which runs as a stationary axisymmet-
ric kinetic equilibrium. For both the toroidal momentum and the neo-
classical poloidal velocity, the full-MHD model is able to converge to
the target prescribed profile. Note that both SNBI and ~vneo are pre-
scribed only up to the separatrix. The target profile for the neoclassical

velocity, as plotted in Fig. 7(b), is determined dynamically by the axi-
symmetric n¼ 0 density and temperature profiles, as well as magnetic
field, following Eq. (17). The toroidal momentum source SNBI , how-
ever, is a fixed profile here, which does not evolve in time.

G. Convergence and resolution

Convergence of growth rates as a function of spatial grid resolu-
tion is tested for the tearing and ballooning modes, using the tearing

FIG. 6. Spherical tokamak peeling-ballooning mode benchmark, using a MAST double X-point plasma: poloidal cross sections of (a) the normalized equilibrium pressure gradi-
ent with the two separatrix contours in white, (b) the normalized perturbation of the toroidal magnetic potential A/, (c) the normalized perturbation of the temperature, and (d)
comparison of the peeling-ballooning mode growth rates with the reduced-MHD model, as a function of the toroidal mode number. [Associated dataset available at https://
doi.org/10.5281/zenodo.3971940 (Ref. 58).]

FIG. 7. Diamagnetic terms and neoclassical friction benchmark: (a) the growth rate of the peeling-ballooning modes as a function of toroidal mode number n, with and without
the diamagnetic effects, for both the reduced- and full-MHD models. (b) Toroidal and poloidal rotation profiles for a stationary kinetic X-point equilibrium. The two velocities are
normalized and plotted positive and negative for clarity. The red lines are the full-MHD profiles, the blue ones are for the reduced-MHD, and the dashed-black lines are the tar-
get profiles, SNBI and j~vneoj. [Associated dataset available at https://doi.org/10.5281/zenodo.3971940 (Ref. 58).]
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test-case described above and the CBM18 ballooning case. The grid
resolution is scanned homogeneously in the radial and poloidal direc-
tions, scanning from ðnflux; nthtÞ ¼ (27, 180) to (90, 600), where nflux
and ntht are the number of radial (flux surfaces) and poloidal (theta)
grid-points, respectively, both of which are equidistant in real-space
for this case. With finite elements, the local error is estimated as
E � hp,37 where h is the element size and p is the polynomial order of
the finite elements. In this case, ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffinfluxntht

p Þ�1 is used as an approxi-
mation of the element size h, and since the elements are cubic, p¼ 4.
However, these tests evaluate the growth rates of toroidal modes,
which are obtained by integrating the mode energies over the domain
(i.e., over the elements), hence adding another factor ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffinfluxntht

p Þ�1 to
the error estimate. Thus, the error of the growth rates should scale
with the fifth power of the spatial resolution, as ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffinfluxntht

p Þ�5.
Although the tearing mode scales as expected, slower convergence is
found for ballooning modes, such that the resolution required for full-
MHD simulations is significantly higher than for reduced-MHD, with
which the fifth power convergence is obtained for the CBM18 case
and the tearing mode.

Figure 8 shows the convergence of the growth rate error, as a
function of spatial resolution. For the tearing mode, the fifth order
scaling is found as expected, and beyond a high enough resolution, the
error diminishes dramatically, suggesting that the growth rate is
already fully converged. However, for ballooning modes using the
CBM18 case, the growth rate convergence follows a scaling of the third
order. Unfortunately, the reason for this poorer convergence has not
been elucidated yet. This lower scaling of ballooning instabilities seems
to be similar for all toroidal mode numbers.

In practice, this means that a higher resolution is required for
full-MHD simulations than for reduced-MHD to obtain the same
error level. It should be noted that this scan has been achieved by
scaling the spatial resolution homogeneously everywhere in the
plasma, meaning that the same amount of spatial resolution is set for
the core and the pedestal. In typical ELM simulations, however, since
the mode is localized in the pedestal region, spatial resolution can be

diminished in the core region and increased in the pedestal. This
enables a reduction of the cost in radial resolution, but the poloidal
resolution, however, needs to be elevated everywhere in the plasma,
since ballooning modes span both the high- and low-field sides. The
benchmark study presented above for ballooning modes was done at
the highest resolution possible within the current capabilities of the
code. At this level, using the concentration of radial resolution at the
pedestal, the error is negligible, below 1% of the growth-rate
amplitude.

The converged growth rates, used to evaluate the errors in Fig. 8,
are obtained using the highest resolution cases available. For the tear-
ing mode, since saturation is obtained at a relatively low resolution,
this is straightforward. For the CBM18 case, since the highest resolu-
tion in Fig. 8(b) is not yet saturated, another simulation was used, with
non-equidistant resolution in the radial direction. By concentrating
radial points around the pedestal, it is, thus, possible to use a lower
nflux and therefore increase ntht such that the growth rates are well
converged.

It should be noted that, unlike reduced-MHD, the conver-
gence error for full-MHD is in the convenient direction, meaning
that if the simulation is under-resolved, the instabilities are stabi-
lized, whereas it is the opposite in reduced-MHD. Thus, artificial
instabilities, which are possible in under-resolved reduced-MHD
simulations, are avoided in full-MHD. Convergence tests should
be performed for high-b cases to ensure that growth rates are not
affected in full-MHD. Note that this aspect seems to differ from
other well-established tokamak MHD codes such as NIMROD,66

but there is unfortunately no clear explanation for this aspect of
the simulations. The only insight that may be proposed is that the
weak formulation method used in JOREK could have stabilizing
properties in under-resolved cases, similar to a variational formu-
lation. However, this contradicts the fact that the opposite behav-
ior is found for reduced-MHD in JOREK, which also employs the
weak form method, although the reduced-MHD model needs to
deal with higher-order derivatives like toroidal vorticity.16

FIG. 8. The error of the growth rate is plotted as a function of the spatial resolution
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nfluxntht
p

for (a) the tearing mode and (b) the CBM18 ballooning mode. The error should con-
verge as the 5th power of the spatial resolution, which is the case for the tearing mode but not for ballooning modes. The reason for the lower convergence of ballooning modes is
thought to be due to the interaction of fast-waves, which require higher resolution at high b. [Associated dataset available at https://doi.org/10.5281/zenodo.3971940 (Ref. 58).]
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IV. NON-LINEAR SIMULATIONS

In this section, we present three non-linear cases to demonstrate
the ability of the model to address current open issues of tokamak
MHD. These simulations are not meant to provide a validation against
experiments but rather to push the model into highly non-linear and
unstable regimes, in order to test the numerical stability of the code.
The three cases are an MGI-triggered disruption in JET, ELM filament
dynamics in MAST, and an ELM crash in JET.

A. Core MHD and disruptions

The first non-linear case addressed here concerns core-MHD,
where a disruption is triggered using the massive-gas-injection method
in a JET plasma. The JET experiment is chosen to be the pulse previ-
ously studied in Refs. 67 and 68, discharge #86887. The simulation is
run with toroidal mode numbers n¼ 1, 2, 3, 4, and 5, using the same
diffusion coefficients as in Refs. 67 and 68, with a resistivity of g ¼
1:5� 10�6 Xm and a viscosity of l¼ 1:5� 10�7 kgm�1 s�1.

Since the full-MHD model does not yet include neutral physics
as in Refs. 67 and 68, the MGI injection is mimicked by a density
source SMGI localized at the outer midplane of the plasma. Where the
source is localized, a temperature sink is also introduced to account for
the ionization of the neutral gas, such that Tsink ¼ �nSMGI=2, where n
¼ 13:6 eV is the ionization energy per neutral particle. The toroidally
localized source is progressively displaced radially inward, starting
from wn¼ 0.9 until wn¼ 0.6, spanning 4ms.

Of course, this is an extremely simplified and crude way to address
MGI physics, but it should be emphasized again that the purpose of this
simulation is not to reproduce the experiment exactly but to trigger a
non-linear crash and test the numerical reliability of the model. Future
work will be dedicated to the inclusion of neutral and impurity physics
as in Refs. 67 and 68 to address disruptions triggered by MGI and shat-
tered-pellet-injection (SPI). However, such additional ingredients are
not expected to affect the numerical stability of the model since neutral
and impurity physics mainly enters the system of full-MHD as a density
source and a temperature sink (i.e., in a similar manner as what was
done here), although in more elaborate models, as in Refs. 67 and 68,
supplementary terms enter the momentum equation.

Figure 9 shows poloidal snapshots of the simulation as a function
of time, for the variables T, q, and A/, together with a Poincare plot of
the magnetic field. The evolution of the MHD triggered by the local-
ized density source is found to be the same as observations made in
Ref. 68. First, the n¼ 1 mode becomes unstable in the core, later cas-
cading to n¼ 2 and higher mode numbers. The thermal quench
occurs in two phases, first a loss of the outer layer of the plasma tem-
perature through parallel conduction in a stochastic field region and
then through convective mixing in the core during the second phase.
Thus, the non-linear dynamics of the modes seems to be well repro-
duced, including the formation of magnetic islands and stochastic
regions. Most importantly, the numerical stability of the model is well
demonstrated, particularly considering that numerical hyper-
resistivity and hyper-viscosity are not necessary here, unlike in the
reduced-MHD version, where they are critically essential.

B. MAST scrape-off layer filament dynamics

Another demonstrative example of the ability of the new model
to handle non-linear dynamics is an ELM instability in the MAST

tokamak, for which filaments are observed to travel far into the
scrape-off layer (SOL). As in previous reduced-MHD MAST stud-
ies,65,69 the same dynamics is found with full-MHD, with filaments
traveling radially at speeds of about 0.5–3 km/s.

These simulations were performed using the ELMy H-mode
pulse #24763 with the single mode number n¼ 20, as in Refs. 65 and
69. All diffusion coefficients were set to the same values as in Ref. 69
(except for viscosity, which is scanned from l ¼ 10�7 to l ¼ 3:3
�10�6 kgm�1 s�1). One of the singular characteristics of filament
dynamics in simulations is that the radial speed and propagation of
the filaments strongly depend on the SOL visco-resistive parameters.
Particularly, as observed in Ref. 69, at very low SOL viscosity, the fila-
ments are sheared as they cross the separatrix, which stops their radial
motion and leads to filaments traveling radially only up to a few cm in
the SOL. More experimental behavior is found at high SOL viscosity,
where filaments are observed to travel at constant speed until the
domain boundary, where Dirichlet boundary conditions stop the fila-
ment evolution.

Figure 10 shows poloidal snap-shots of the density in the MAST
simulation, showing the time-evolution of filaments as they travel radi-
ally in the SOL. As filaments propagate radially, parallel transport con-
vects/conducts plasma toward the target regions, resulting in
filamentary lobes that are strongly sheared near the X-point due to the
magnetic geometry of field lines. Two cases are plotted, using high vis-
cosity (top row) and low viscosity (bottom row). Viscosity is observed
to affect the evolution of filaments in the SOL. At lower viscosity, the
initial growth rates of the ballooning modes are higher, resulting in a
larger initial radial speed of filaments. However, this lower viscosity
also results in a strong shearing of the filaments, which aborts the evo-
lution of the filaments just outside the separatrix. At higher viscosity
(top-row), the filaments travel at a lower speed but at constant velocity
all the way into the far SOL. The same behavior was observed in Ref.
69, so it is concluded that reduced- and full-MHD are in good agree-
ment, both for the linear stability and the non-linear dynamics of SOL
filaments in spherical tokamaks like MAST.

Future works on MAST and MAST-U could contribute to the
study of ELM burnthrough,70 core-MHD and disruption studies, and
the exploration of viscous models to describe accurately the evolution
of SOL filaments. These will require further developments of the
model, particularly the inclusion of neutral physics, which is not
addressed in this work.

C. JET ELM simulation

Finally, the new model’s capability to handle strongly non-linear
MHD instabilities is illustrated with an ELM simulation in the JET
tokamak, using multiple mode numbers and diamagnetic effects. The
resistivity is taken to be a factor 20 above the experimental neoclassical
amplitude. For ELM simulations at experimental resistivity, it is now
understood that the temporal evolution of the pedestal buildup is
needed, leading up to the ELM onset.39,71 As demonstrated in Refs. 39
and 71, non-linear ELM onsets have an explosive behavior, which
leads to larger ELM crashes than a simulation started from a linearly
unstable pre-ELM state. Such simulations, however, require long com-
putation times and a detailed setup, which will be addressed with full-
MHD in future work.

The JET pulse used for this simulation is a well-studied ELMy
H-mode experiment, #83334, which was studied in Refs. 39, 40,
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and 72. The simulation is performed using the toroidal mode num-
bers n¼ 1, 2, 3, …, 10. The pedestal losses obtained here are 21%
for density and 23% for temperature (relative to the pedestal con-
tent, integrated in the range wn ¼ [0.85–1.0]). The mode n¼ 5
begins the crash, until other modes start interacting in the later
phase of the ELM.

One intriguing observation made from ELM simulations with
the full-MHD model is the clear formation of swirling eddies inside
the pedestal as filaments leave the plasma, as shown in Fig. 11. Such
eddies were never observed in reduced-MHD simulations, suggesting
that the restriction of formulating~v? as a function of a scalar electric

potential may play a role in filament convection. However, it is not yet
clear whether such differences play any role in global aspects of simu-
lations, where quantitative comparisons of integrated measurements
(like ELM size and divertor heat-fluxes) would need to be performed
for multiple pulses, as in Refs. 39 and 72.

Detailed studies of ELM physics using the full-MHD model will
be required in the near future to provide extensive validation of the
model against experiments. Such studies are now possible, and the
non-linear simulations presented here clearly show that the model is
numerically sound and ready for such extensive studies, at the same
level as previous studies performed with the reduced-MHDmodel.

FIG. 9. Simulation of an MGI-triggered
disruption in JET. Columns from left to
right: electron temperature Te, electron
density ne, toroidal magnetic potential A/,
and a Poincare plot of the magnetic field.
Rows from top to bottom: time lapse of
the simulation, at t ¼ 0ms, t ¼ 2:8ms, t
¼ 4:2 ms, and t ¼ 5:7 ms. Despite a very
simplified MGI model lacking neutral phys-
ics, core-MHD is triggered and a thermal-
quench is obtained, demonstrating that
the new full-MHD model is ready for simu-
lations of disruption physics at the same
level as the reduced-MHD model in
previous studies.68 [Associated dataset
available at https://doi.org/10.5281/zen-
odo.3971940 (Ref. 58).]
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V. SUMMARY AND FUTURE WORKS

This paper presents the significant advancement of MHD simula-
tions using the JOREK code, with the inclusion of a full-MHD model.
The model was described in detail, including extended MHD terms
like momentum sources and diamagnetic effects. A linear benchmark
of the new model was performed against the previously studied
reduced-MHD model, showing satisfactory agreement. Linear tests
were performed for core-MHD circular plasmas and ballooning
modes in circular and X-point plasmas, including diamagnetic effects.
Additionally, a spherical plasma was tested using MAST experimental
data, showing that reduced- and full-MHD are in good agreement,
even for small aspect-ratio machines like MAST. It is often asserted
that reduced-MHD is unable to describe accurately the physics of
MHD instabilities in spherical plasmas, but as was shown here, at least
for ballooning modes, this is not the case. Finally, non-linear simula-
tions were performed for a disruption in a JET plasma, for the
dynamic evolution of SOL filaments during ELMs in the MAST toka-
mak, and for a non-linear ELM crash in a JET plasma, showing all the
key characteristics expected from previous studies with the reduced-
MHDmodel.

Beyond the demonstration that the new full-MHD model is reli-
able with respect to physics aspects of MHD instabilities, this paper
also demonstrates the remarkable numerical stability of the model.
Although numerical stabilization is often required to avoid issues
resulting from fast-waves inherent to full-MHD, the simulations pre-
sented above demonstrate that no such stabilization is required for
many of the experimentally relevant MHD instabilities in tokamak
plasmas. It may be expected that in some extreme regimes, such stabi-
lization could be required, and work is currently on-going to imple-
ment stabilization methods such as Taylor–Galerkin (TG) or
variational-multi-scale (VMS) methods.51,52

As such, the new full-MHD model is now ready for full produc-
tion and quantitative validation against experiments, at least at the
same level as previous studies performed with the reduced-MHD

FIG. 11. Simulation of an ELM in the JET
tokamak, showing poloidal 2D-slices of
plasma density and temperature, as a
function of time. The conduction of tem-
perature along magnetic field lines forms
lobe structures that result in footprints on
the divertor targets, similar to what is
observed in reduced-MHD simulations.
The density filaments, however, result in
eddies inside the pedestal, which was not
observed in reduced-MHD. The blue box
in plot (a) shows the zoom area used for
the slices of plot (b). [Associated dataset
available at https://doi.org/10.5281/zen-
odo.3971940 (Ref. 58).]

FIG. 10. Simulation of ELM filaments in the MAST tokamak, showing poloidal
2D-slices of plasma density. Filaments evolve radially at speeds in the range
of 0.5–3 km/s, depending on viscosity and resistivity. As resistivity increases,
the resistive ballooning regime leads to larger growth rates and thus higher
radial speeds. Viscosity, however, has a more complex effect. Low pedestal
viscosity leads to higher growth rates and higher initial filament speed, but low
SOL viscosity leads to a strong shearing of filaments just after they cross the
separatrix, as shown in the bottom case of (b). The top row of (b) shows a
simulation with higher viscosity, where the filaments travel at a lower radial
speed but all the way into the far SOL. Plot (a) shows a poloidal snap-shot of
the whole plasma, with the zoom-box inside which the slices of plot (b) were
obtained. [Associated dataset available at https://doi.org/10.5281/zen-
odo.3971940 (Ref. 58).]
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model. Of course, further developments of the model will now be
required in the near future to address specific tokamak instabilities
such as disruptions, detachment, and ELM burn-through, which
requires neutral and impurity physics. However, it is not expected that
these additional physics effects will deteriorate the numerical stability
of the model since they enter the system as terms that were already
included and tested here (mainly density sources and temperature
sinks). Another important aspect of future developments will be to
address more elaborate boundary conditions, with wall-extended grids
as in Ref. 40 and coupling with the free-boundary model STARWALL,
as in Refs. 73 and 74.
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