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ABSTRACT

Intermittent fluctuations in the boundary of magnetically confined plasmas are investigated by numerical turbulence simulations of a
reduced fluid model describing the evolution of the plasma density and electric drift vorticity in the two-dimensional plane perpendicular to
the magnetic field. Two different cases are considered: one describing resistive drift waves in the edge region and another including only the
interchange instability due to unfavorable magnetic field curvature in the scrape-off layer. Analysis of long data time series obtained by
single-point recordings is compared to predictions of a stochastic model describing the plasma fluctuations as a superposition of uncorrelated
pulses. For both cases investigated, the radial particle density profile in the scrape-off layer is exponential with a radially constant scale length.
The probability density function for the particle density fluctuations in the far scrape-off layer has an exponential tail. Radial motion of blob-
like structures leads to large-amplitude bursts with an exponential distribution of peak amplitudes and the waiting times between them. The
average burst shape is well described by a two-sided exponential function. The frequency power spectral density of the particle density is sim-
ply that of the average burst shape and is the same for all radial positions in the scrape-off layer. The fluctuation statistics obtained from the
numerical simulations are in excellent agreement with recent experimental measurements on magnetically confined plasmas. The statistical
framework defines a new validation metric for boundary turbulence simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0047566

I. INTRODUCTION

At the boundary of magnetically confined plasma, turbulent
transport of particles and heat in the outermost region enhances
plasma interactions with the material surfaces. This can become a seri-
ous issue for future fusion experiments and reactors.1–3 A complete
description of the physical mechanisms underlying the cross field
plasma and heat transport in the scrape-off layer (SOL) and its effects
on plasma–wall interactions is necessary if reliable predictions for
reactor relevant devices are to be obtained. Unfortunately, such an
understanding is at present still not fully achieved and predictions and
extrapolations are often based on empirical scaling laws or highly sim-
plified transport modeling with limited theoretical foundation.3–5

Fluctuations and turbulent motions in the boundary region of
magnetized plasmas have been extensively investigated both experi-
mentally and theoretically. It is recognized that in the SOL, radial

motion of blob-like filament structures is the dominant mechanism
for cross field transport of particles and heat.6–9 This leads to broaden-
ing and flattening of radial profiles and high average particle density in
the SOL that increases plasma–wall interactions.10–23 Experimental
measurements using Langmuir probes and gas puff imaging have
revealed highly intermittent fluctuations of the particle density in the
far SOL. Interestingly, measurements across a variety of magnetic
geometries, including conventional tokamaks, spherical tokamaks,
reversed field pinches, and stellarators have shown similar fluctuation
characteristics.24–27 Recent statistical analysis of exceptionally long
fluctuation data time series from several tokamak devices has
shown that the fluctuations are well described as a superposition of
uncorrelated exponential pulses with fixed duration, arriving accord-
ing to a Poisson process and with exponentially distributed pulse
amplitudes.28–42 A statistical framework based on filtered Poisson
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processes has proven an accurate description of both average radial
profiles and fluctuations in the boundary of magnetically confined
plasma.43–53

So far, this stochastic model has not been utilized to analyze fluc-
tuation data from numerical turbulence simulations of the boundary
region of magnetized plasmas. In order to obtain statistically signifi-
cant results, long simulation data time series or a large ensemble is
required, equivalent to several hundred milliseconds in experiments
with medium-sized magnetically confined plasma. Since most turbu-
lence simulation studies have been focused on the dynamics of indi-
vidual blob structures or on the effects of specific physical mechanisms
on turbulence and transport, the simulations have likely not produced
time series data of sufficient duration in order to analyze them in the
same manner as the experimental measurements.28–42 In this paper,
we present the first results from applying the same statistical frame-
work on numerical simulation data as has recently been done on
experimental measurements. By using a simplified turbulence model
describing the fluctuations in the two-dimensional plane perpendicu-
lar to the magnetic field, we have obtained data time series sufficiently
long to allow unambiguous identification of the fluctuation statistics.
The main goal of this study is to clarify these statistical properties and
compare them with that found from experimental measurements.
This is considered as an essential step toward validation of turbulence
simulation codes.54–56

A recent analysis of fluctuation data time series obtained from
numerical simulations of turbulent Rayleigh–B�enard-convection in
two dimensions has given some illuminating results.57 This model has
frequently been used as a simplified description of the non-linear
interchange dynamics in the SOL of magnetically confined plas-
mas.58–66 In Ref. 57, it was found that the fluctuation time series is well
described as a superposition of Lorentzian pulses, resulting in an expo-
nential frequency power spectral density. In the present study, more
sophisticated models for SOL turbulence are investigated, including
sheath dissipation due to losses along magnetic field lines intersecting
material surfaces as well as drift wave dynamics in the edge
region.67–83 The resulting far SOL data time series is shown to be dom-
inated by large-amplitude bursts with a two-sided exponential pulse
shape and fluctuation statistics that compare favorably with those
found in experimental measurements.28–42

In this contribution, we present a detailed statistical analysis of
fluctuation data time series from numerical simulations of a two-
dimensional reduced fluid model describing the evolution of the elec-
tron density and electric drift vorticity. The paper is structured as fol-
lows. The reduced fluid model equations, normalization, and
parameters are discussed in Sec. II. A brief introduction to the stochas-
tic model is also presented here. We present the results for the time-
averaged profiles and probability densities in Sec. III and for the
fluctuation statistics in Sec. IV. A discussion of the results and the con-
clusions is finally presented in Sec. V.

II. MODEL EQUATIONS

The reduced fluid model investigated here is motivated by previ-
ous simulation studies performed by Sarazin et al.,69–71 Garcia
et al.,72–74 Myra et al.,75–77 Bisai et al.,78–80 and Nielsen et al.81–83 One
particular case of the model is equivalent to that used in Ref. 71 and
simulates SOL conditions in the entire simulation domain where a
particle source is located close to the inner boundary. The particle

density profile results from a balance between the plasma source, the
sheath dissipation, and the radial transport due to the interchange
instability. Another case of the model is similar to that used in Ref. 79
and features a simulation domain separating an edge region corre-
sponding to plasma dynamics on closed magnetic flux surfaces and a
SOL region where sheath dissipation balances the interchange drive.
The source term is located in the plasma edge region where parallel
resistivity gives rise to unstable drift waves. Despite these two funda-
mentally different descriptions of the primary instability mechanism
underlying the SOL turbulence, the resulting fluctuations are remark-
ably similar to those will be shown in the following.

Similar to many previous investigations, we use two-field fluid
model equations describing the plasma evolution in the edge and SOL
regions for a quasi-neutral plasma, neglecting electron inertia and
assuming for simplicity isothermal electrons and negligibly small ion
temperature.69–71,78–80 These simplifications lead to a highly efficient
numerical implementation of the model equations, allowing us to
obtain simulation data time series of unprecedented duration that is
suitable for detailed statistical analysis.

We choose a slab geometry where x refers to the radial direction
and y to the binormal or poloidal direction. The reduced electron con-
tinuity and electron drift vorticity equations are given as

dn
dt
þ g

@n
@y
� n

@/
@y

� �
¼ Rn þ D?r2

?nþ hrkJkeik; (1a)

dr2
?/
dt
þ g
n
@n
@y
¼ �?r4

?/þ
�
1
n
rkJk

�
k
; (1b)

where n represents the normalized electron density, / is the normal-
ized electric potential, g is normalized effective gravity (that is, drive
from unfavorable magnetic curvature), Rn is the plasma source term,
and D? and �? are the normalized particle and vorticity diffusion coef-
ficients. We use the standard Bohm normalization as previously used
and discussed in Refs. 67–80, that is, spatial units are normalized by the
ion sound Larmor radius qs, temporal units by the ion gyration fre-
quency Xi ¼ eB=mi, particle density n by a characteristic density n0,
electrostatic potential / by T0=e, where T0 is the electron temperature,
parallel electric current, Jk and electron current Jke by en0cs, where cs

¼ ðT0=miÞ1=2 is the cold ion sound speed, g is given by 2qs=R, where
R is the major radius at the low-field side SOL, and D? and �? are nor-
malized by 1=q2

sXi. In addition, we have the advective derivative
d=dt ¼ @=@t þ VE � r?, where VE ¼ ẑ �r/ is the electric drift.
The plasma source term is given by RnðxÞ ¼ R0 expð�ðx � x0Þ2=k2s Þ,
where R0 is the maximum amplitude of the source normalized by
1=n0Xi, x0 is the source location, and ks is the e-folding length for the
source.

Equations (1a) and (1b) are averaged along the magnetic field
lines, with the contribution from the normalized parallel electron Jke
and total plasma currents Jk in the sheath connected regime given by

hrkJkeik ¼ �rn exp ðK� /Þ þ vð/̂ � n̂Þ; (2a)�
1
n
rkJk

�
k
¼ r 1� exp ðK� /Þ½ � þ vð/̂ � n̂Þ: (2b)

Here, K is the sheath potential, r the normalized sheath dissipation
coefficient, and v the normalized parallel plasma conductivity. Like in
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several previous investigations, these parameters are taken to be a
function of the radial position in the boundary region.72–83 In
particular, the sheath dissipation coefficient r is finite in the SOL
region (x > xSOL) and vanishes in the edge (x < xSOL), which corre-
sponds to the region with closed magnetic flux surfaces. These
two regions are connected with a smooth function due to numerical
reasons, that is, rðxÞ ¼ r0 f1þ tanh½wðx � xSOLÞ�g=2. The slope
of this function is determined by the width parameter w, which is
set to w¼ 25/32. Similarly, the plasma conductivity v is neglected in
the SOL and is finite in the edge region, that is, vðxÞ
¼ v0 ð1� f1þ tanh½wðx � xSOLÞ�g=2Þ. Here, r0 ¼ qs=Lc with Lc
the parallel connection length and v0 ¼ ðqskkÞ2ðmi=meÞðXi=�eiÞ,
where kk is the dominant parallel wave number for the edge region
drift waves and �ei stands for the collision frequency between electrons
and ions. The simulation domain is sketched in Fig. 1, showing the
location of the plasma source and the separation between the edge and
SOL regions. Furthermore, the spatially fluctuating electron density n̂
and plasma potential /̂ are defined as n̂ ¼ n� hniy and
/̂ ¼ /� h/iy , where h�iy refers to the flux surface average. This leads
to the final reduced electron continuity and electric drift vorticity
equations,

dn
dt
þ g

@n
@y
� n

@/
@y

� �
¼ RnðxÞ þ D?r2

?n� rðxÞ n expðK� /Þ

þ vðxÞð/̂ � n̂Þ; (3a)

dr2
?/
dt
þ g
n
@n
@y
¼ �?r4

?/þ rðxÞ 1� expðK� /Þ½ � þ vðxÞð/̂ � n̂Þ:

(3b)

In the following, we present results from numerical simulations of this
model for two different cases. In the first case, the domain is split into
two regions, effectively the edge and the SOL regions, by taking
xSOL ¼ 50. In the second case, a pure SOL plasma is considered with
xSOL ¼ 0, and thus, plasma conductivity v is not present in the simula-
tion domain.

The input parameters have been chosen to be similar to that used
in previous publications based on this model.79 For all runs presented
here, the simulation domain lengths are chosen to be Lx ¼ 200 and Ly
¼ 100, with the border between the edge and the SOL at xSOL ¼ 50

for the two-region case. It has been verified that a change in the size of
the simulation domain does not influence the fluctuation statistics.
The simulation code is implemented in BOUTþþ84 utilizing the
STORMbranch,85 which uses a finite difference scheme in the x-direction
and a spectral scheme in the y-direction. Time integration is performed
with the PVODE solver.86 We use a resolution of 512� 256 grid points
for all runs. We further take D? ¼ �? ¼ 10�2; g ¼ 10�3; v0 ¼ 6
�10�4; R0 ¼ 11=2000; r0 ¼ 5 � 10�4; and K ¼ 0:5 lnð2pmi=meÞ
with deuterium ions, x0 ¼ 20 and ks ¼ 10.We apply periodic boundary
conditions in the poloidal direction and zero gradient boundary condi-
tions in the radial direction for both the electron density and vorticity
fields. For the plasma potential, we use zero gradient boundary conditions
at the outer boundary and fixed boundary conditions /ðx ¼ 0Þ ¼ 0 at
the inner boundary.

During the simulations, the plasma parameters at nine different
radial positions in the simulation domain are recorded with a sam-
pling frequency of one in normalized time units. The location of these
probes is presented in Fig. 1. This corresponds to single-point mea-
surements in the experiments, and the simulation data will be analyzed
in the same manner as has previously been done for experimental
measurement data. The contour plots of the electron density in both
simulation cases presented in Fig. 2 show several blob-like structures
with the familiar mushroom-shape typical for strongly non-linear
interchange motions.65

Time series of the plasma parameters with a duration of 2� 106

time units has been obtained under statistically stationary conditions,
that is, excluding initial transients in the turbulence simulations. Ten
simulation runs with this duration time and different random initial
conditions are performed for the two-region model and seven for the
one region model. The fluctuation statistics to be presented in Sec. IV

FIG. 1. Schematic illustration of the simulation domain for the xSOL ¼ 50 case. The
position of the plasma source term (gray shaded) and the border between edge
and SOL (dashed vertical line) are indicated. The radial variation of the sheath dis-
sipation and parallel conductivity coefficients is also shown.

FIG. 2. Contour plots of logðnÞ in the turbulent state for the xSOL ¼ 0 and
xSOL ¼ 50 cases showing the presence of mushroom-shaped blob-like structures
in the SOL.
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are based on these ensembles of simulation data. In the following anal-
ysis, we will frequently consider plasma parameters normalized such
as to have vanishing mean and unit standard deviation, for example.
For the electron density, we define

~n ¼ n� hni
nrms

; (4)

where the angular brackets denote a time average and nrms is the root
mean square value calculated from the time series. A short part of the
normalized electron density time series is presented in Fig. 3 for both
simulation cases, showing frequent appearance of large-amplitude
bursts due to the high density blob-like structures moving radially out-
wards. The radial variation of the lowest order moments of these fluc-
tuations is presented and discussed in Sec. III. The electron density
time series is compared to the radial velocity vx and the radial particle
flux C ¼ nvx in Fig. 4 for the xSOL ¼ 0 simulation. All quantities are
normalized according to Eq. (4). It is shown that large-amplitude
events in the particle density are correlated with positive radial veloci-
ties resulting in high levels of radial particle transport. The same obser-
vations are made for the xSOL ¼ 50 simulation (not presented here).

In the following, the numerical simulation data will be compared
to predictions of a stochastic model, which describes the fluctuations
as a superposition of uncorrelated pulses with fixed shape and con-
stant duration. This is written as43–53

WKðtÞ ¼
XKðTÞ
k¼1

Akw
t � tk

sd

� �
; (5)

where w is the pulse function, sd is the pulse duration time, K(T) is
the number of pulses for a realization of duration T, and for the event
labeled k the pulse amplitude is Ak and the arrival time tk. The mean
value of the random variable WK is hWi ¼ ðsd=swÞhAi, where hAi is
the average pulse amplitude and sw is the average pulse waiting time.
We will assume pulses arriving according to a Poisson process, which
implies independent and exponentially distributed waiting times and
independent arrival times uniformly distributed on the realization. We
further assume independently and exponentially distributed ampli-
tudes, PAðAÞ ¼ exp ð�A=hAiÞ=hAi, and we will consider the case of a
two-sided exponential pulse function,50

wðh; kÞ ¼
exp ðh=kÞ; h < 0;

exp �h=ð1� kÞ½ �; h � 0;

(
(6)

where the pulse asymmetry parameter k is restricted to the range
0 < k < 1. For k < 1=2, the pulse rise time is faster than the decay
time, while the pulse shape is symmetric in the case k ¼ 1=2. The fre-
quency power spectral density for this process is just the spectrum of
the pulse function,50

X ~WðxÞ ¼
2sd

1þ ð1� kÞ2ðsdxÞ2
� �

1þ k2ðsdxÞ2
� � ; (7)

where x is the angular frequency. Note that the power spectral density
of ~W is independent of the amplitude distribution. From this, it follows
that the frequency power spectral density can be used to estimate the
pulse parameters sd and k, which will be done in the following analysis
of the numerical simulations.

The stationary probability density function (PDF) for the random
variable WK can be shown to be a gamma distribution,53

hWiPWðWÞ ¼
c

CðcÞ
cW
hWi

� �c�1
exp

cW
hWi

� �
; (8)

with shape parameter c ¼ sd=sw, that is, the ratio of the pulse dura-
tion and the average pulse waiting time sw. This parameter describes
the degree of pulse overlap, which determines the level of intermit-
tency in the process. From the gamma distribution, it follows that the
skewness moment is SW ¼ hðW� hWiÞ3i=W3

rms ¼ 2=c1=2 and the
flatness moment is FW ¼ hðW� hWiÞ4i=W4

rms ¼ 3þ 6=c.
Accordingly, there is a parabolic relationship between these moments
given by FW ¼ 3þ 3S2W=2. For strong pulse overlap and large c, the
probability density function approaches a normal distribution and the
skewness SW and excess flatness FW � 3 moments vanish.

III. PROFILES AND DISTRIBUTIONS

The time-averaged electron density profiles in the turbulence
simulations are presented in Fig. 5. Since the xSOL ¼ 50 case does not
include any sheath dissipation in the edge region, the average density
is higher here than for the xSOL ¼ 0 case. Throughout the SOL region,

FIG. 3. A short part of the normalized electron density time series recorded at
x¼ 100 for the xSOL ¼ 0 and xSOL ¼ 50 simulation cases.

FIG. 4. Normalized electron density time series compared to the normalized radial
velocity and normalized radial particle flux recorded at x¼ 100 for the xSOL ¼ 0
simulation case.
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we observe that the electron density decreases exponentially with a
radially constant scale length of 35.5. This is to be compared with the
equilibrium SOL profile scale length in the absence of turbulence given
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D?=r0

p
¼

ffiffiffiffiffi
20
p

for the simulation parameters used here.

Interestingly, both the scale length and the absolute density are very
similar for the two simulation cases investigated. We further show the
relative fluctuation level at different radial positions for both cases in
Fig. 6. The normalized fluctuation level is very high, increases radially
outwards as the time-averaged density decreases faster than the abso-
lute fluctuation level, and is roughly similar for the two simulation
cases.

The radial variation of the skewness and flatness moments of the
electron density fluctuations is presented in Figs. 7 and 8, respectively.
From these figures, it is clear that the intermittency of the fluctuations
increases radially outwards in the SOL, qualitatively similar for the
xSOL ¼ 0 and xSOL ¼ 50 cases. By plotting the flatness moment vs the
skewness, presented in Fig. 9, it is seen that for both simulation cases
there is a nearly parabolic relationship between these higher order
moments. The moments at x¼ 18.75 are not shown in Fig. 9 since
they are measured close to the maximum amplitude of the source
term. Such a parabolic relationship is predicted by the stochastic
model describing the fluctuations as a superposition of uncorrelated
pulses,43–46 which can be related to blob-like structures moving radi-
ally outwards in the SOL as seen in Fig. 2.

FIG. 5. Time-averaged electron density profile for the xSOL ¼ 0 and xSOL ¼ 50 cases.
The broken line is the best fit of an exponential function with a scale length of 35.5.

FIG. 6. The relative fluctuation level of the electron density at different positions in
the SOL for the xSOL ¼ 0 and xSOL ¼ 50 cases.

FIG. 7. Skewness of the electron density fluctuations at different radial positions for
the xSOL ¼ 0 and xSOL ¼ 50 cases.

FIG. 8. Flatness of the electron density fluctuations at different radial positions for
the xSOL ¼ 0 and xSOL ¼ 50 cases.

FIG. 9. Flatness plotted vs skewness for the electron density fluctuations in the
SOL. The broken line shows the parabolic relationship Fn ¼ 3þ 3S2n=2 for
comparison.
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The PDFs for the normalized electron density fluctuations at dif-
ferent radial positions are presented in Figs. 10 and 11 for the xSOL
¼ 0 and xSOL ¼ 50 cases, respectively. The PDFs change from a nar-
row and nearly symmetric distribution in the edge/near SOL region to
a distribution with an exponential tail for large fluctuation amplitudes
in the far SOL. In Fig. 12, we further compare the PDFs of the electron
density time series recorded in the far SOL at x¼ 100 for both simula-
tion cases with a gamma distribution with a shape parameter of 1.4.
Such a gamma distribution is predicted by the stochastic model
describing the fluctuations as a superposition of uncorrelated expo-
nential pulses. The gamma distribution is clearly an excellent descrip-
tion of the PDF for the electron density fluctuations in the
simulations. A similar change in the shape of the PDF radially out-
wards in the SOL has also been reported from previous turbulence
simulations.72–74

IV. FLUCTUATION STATISTICS

In this section, we present a detailed analysis of the electron den-
sity fluctuations recorded at x¼ 100. In order to reveal the typical
shape of large-amplitude bursts in the time series, a conditional aver-
aging method which allows for overlapping events is applied. This

identifies a total of 3128 conditional events with peak amplitudes
larger than 2.5 times the root mean square value above the mean for
the xSOL ¼ 50 case and 1701 conditional events for the xSOL ¼ 0 case.
The average burst structures are presented in Fig. 13 and show an
asymmetric shape with a fast rise and a slower decay. The burst shape
is compared to an asymmetric, two-sided exponential function given
by Eq. (6) with duration time sd ¼ 300 and asymmetry parameter
k ¼ 0:2. The conditional burst shape is shown with semilogarithmic
axes in the inset in Fig. 13, showing that the decay of the conditional
pulse shape is approximately exponential. However, the two-sided
exponential function obviously fails to describe the smooth peak of the
average burst shape in the simulations. As shown for short time lags in
Fig. 13, this is better described using a skewed Lorentzian pulse as a fit
function with duration 80 and skewness parameter 1 for the xSOL ¼
50 case.87–90 The slightly elevated tails of the conditional burst shape
are likely due to finite pulse overlap in the turbulence simulations.

The frequency power spectral density due to a superposition of
uncorrelated exponential pulses is compared to the simulation data of

FIG. 10. Probability density functions of the normalized electron density recorded at
different radial positions for the xSOL ¼ 0 case.

FIG. 11. Probability density functions of the normalized electron density recorded at
different radial positions for the xSOL ¼ 50 case.

FIG. 12. Probability density functions of the normalized electron density recorded at
x¼ 100 for both simulations cases compared to a gamma distribution with shape
parameter c ¼ 1:4 shown with the dashed black line.

FIG. 13. Conditionally averaged burst shape at x¼ 100 of the xSOL ¼ 50 case (full
blue line) compared to a two-sided exponential pulse (dashed green line), as well
as a skewed Lorentzian pulse for short time lags (dashed black line). The condi-
tional average is normalized by its peak amplitude.
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the electron density fluctuations recorded at x¼ 100 in Fig. 14 for the
xSOL ¼ 50 case. It is shown that the spectrum gives excellent agree-
ment for high powers and low frequencies. Similar results for condi-
tional averaging and frequency power spectra are found for the case
xSOL ¼ 0 but with slightly different pulse parameters.

The conditionally averaged burst shape is presented in Fig. 15 for
different radial positions in the SOL for the xSOL ¼ 50 case. Here it is
seen that the burst shape in the far SOL region is the same for all radial
positions, despite the fact that the relative fluctuation amplitude
increases radially outwards. Accordingly, as predicted by the stochastic
model, the frequency power spectral density has the same shape for all
these different radial positions, as is shown in Figs. 16 and 17 for both
the one- and two-region cases. The spectra are well described by that
of a two-sided exponential pulse function, shown by the dashed black
line in the figures.

Restricting the peak amplitude of conditional events in the elec-
tron density to be within a range of 2–4, 4–6, and 6–8 times the rms
value, the appropriately scaled conditional burst shapes are presented
in Fig. 18. This reveals that the average burst shape and duration do

not depend on the burst amplitude and are again well described by a
two-sided exponential function except for the smooth peak. This sup-
ports the assumption of fixed pulse duration in the stochastic model
describing the fluctuations as a superposition of pulses.

From the conditional averaging, we further obtain the peak
amplitudes of conditional events and the waiting times between them.
The PDFs of these are presented in Figs. 19 and 20, respectively. The
distributions are similar for both simulation cases and are clearly well
described by an exponential distribution as shown by the dashed black
line in the plots. This is in agreement with the assumptions for the sto-
chastic model presented in Sec. II. In particular, the exponential wait-
ing time distribution supports the hypothesis that the events are
uncorrelated and arrive according to a Poisson process.

V. DISCUSSION AND CONCLUSIONS

The abundant experimental evidence for universal statistical
properties of fluctuations in the SOL of magnetically confined fusion

FIG. 14. Frequency power spectral density of the electron density fluctuations
recorded at x¼ 100 for the xSOL ¼ 50 case (full blue line). This is compared to the
predictions of a stochastic model describing the fluctuations as a superposition of
uncorrelated, two-sided exponential pulses with duration time sd ¼ 300, and asym-
metry parameter k ¼ 0:2 (dashed green line).

FIG. 15. Conditionally averaged burst shapes at different radial positions for the
xSOL ¼ 50 case. The conditional averages are normalized by their peak amplitude.

FIG. 16. Frequency power spectral densities of the electron density fluctuation
recorded at different radial positions for the xSOL ¼ 50 model. The dashed line
shows the spectrum due to a superposition of uncorrelated, two-sided exponential
pulses with duration time sd.

FIG. 17. Frequency power spectral densities of the electron density fluctuation
recorded at different radial positions for the xSOL ¼ 0 model. The dashed line
shows the spectrum due to a superposition of uncorrelated two-sided exponential
pulses.
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plasmas sets high requirements for validation of turbulence simulation
codes for the boundary region.54–56 In this context, we have examined
the statistical properties of the electron density fluctuations in the SOL
by numerical simulations of plasma turbulence in the two-
dimensional plane perpendicular to the magnetic field. Two model
cases have been considered: one describing resistive drift waves in the
edge region and another including only the interchange instability due
to unfavorable magnetic field curvature. For both cases, mushroom-
shaped blob-like structures move radially outwards, resulting in large-
amplitude fluctuations and high average particle densities in the SOL.
The numerical simulations show that the time-averaged radial profile
decreases exponentially with radial distance into the SOL with the
same characteristic length scale for both simulation cases. Moreover,
the fluctuation statistics in the SOL are the same for both cases. This is
despite the different linear instability mechanisms driving the fluctua-
tions in the edge/near SOL region in the two simulation cases. It
appears that any drift-ordered instability mechanism will lead to for-
mation of filament structures when coupled to a SOL region with
unfavorable magnetic field curvature.

According to a stochastic model describing the profile as due to
radial motion of filament structures, the profile scale length is given by

the product of the radial filament velocity and the parallel transit
time.46–48 This suggests that typical filament velocities are the same in
both simulation cases. Future work will investigate the distribution of
filament sizes and velocities by analysis of the velocity fluctuations and
applying a blob tracking algorithm as described in Ref. 91.

The relative fluctuation level increases radially outwards, nearly
reaching unity in the far SOL for the plasma parameters investigated
here. Similarly, the skewness and flatness moments also increase into
the SOL, and these higher order moments closely follow a quadratic
dependence as predicted by the stochastic model describing the fluctu-
ations as a superposition of uncorrelated pulses. The PDF of the elec-
tron density fluctuations changes from a nearly Gaussian distribution
in the edge/near SOL region to a distribution with an exponential tail
for large amplitudes in the far SOL. In the far SOL region, the PDFs
are well described by a gamma distribution with the shape parameter
given by the ratio of the pulse duration and average waiting time. The
increase in this intermittency parameter with radial distance into the
SOL suggests that only the most coherent and large-amplitude blob
structures are able to move through the entire SOL region before they
disperse and breakup due to secondary instabilities.

A conditional averaging analysis has revealed that the shape of
large-amplitude bursts in single-point recordings in the far SOL is well
described by a two-sided exponential pulse, as has previously been
found in experimental measurements. Accordingly, the frequency
power spectral density is well described by that of a two-sided expo-
nential pulse for high powers and low frequencies. However, the high
resolution and smoothness of the solution from the numerical compu-
tations imply that the burst structure has a rounded peak as opposed
to the break point in experimental measurements due to their much
lower sampling rate and additional measurement noise. The smooth
peak is well described by a skewed Lorentzian pulse function. The fre-
quency power spectral density therefore has an exponential decay for
high frequencies and low powers with a slope that is given by the
width of the narrow Lorentzian-shaped peak of large-amplitude fluc-
tuations in the numerical simulations. In experimental measurements,
this exponential tail in the spectrum may readily be masked by low
sampling rates, limiting the highest frequencies resolved or by additive
measurement noise, limiting the lowest power resolved.49,50 The high
frequency part of the power spectral density of the numerical

FIG. 19. Probability density functions of conditional burst amplitudes of the electron
density time series recorded at x¼ 100.

FIG. 20. Probability density functions of waiting times between consecutive large-
amplitude burst in the electron density time series recorded at x¼ 100.

FIG. 18. Conditionally averaged burst shape at x¼ 100 of the xSOL ¼ 50 case for
different conditional amplitude threshold intervals. The conditional averages are nor-
malized by their peak amplitudes.
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simulations therefore does not contradict experimental findings as
these two counterparts cannot be directly compared.

In summary, it is here demonstrated that a simple but self-
consistent model for turbulent fluctuations in the scrape-off layer
reveals the same statistical properties of large-amplitude events as
found in the experiments. This includes exponentially distributed
pulse amplitudes and waiting times, the latter supporting the assump-
tion of Poisson events.28–33,36–40 The simulation data also agree with
predictions of the stochastic model, namely, an exponential average
profile, gamma-distributed fluctuation amplitudes, and a frequency
power spectral density determined by the average shape of large-
amplitude bursts. It is concluded that the filtered Poisson process,
describing the fluctuations in single-point recordings as a superposi-
tion of uncorrelated pulses with fixed duration, is an excellent descrip-
tion of the SOL plasma fluctuations in the turbulence simulations
investigated here.43–53

The simple turbulence model used in this study does not include
finite ion temperature effects, X-point physics, parallel collisional con-
ductivity in the scrape-off layer, or any effect of interactions with neu-
tral particles. Numerous SOL turbulence models and codes are now
being extended to include these features.92–100 The statistical frame-
work with superposition of filaments can be used for analysis and
interpretation of simulation results in these more advanced models,
similar to what has been done here and previously for experimental
measurements. As such, this work sets a new standard for validation
of turbulence simulation codes.54–56
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