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Abstract

Existing theories predict that in ohmic and/or L-mode discharges the drift wave is
stable in a sheared slab geometry. But the representative experimental values for
the plasma parameters show that due to the very steep density gradient the shear
stabilization criteria for collisionless drift waves are not likely to be satisfied at the
H-mode edge plasma. Magnetic shear is, therefore, not a candidate to stabilize
the slab branch of the drift waves in the H-mode. However, a radially sheared
transverse (to the equilibrium magnetic field) velocity field is found to play a key
role in stability. Velocity profiles corresponding to those observed in a region of a
few centimetres inside the separatrix of a H-mode plasma stabilize drift waves. On
the other hand, velocity profiles corresponding to the L-mode render drift waves
unstable in the experimental range of parameters, even though the magnetic shear
continues to play its stabilizing role.

* Dept. of Pure and Applied Physics, UMIST, Manchester M60 1QD, U.K.



I. Introduction

It is well established that in a sheared slab geometry with magnetic shear, drift
wave eigenmodes are always stable [1,2]. The shear damping of the drift waves
is associated with the antiwell potential in which energy convects away from the
mode rational surface and eventually gets absorbed by the ion Landau damping far
from the rational surface. But even though the sheared-slab stabilisation criteria
are well satisfied in ohmic and/or L-mode discharges of tokamaks, the possibility
of unstable drift eigenmodes was not ruled out either in the collisionless [3] or the
collisional [4] case, for strongly peaked radial density profiles. After the discovery of
the H-mode in 1982 [5], present-day tokamaks routinely obtain very steep density
gradients (the so-called transport barrier) in the edge region of H-mode discharges.
So an investigation into whether magnetic shear still is sufficient to stabilize drift
waves in the H-mode edge plasma is extremely important. If the answer is negative
(we will see that it is indeed the case), an obvious next question is - how to account
for the reduced transport in the H-mode edges?

The interest in the possible role of a sheared poloidal flow in suppressing micro-
turbulence has recently drawn much attention. This is due to the experimental
observations [13, and references therein] that the L-H transition in tokamaks is
associated with a clear signature: edge density fluctuations are abruptly suppressed
(in approximately 100 micro secs) while the edge poloidal rotation velocity increases.
Indeed it has been shown by Shaing and Crume [14] (also see Itoh and Itoh [15])
that a bifurcation in poloidal rotation causes change in the radial electric field. A
more negative radial electric field (E,) or a more positive dE, /dr then suppresses
the turbulent fluctuations and hence could cause the L-II transition. Biglari et al.
[16] have shown that the establishment of rotational shear has a quenching influence
on the ambient turbulence, although the underlying source of instability remains
unidentified.

Instabilities stabilised by poloidal velocity shear have recently been discussed. The
ion temperature gradient (ITG) mode has been shown to be stabilised by a H-
mode type velocity profile [7, 17]. Hassam [18] found that the Rayleigh-Taylor
instability of a magnetised plasma is nonlinearly stabilised by the external imposition
of transverse velocity shear with a zero second spatial derivative. Also we will see
that the magnetic shear stabilization criteria for drift waves are severely restricted
in the H-mode edge plasma due to the very steep density gradient. In this situation
it is necessary to investigate the effect of a sheared velocity field on drift waves.

[S%]



In this article we first revisit the magnetic shear stabilization criteria of collisionless
drift waves for the steep density gradients as observed in H-mode edges. The shear
stabilization criteria are found to be severely restricted in the H-mode edge plasma.
We then investigate the effect of a radially sheared transverse equilibrium velocity
field on collisionless electron drift waves. The drift wave is found to be linearly
stabilised by a velocity profile corresponding to that found in the region a few
centimetres inside the separatrix of a H-mode plasma. On the other hand, a velocity
profile corresponding to the L-mode is shown to have a destabilizing effect in the
experimental range of parameters, even though the magnetic shear continues to play
its stabilizing role.

II. Shear Stabilization Revisited

In the early work on collisionless drift waves, Krall and Rosenbluth [6] considered
equilibrium variations in the density profile and generated a 1-D radial equation by
expanding around the maximum of w, where ] is the diamagnetic drift frequency.
They found that unstable exponentially decaying (i.e., non-propagating ) radial nor-
mal modes can exist only if their shear stabilising criterion L, < 8L2/p, [henceforth
“condition (1)"] is violated. Here, L, is the magnetic shear scale length, L, the den-
sity scale length and p, the ion Larmor radius. Using realistic experimental values
for plasma parameters from DIII-D [7], viz., L, ~3.5¢m, p, ~1lmm, condition (1)
now implies L, < 9.8m (i.e., Ls/L, < 280), a condition likely to be easily satisfied
in all realistic tokamaks. So, for ohmic and/or L-mode discharges, collisionless drift
waves are stabilised by magnetic shear. Pearlstein and Berk [8] then introduced out-
going wave boundary conditions into the radial analysis and discovered a new class
of propagating normal modes. To obtain a shear stabilisation criterion for universal
modes, they estimated the destabilising (radially dependent) eflect of resonant elec-
trons by taking its local value at the turning point, X7 =~ p,(Ls/Ln)"/? , and then
balancing it with the shear damping term. In the limit of large wavelength their
stability criterion is given by L, < L,(m;/m.)'/? [ condition(2)]. Taking m;/m.
= 1836, and L, ~3.5¢m condition (2) implies L, < 43cm, which is much more re-
strictive than Krall-Rosenbluth criterion. So, accordingly they concluded that large
shear does not eliminate unstable normal modes and shear is a relatively ineffective
stabilisation mechanisim for the universal mode. However, Ross and Mahajan [1],
and Tsang et al. [2], in independent numerical calculations, later found that the
universal eigenmodes are stable in a sheared slab geometry if the complete electron
response (full Z-function) is retained. While Ross and Mahajan found shear stabil-
isation for L,/L, down to 6 x 1072 and Tsang et al. down to 107%, Antonsen [9]
in his elegant analytical method proved the absolute stability of the drift wave in
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However, most of the earlier works [1,2,9] finding the drift wave stable had treated w;
as a constant. We particularly note that, while Antonsen’s method is rather novel, it
does not seem to apply when w? has a parabolic profile. We notice that with a very
a sharp gradient in density, as observed in the H-mode edges, assuming w; constant
is not a good approximation, particularly when the mode width at half-maximum is
~ 5ps ~ 5mm ~ L,. Neither is it supported by experiments [10]. So the so-called
absolute stability obviously does not apply so far as the Krall-Rosenbluth type mode
is concerned.

We will show here that for extremely steep density gradients, as observed in the edge
regions of H-mode discharges, unstable eigenmodes can again appear. Following
DIII-D [11] H-modes (see Fig. 1), we take L, ~ 6mm for the edge of H-mode
plasma and find the shear stabilisation criterion [condition (1)] now requires that
L, < 28cm! This extremely high value of shear is generally not observed in present-
day tokamaks (Note the drastic change in the shear requirement for a change of
L, from 3.5 cm to 6mm ! ). So, contrary to the common perception, collisionless
drift waves are not likely to be linearly damped in the II-mode discharges even in a
sheared slab configuration.

III. Drift Waves with a Velocity Field

A. The Model

We consider here a plasma of plane slab geometry with an equilibrium density
variation and both magnetic and velocity shear and a gradient of velocity shear in
z, ie, N = N(z), B, (z) = B, (& + £&,), Vi(2) = Vi(2)é,. Here, ‘L, is the
magnetic shear scale length and ‘z’ is the distance from the mode rational surface
defined by k.B, = 0

In this model, we assume fluid ions and model destabilising effects by the so-called
“6” model [e.g., see ref. 25], where i, represents the destabilising effects of the
electron Landau resonance and the trapped electrons. For simplicity, we take the
ions to be cold and omit the electron temperature gradient. Since the background
plasma is inhomogeneous in the z -direction only, perturbations have the form
#(7,1) = ¢(z) exp [i(kyy + k.z — wt)]. We may then write the linearised equa-



tions of continuity and motion for the ions as

—iwn; + V. [N(T)VJ_] + V.[(N + n;)V,(x)é,] + ikyNV; = 0,

and,
€
i=n(2)s

Here, V_ =1ikyé, + érf;
V'_L = ‘75 o V; .
‘Exs = —¢(V,¢ x B,)/B:
V = i(ew/Bw)V 19
’Cn =¥

and n;,m; and V} are respectively the perturbed ion density, the ion mass and the
ion parallel fluid velocity. Now using quasineutrality and the usual low frequency
assumption we obtain the radial eigenvalue equation

d? 9 wiz) + iy + k,Vi(z) 2P
(w"‘v)ﬁﬁ—{l‘ . ~a[*=" 1)
where
g2 T,
g B .1 (2) = =k H = w"
pe e 4 — wi(a) kypsCsfLu(z), v =wié
w? ;K

In deriving equation (1) we have not taken into account the resultant modification
of the ion polarization drift due to the equilibrium velocity. It may be noted that
in the leading order perpendicular ion dynamics are due to E x B and diamagnetic
drifts with polarization drifts occurring only in the next order. Contribution coming
from the jon polarization drift is weighted by k% p? which in our long wavelength
approximation is < 1 and hence is negligible in the leading order.
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B. Effects of H-mode Type Velocity Profiles

Following the JFT-2M (Fig. 2) and the DIII-D [13] (see Fig.2 (a) in ref. 13) H-mode
profiles for vy (poloidal velocity) inside the separatrix, we model the radial profile

of our equilibrium velocity for the H-mode as

dV, 1d2%V,
V(‘T)—loa+d +§d

ie.,
& z

LZ

2
$)—\oo+( + — )VLD, where

dv, V, LY, W

dz Ly’ 2 dz? L_E,z

and V,, is a characteristic velocity.

2

In considering the problem with a spatial variation of w;, we treat the simple case in
which w} is peaked at the mode rational surface at =0 and has a parabolic profile
viz: w (:r) wi(l — ) where L, is the density gradient variation scale length and
is typically of the order of L,. Also it is important to mention here that the poloidal
flow is made up of both E x B motion (v, ) and in the next order flow parallel to the
magnetic field. The shear in the parallel flow is not included in the investigation and
has been reported elsewhere [20]. With this velocity profile, equation (1) becomes

L0
Sy +[A - Pa*+Qa| 6=

where
A= - k2 V oKy + 1+ o
- st Y
1 1 L? 1
r-(z-moa)
In deriving equation (2) we have assumed that w =~ k,V,

V= |P-£i|, which are usually true [e.g., see ref. 23].

= kV;

Yo

where



Equation (2) is a simple Weber equation. Depending on the sign of ‘P’ we have two
types of solution. If P > 0, i.e.,

11 I?

I YA ®)

the solution satisfying the physical boundary condition, i.e., ¢ — 0 at z = too

is given by ¢(z) = ¢, exp —@(1 - 1:0)2] , where z, = EIQP_I' So, in this case the

2p.

mode decays with z, i.e., does not propagate and hence is intrinsically undamped. In
the absence of the velocity shear term this condition is likely to be satisfied in the H-
mode edge-plasma due to the very steep density gradient. In other words, contrary
to the prevailing notion, magnetic shear is not sufficient to stabilise drift-waves in
the H-mode edge-plasma, although in ohmic phase and L-mode the magnetic shear
continues to play its stabilising role. We have discussed it in detail in the earlier
section.

What then stabilises drift waves in a H-mode edge plasma? Introducing the velocity
shear term and taking representative values for the plasma parameters for the edge
DIII-D plasma [7, 21], L. =~ L, =~ pi (poloidal ion gyroradius) =~ lem,L; =~
67cm, p, =~ 1lmm, we find the inequality (3) is reversed for Ly ~ L,; £ lem .
Currently available experimental data shows that DIII-D [22] finds L,; = pig = lem,
whereas TEXT [23] observes L,; = 0.5 to lem. Data from the other tokamaks are
not available yet. Both the available sets of data, therefore, indicate that P is
likely to become negative when one introduces the velocity contribution. With this
reversed inquality, equation (2) has the solution

So in this case we have a nonlocalised mode with outgoing energy flux at z = +oo.
In the absence of any energy source feeding the wave, the perturbation will decay in
time due to convective wave energy leakage. The influence of the velocity curvature
can then outweigh that of the density gradient and the wave is intrinsically damped.
The overall stability of the system is determined by the balance between this intrinsic
damping and any destabilising effects modelled by the ‘16’ term and is obtained from
the dispersion relation

A =p,VP
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4] — 1 = k . — : ——— T o
{ w e 3p [T\ T T I

which yields the stability criterion,

2
Ps (z‘:; + 28y — ) (W] + Vioky) )
yls 4P

It is interesting to note that the sign of the first derivative of the velocity field has
no effect on the stability criterion (as it occurs through the ‘Q* term in (4)) - a
result which was also found in the nonlinear calculation of Biglari et al. [16] and in a
recent study of ITG modes [7]. The same conclusion can be reached by observing the
invariance of the differential equation (2) under the combined operation of reflection
7 — - z and change in sign of Q@ — - Q. The linear term shifts the potential, but
does not alter the quadratic structure. It also shifts the centre of the mode away
from the z=0 rational surface. The main stabilising effect comes from the quadratic
term which forms an additional antiwell which pushes the wave function away from
=0, thus increasing the shear stabilising effect and weakening the driving term
simultaneously.

C. Effects of L-mode Type Velocity Profiles

Next, to show the destabilising action of velocity fields in the L-mode we choose a
velocity profile following the JFT-2M [19, 24] (also see the DIII-D result [13]) ohmic
phase and L-mode profile for vy inside the separatrix -

v, 1d%, ,
dr . 2dz2’

T x? )
= ‘/ao - + ~9 ‘/aa
(Lvl Lﬁz



With the same assumptions and normalizations as before, the eigenvalue equation
(1) then reduces to

2 &6

psP+[A—Rm2—Q:¢]¢=o

where

So now the velocity curvature deepens the potential well and if

1 " 1 < L:
L? Liz piL?

(5)

is satisified, the velocity curvature can nullify the stabilising action of the magnetic
shear and render drift waves unstable, as in this case we have a decaying mode
solution. Taking representative values for the plasma parameters for the DIII-D
L-mode [7, 22] L. = L, = 3.4cm, L, = 6Tcm, ps = Imm and L,y ~ Ly = lem, we
find that the inequality (5) is usually satisfied. The exact growth rate is given by
the dispersion relation

(""; + 0y Vooky)
1
T
(148202 - &)+ (& + . i)’

w =

Thus there is no shear stabilization.



IV. Conclusion

In summary, we have found that although the shear stabilisation criteria for colli-
sionless ( “universal”) drift waves are well satisfied in ohmic and/or L-mode shots of
tokamaks; they are not likely to be satisfied in the edge regions of H-mode discharges.
This is due to the extremely steep density gradients observed in the H-mode edges.
So, magnetic shear, contrary to the common belief, is not a candidate to stabilise
drift waves in the H-mode edge plasma. We have found that the velocity profile cur-
vature V,(z)" rather than the magnetic shear may be the key element in stabilizing
collisionless drift waves in the H-mode edge plasma. We have endeavoured to focus
on the representative values for the plasma parameters at the edge. Our full analytic
stability analysis, including both first and second derivatives for the velocity field,
quite unambiguously shows that stabilization is mainly due to the enhancement
of the antiwell in the potential structure. Another important part of our result is
that we have shown that L-mode type velocity profiles have a destabilizing action
on drift waves. Using realistic L-mode plasma parameters it has been shown that,
contrary to the common belief that the influence of magnetic shear is considerably
more significant than V,(z)" [18], the curvature of velocity can outweigh magnetic
shear-stabilization and render drift waves unstable in the L-mode. For simplicity,
we have not kept the full Z-function in the electron dynamics. Notwithstanding the
simplicity of the model, however, the basic stabilizing and destabilizing role of the
velocity curvature in the H- and L-mode respectively is, however, quite unambigu-
ously shown by our simple model and is not expected to be seriously modified.
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Figure Captions

Fig. 1. Profile of electron density, 7Tms before and 4ms after, the L-H transition
from the Thomson scattering system [11].

Fig. 2. Radial profiles of poloidal (circles) and toroidal (squares) rotation velocities
as a function of the distance from the separatrix, for L-mode (t = 710 ms, open
symbols) and H-mode (t = 740 ms, closed symbols) plasmas. d, is negative inside
and positive outside of the separatrix [19].
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