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Abstract

The effect of a non-uniform resistive wall on the stability of plasma MHD modes is examined.
For the case of a tokamak plasma interacting with a wall possessing toroidally varying
resistivity the kink mode dispersion relation is found to reduce to a surprisingly simple form.
The influence of a wall with toroidal gaps on tokamak plasma stability is investigated in
some detail. Under some circumstances kink modes are found to ‘explode’ through the gaps
with ideal growth-rates. A similar investigation is made for a modular wall constructed of
alternate thick and thin sections.

I Introduction

The interaction of magnetohydrodynamical (MIID) plasma instabilities with a resistive wall
in toroidal pinches has been extensively studied in the literature.!=22 It is generally accepted
that eddy currents induced in the wall can moderate the growth of an otherwise ideally
unstable kink mode, so that it evolves on some characteristic resistive time-scale of the wall.
Such modes are usually referred to as ‘wall modes’. The interaction of a rotating tearing mode
island with self-induced wall eddy currents is thought to generate a non-linear slowing torque
which effectively brakes the rotation once a critical island width is exceeded.!® 22 This effect
1s important because a non-rotating (or ‘locked’) tearing mode is generally more unstable
than a rapidly rotating one, since the non-rotating mode is able to penetrate through the
L1

This paper is concerned with the stability of MHD modes in tokamaks which possess close
fitting walls with toroidally varying electrical resistance. In fact, most modern tokamaks
are of this type since their vacuum vessels are of modular construction, with thick low-
resistance sections (containing the diagnostic ports) separated by thin high-resistance bellows
sections.”>~® Tt is clearly of interest to establish whether wall modes grow on the relatively
slow resistive time-scale of the thick sections, the much faster resistive time-scale of the thin
sections, or some appropriate average of the two. For obvious engineering reasons magnetic
pick-up coils tend to be attached to the thick sections of the vacuum vessel. Distortions
induced in the structure of MHD modes by the non-uniform eddy currents flowing in the
vacuum vessel (e.g. ‘ballooning’ of modes through the thin sections of the vessel) need to be
taken into account during the interpretation of pick-up coil data, otherwise spurious results
may be obtained. Some tokamaks possess thick conducting walls with insulating toroidal
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breaks.2627 In such devices it may be possible for an ideally unstable kink mode to defeat
the moderating effect of wall eddy currents by ‘ballooning’ through the insulating breaks
where no eddy currents can flow.

In next-generation tokamaks, such as ITER,? the interaction of MHD instabilities with
the wall is likely to be of particular significance because of the large dimensions envisaged
for such devices. This follows since the critical island width for the ‘locking’ of rotating
tearing modes to the wall is a rapidly decreasing function of machine dimensions, due to the
comparatively feeble mode rotation found in large devices.?? Thus, ‘locked modes’, which
interact strongly with the wall, may be a common occurrence in next-generation tokamaks.

The above discussion highlights the importance of gaining as complete an understanding
as possible of the interaction of MHD instabilities with realistic walls, including the effects
of modularity, insulating breaks, gaps, diagnostic ports, etc. In Section II of this paper a
general formalism is developed for analysing the influence of a wall with toroidally varying
resistance on the stability of kink modes. In conventional tokamaks the kink mode dispersion
relation is found to reduce to a surprisingly simple form. Section III investigates the effect
of a wall with toroidal gaps on the stability of both kink modes and tearing modes. In
Section IV a similar investigation is made for a wall of modular construction. Finally, this
paper is summarised in Section V.

II Analysis

A Introduction

In the following, the standard cylindrical tokamak limit is adopted, and the usual right-
handed cylindrical polar coordinates r, , = are employed. The perturbed magnetic field 6B
is written in terms of the perturbed poloidal flux ®, so that 6B = V¢ A Z. In general, the
eddy currents flowing in a wall with toroidally varying resistance couple MHD modes with
different toroidal mode-numbers n. However, modes with different poloidal mode-numbers
m remain independent (in the cylindrical limit). The perturbed flux in the wall due to a
general mode with poloidal mode-number m is written

(e, 0,6) = Y (0,9) = 3 U2 expli(md — no)], (1)

where 7, is the wall minor radius, ¢ = z/Ro, and Rp 1s the simulated major radius. The
wall is assumed to lie in the ‘thin-shell’ limit, where the skin depth is much larger than the
actual wall thickness, so that the flux is approximately constant across the wall.1°

B The Wall Eddy Currents

The radially integrated helical eddy currents induced in a uniform wall are given by
L.(0,8) = —youbu »_ VT expli(ml — ng)]2", (2)

where @, is the wall conductivity, &, is the wall thickness, v = dln Ur [dt is the growth-rate
(all harmonics of the wall flux are assumed to have the same time dependence), and

an (2_{_ W T ) 4 n? re = (3
L= m Ro m? R2 )
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is a unit vector with m/n helical pitch.?? The eddy currents induced in a wall with toroidally
varying resistance take the form

L.(6,¢) = —vowbw ) UL expli(mld —ng)] x

i s o Tu Qlnlowds) - n® ri 1/2
{z -f-szU . 9/(1-]—-?1?53 , (4)

where poloidal ‘return currents’ have been added in order to maintain the divergence free
nature of the current pattern. The above analysis assumes that the eddy currents have negli-
gible radial components, so that the current pattern in the wall is essentially two dimensional.
This is a reasonable assumption in the ‘thin-shell’ limit.

C The ‘Jump’ Conditions at the Wall

The ‘jump’ in the radial derivative of the m/n harmonic of poloidal flux induced by wall
eddy currents is?2

10 d¢
AT = —pgr,, fjh i expl—i(m — no) -;?ﬁ (5)
which yields
n y d¢ +kan antk
AT o~ Zf'yrw(qb) exp(—ikg) - WETR ST 4 O(ey), (6)
. 2

where ¢, = ry /Ry is the inverse aspect-ratio of the wall, and

TW(¢) = #UTWUW(¢)6\\'(¢) (T)

is the toroidally varying wall time-constant. Later on in this section it is demonstrated that
the smallest angular scale of the ‘effective wall’ time-constant is O(ew). It follows that the
maximum error involved in the neglect of the return currents in Eqn. (6) is O(ey). For
n ~ O(1) modes

1

an antk
it (1 4 k2e2 /m2)1/2 (8)
to a good approximation. Thus, Eqn. (6) reduces to
. d¢' lIJ”"l'k
o o » xp(—tkd) — - .
MWL = 3 f (@) esp(—ike) 5L (9)

Note that according to Eqn. (9) low-n toroidal harmonics (i.e. |n| < m/e, ), whose stability
is affected by wall eddy currents which are predominantly toroidal in nature, cannot couple
effectively to very high-n harmonics (i.e. [n| 3> m/e, ), whose stability is affected by eddy
currents which are predominantly poloidal in nature. In fact, coupling is only effective for
toroidal mode-numbers in the range —mfey S0 S M/ey.



D The ‘Effective Wall’

Let

mp';:/ I

U, (n)exp(inny) -

dn

-

which can be inverted to give

Ty(n) =) W,

using the identity

2sinn
U)

exp(—nn),

dn

co 2s8in .
f expli(n — n')7)] 5 = Ssin
- 00 m

U

F]

It follows from Eqn. (1) that

(0, 0) =

.dJ : q’\\(@) eX])(f‘&'??()).
2sin @

Equation (9) can be rewritten

AP B %/:: A/T“.(qb‘)'ilw(v,r)e.\'p(im))Z(

which

AT =~ / 17 () (1) exp(inn)

where

reduces to

4 d¢’

7w(9) = $7u(0)h(o — &) 5

and

exp(iho)

k

Here, Agy = €, /m.

Tul® + 27)

It Adw—0 R(P)

h‘((;") = Z (1 E A,'ZAG;):Z_)I/Q'

exp[ik(n — ¢)] dody

(13)

(14)

1 + k2e2 /fm?)V/2 27 27

dn

T.

Note that according to Eqs. (16) and (17):

= 7w(9),

= 1

_ j{,—w(o) ;l—i

T Kallel/Aon)
— 276(9),

(18)(a)

(18)(b)

for Ao, < 1, (18)(d)

(18)(e)



where K is a standard Bessel function.

It is clear from Egs. (15) and (16) that, as a consequence of the lack of coupling
to high-n harmonics discussed in Section I1.C, MHD modes experience an ‘effective wall’
whose toroidally varying time-constant is the convolution of the actual time-constant with a
smoothing function, A(¢), whose characteristic (toroidal) angular spread is Ag,,. According
to Eqn. (18)(c), the ‘effective wall’ possesses the same average time-constant as the real wall.

E The Stability of Wall Modes

Consider the stability of wall modes, which behave ideally (i.e. with no reconnection) at all
rational surfaces within the plasma. The perturbed poloidal flux can be written

Y(r,0,0) = 3 _4"(r) expli(mb — ng)], (19)

where 1" (r) satisfies the m/n cylindrical tearing mode equation® and the physical boundary
conditions at » = 0 and r — oo. In addition, ¥"(r) is zero at the m/n rational surface,
provided it lies within the plasma. There is a wall stability index associated with each of
the coupled toroidal harmonics:

E}, = [’"dﬂ / vrre). (20)

Asymptotic matching across the wall yields

AUT = E* O (21)

ww
for each harmonic. It follows from Eqn. (15) that

L - . dpy
Ei Vi = [~ 47um)¥y(n) expling) o 2)
- 2T
for wall modes.

It is easily demonstrated that for large-n (i.e. 1 < |n| < m/ey) the ¥"(r) become
vacuum-like (i.e. they are essentially unaffected by the equilibrium plasma current) and
Ey, =~ —2m. Note that the standard tokamak orderings (and the cylindrical tearing mode
equation) break down at very high-n (i.e. [n| ~ m/e,), so EZ, # —2m in this limit. However,
this effect can be neglected given the ineffective coupling to such high-n modes in tokamaks

(see Section II.C).

F  The Wall Mode Dispersion Relation

Suppose that

E., # —-2m for ny < n < n,,
Er, = —2m otherwise, (23)

which, according to the discussion in Section II.E, is a reasonable assumption for tokamaks,
but not for reversed-field pinches (RFPs) where kink modes typically have n ~ m/e,.'® Let



T = 2sin 7 i
Ww(n) = Z {fk(ﬂ) +: G exp(—zkr])} , (24)
k=n,
so that
n dn ]
‘I’ _/ f‘L 77 e\])(””.'f) o + Q. (20)

k-n]

Here, the o, are arbitrary complex constants satisfying a, = 0 for all n not in the range
n, — n,. It follows from Eqn. (22) that for all toroidal mode-numbers not in this range
2sin7 , dn

: exp(—1tkn)| exp(iny) — = 0. (26)

2w

na = B
Z f |:(2m + ¥7w ) i + 0k Y7

k=n, ¥~
The most general solution is

2sinn B +Tw(n)
no 2m 4+ y7e(n)

—_
S}
=1

—

fe(n) = —ay exp(—ikn),

where the 3, are arbitrary complex constants satisfying 3, = 0 for n all not in the range
n; — ng. Equations (24) and (27) give

na

) 2 2siny  2m — G
PU.(n) = Ceg ‘
w ( }) k:zm k i 2m 4+ 7_\\'(”)

exp(—zkn). (28)

For each toroidal mode-number in the range n; to ny Eqn. (22) yields

mn o - )S”] ’] F\‘:“ + <m — J‘A} 1 "“ (U) + E:\.\\, j d” v
Gl = Z Og/ 5 + ) expli(n — A)”]Z’- (29)
k=n) A
which can be rearranged to give
oo 9 2 B {
Z QL/ S]n n 2m 4+ ww CXP[?-(T? _ k)”] ET_] = (3‘;-1. (30)
n 2m+y7(n) 27

where &, = a, X (2m — ).
Now, 2m + 7.(n) is a periodic function of 7 with period 2= [see Eqn. (18)(a)]. It follows
that

exp(tk d .

—_— = ng _Sxpling) 19 exp(—tkn), (31)

2m + 7w () 2m 4+ Y7 (@) i
so using Eqn. (12)

/m 2sinny  exp(inny) dn _ j£ exp(ing) do (32)

e 1 2mAne(n) 27 J 2m 4 47.(0) 2m o
Thus, the wall mode dispersion relation can be written
2m oy E\\ w (IO -
Z j{ e\p[a (n — k) @] = Gy (33)
2m 4 7w (

for all n. Note that &, = 0 if E", = —2m, as was initially assumed in Eqn. (24).

The wall mode dispersion relation takes the form of a matrix equation:
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A - a=0, (34)

where « is the complex vector of the &, values, and

2m+ £ , do ;
Agp = bgp — J‘l( It 17 (9) exp[i(a — b)¢] T (35)

Here, A is a complex N x N matrix, where N is the number of modes for which Ey. # —2m.
Finally, it is easily demonstrated from Eqgs. (4), (12), (13), (17), and (28), that

- . expt(n — k)¢] d¢ ‘

‘I’w = L?Q’k om £ ’Y’T'W(QS) 2_7‘_’ (‘36)

and
. expli(md — ng)]

Vul0,9) = Z G Tom t e(d) (37)

with
. Ew o d NI ot 1¢’
paraly = — ( +i 9 55) 1 (9) § 4ul0,6)(8 ~ 8) 52 (38)

G Discussion

After some analysis, the wall mode dispersion relation is found to take the surprisingly sim-
ple form (34), in which only those coupled toroidal harmonics whose stability indices differ
appreciably [i.e. by O(1)] from the vacuum value —2m are explicitly included. The remaining
toroidal harmonics are, in fact, implicitly included in the calculation without any approxi-
mation. This great simplification is possible because most of the coupled toroidal harmonics
in tokamaks possess the same stability index, —2m. No corresponding simplification occurs
for RFPs, or for coupled poloidal harmonics in tokamaks, because in both cases the coupled
modes generally have widely different stability indices.

III The Effect of a Wall with Toroidal Gaps

A The Stability of Wall Modes
1 The Single-Mode Approximation

Consider, first, the limit A¢, — 0 in which, according to Section IL.D, the ‘effective wall’
experienced by MHD modes becomes identical with the real wall. Suppose that only a single
mode has a wall stability index which differs significantly from the vacuum value —2m. This
is not an unusual situation, especially if a low mode-number rational surface lies just outside
the edge of the plasma current channel. Table 1 shows values of E”, (for m = 3 poloidal
harmonics) calculated for a Wesson-like equilibrium current profile J={r) oc (1 — ¢¥fa®)¥,
with v = 1.46, ¢(0) = 1.2, ¢(a) = 2.95, and ry/a = 1.0. Here, ¢(r) is the conventional
tokamak safety-factor profile.?” Table 1 indicates that only the 3/1 mode has a wall stability
index which differs appreciably from the vacuum value —6. In this situation, the wall mode
dispersion relation (34) takes the particularly simple form

-1



n| Ej,
4| -5.831
3| -5.790
2| -5.723
-1 -5.595
0| -5.244

1| +2.167

2| -7.077

3| -6.479

4| -6.309

5| -6.228

6| -6.181

Table I: Values of the resistive wall mode stability index for m = 3 modes calculated for vari-
ous different toroidal mode-numbers n. The equilibrium current profile is j.(r) o (1—r?fa®)",
with v = 1.46, ¢(0) = 1.2, ¢(a) = 2.95. and r/a = 1.0.
2m + EL. d¢
f At By 89 o (39)
2m + 7w () 27

where E7 # —2m is the ‘special’ stability index.

Suppose that the wall is made of metal with an intrinsic time-constant 7, but that one or
more toroidal sections of total fractional angular extent f are missing (so f = 0 corresponds
to no gaps, and f = 1 to no metal). According to Eqn. (39). the wall mode dispersion

relation is written

_ Bl o)
TS T T 4 En/2m)
and using Eqn. (37),
T,bwgap =1+-& (41)
lrbw mtl 2m

Here, ¥w gap 15 the perturbed poloidal flux in the gaps, and ¥ 18 the flux in the metal.

Equations (40) and (41) imply that as E},, approaches the vacuum limit —2m, the flux
at the wall radius is mostly concentrated in the metal sections (i.e. ¥y gap — 0). and the
wall mode decays on the characteristic time-constant of the metal (i.e. 7 = Er. /7). As the
mode approaches marginal stability (i.e. £y, — 0), the fluxes in the gap and metal sections
of the wall gradually even out, and the flux becomes uniform (i.e. |¥ gap/¥wmu| = 1) at the
marginal stability point Ej., = 0. For weakly unstable/stable modes (i.e. |Ey | < 1), the
typical growth/decay time-scale is the average time-constant of the metal and gap sections of
the wall [i.e. ¥ =~ EZ,/ § T(6) do/2m = Ey /7w(1 — [)]. As the mode becomes significantly
unstable [i.e. ET, ~ O(1)], the flux at the wall radius starts to concentrate in the gap
sections of the wall (i.e. |y gap/ Ywmu| > 1), and the characteristic growth-time decreases.

Eventually, at a critical wall mode stability index.

(Egy)eric = 2m (lf B 1) . (42)

(0.4}



the flux is entirely concentrated in the gap sections of the wall (i.e. [thwmt1| = 0), and the mode
becomes ideal in nature (i.e. the resistive growth-rate tends to infinity). For EZ, > (E™, Jerit,
the wall eddy currents are insufficient to moderate the growth-rate, and the mode ‘explodes’
through the gaps on a typical ideal external-kink time-scale (i.e. the growth-rate is moderated
by plasma inertia).

According to Eqn. (40), the wall mode dispersion relation depends only on the total (an-
gular) fraction of gaps in the wall, and not on their distribution (i.e. the dispersion relation
is the same for one large gap as for two half-sized gaps, etc.). Equation (41) implies that
the poloidal flux at the wall radius changes discontinuously at the metal/gap boundaries,
corresponding to the situation shown schematically in Fig 1. It can be seen that the eddy
current vortices in the metal sections of the wall have ‘square’ ends, giving rise to infinite
poloidal return currents flowing along the metal/gap boundaries [see Eqn. (38)]. Such be-
haviour is clearly unphysical, and can be avoided by taking into account the decoupling of
very high-n toroidal harmonics from low-n harmonics discussed in Section 11.C. As a conse-
quence of this decoupling, wall modes experience an ‘effective wall’ whose toroidally varying
time-constant is the convolution of the actual time-constant with a smoothing function of
(toroidal) angular width Ao, = ¢y /m [see Eqn. (16)).

For a wall made up of N metal sections of intrinsic time-constant 7. separated by N
evenly spaced gaps, the variation of the effective wall time-constant with toroidal angle is
given by
(—1)"="cos[(2j — 1)N¢]

T =2 = D[+ {25 - 1)NA Y

Figure 2 shows the effective time-constant calculated for N = 6 (corresponding to gaps of
angular width A¢, = 7/6), with various different values of the smoothing angle Ag,. It
can be seen that as Ag, increases. the gaps start to merge with the metal sections until
eventually modes experience a uniform eflective wall whose time-constant is half that of the
metal sections of the real wall. The maximum/minimum values of the effective time-constant

(43)

are given by

Tomexioin _ ~ & g{dow/Ao,). (44)

Tig 2
where g(A) is plotted in Fig. 3.

The above analysis suggests that wall modes cannot ‘see’ gaps whose angular extent
is much less than the smoothing angle A¢,. Thus, the previous conclusion that the wall
mode dispersion relation depends only on the total angular extent of gaps. and not their
distribution, needs to be qualified. This conclusion is, in fact, only true for gaps whose
angular extent is much greater than Ag,. In particular, if a large gap (i.e. Agg > Agy)
is split up into many small gaps (i.e. Ag, < A, ) of the same total angular extent, then
wall modes experience a uniform effective wall with no gaps and a time-constant which is
the average time-constant of the real wall.

The decoupling of very high-n from low-n harmonics also ensures that poloidal return
currents are spread over a region of toroidal angular extent Ag,, or toroidal length 27 /m,
instead of flowing right on the metal/gap boundaries [see Eqn. (38)]. This effect gives rise to
eddy current vortices of the form shown schematically in Fig. 4. Note that the toroidal extent
of the return current region is the same as the poloidal spacing of the vortices. This ensures
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that the eddy current vortices have rounded ends at the metal/gap boundaries, instead of
the unphysical ‘square’ ends shown in Fig. 1.

2 The Coupling of Toroidal Harmonics

Suppose that two toroidal harmonics (n; and n,, say) have wall stability indices which differ
significantly from the vacuum value —2m. In the limit w 'here the angular extents of the
metal and gap sections of the wall are much larger than the smoothing angle, A¢,, the
analysis of Section ILF yields:

Yugap(0,$) o ayexpli(mb — n18)] + azexpli(ml — n24)], (48)(a)
1/)“' - T Tw
Ywesp| | i
Itbwmtl + 2’”1 1 (45)( ))
az 7w (1 + ER, [2m)c],
o el = f(L+ ER/2m)] - Ex

“.fr“[l (14 EM /2m)] — £

— i v WW WOW ! 4~
(1 + Em [2m)eqs ' (45)(c)
where
| d
Cl2 = / expli(n; — n2)@)] P (46)
gaps T

According to Eqn. (45)(c), the mode growth-rate is given by

7w % 2a = ERJ1 = (1 + B /2m)] + ER[1 = (1 + EG /2m)]

ww

\/ E::]\\ E::':\ (J- = / + 4‘C]2‘ E\J::\ .',::?\(1 + E::L/)]n ] + ]-/::i/)n?.}. (47)
with
1 —f(1+ E/2m)][1 - f(1+ E"™ [2m)]
—|e2?(1 + ELL/2m)(1 + EZ [2m). (48)

In most respects, the behaviour of the coupled modes is analogous to that of the corre-
sponding uncoupled modes (see Section IIL.A.1). For instance, as Ewk (where j is 1 or 2)
approaches the vacuum value —2m, the associated root of Eqn. (47) approaches y7, = —2m,
and the magnetlc flux becomes entirely concentrated in the metal sections of the wall. Fur-
thermore, as Fwk approaches zero, the corresponding root of (47) approaches the marginal
value vy, = 0, and the magnetic flux becomes evenly distributed in the wall. However,
mode coupling does affect the onset of ideal growth through the gaps, which now occurs
when a = 0.

Mode coupling is most effective when the two stability indices are equal; i.e. when £l =

m2 = E" . For this special case, Eqn. (47) reduces to

10



n
E“' W

Ty = , 49
TS TS E e (1 + By ) )
so the critical stability index for the ‘explosion’ of the mode through the gaps is
1
Ep)eain=2m|———1]. 50
( ) t (f 4 lcl2| ) ( )

It is clear, by comparison with Eqn. (42), that mode coupling tends to reduce the critical
stability index needed for ideal growth. Note that f+ le12] £ 1, 50 (B2, )eric is never negative.

B The Interaction with Rotating Tearing Modes

Suppose that a single toroidal harmonic {mode number n, say) has a rational surface lying
inside the plasma at minor radius r,. In this situation, the stability of the m/n mode is
governed by the following coupled equations;22 29.30

AII]s - Ess\ljs - Eswlpﬁ- = 0, (51)(3)
AYE - BE W — Bl = 0, (51)(b)

where W is the m/n reconnected flux at the rational surface, AU, is the ‘jump’ in the radial
derivative of the m/n flux across the rational surface, E., is the fixed-boundary m/n tearing
stability index (calculated assuming zero flux in the wall), and E,, + (Esw)?/(=E",) is the
corresponding free-boundary stability index (calculated assuming zero eddy currents in the
wall). As before, U7 is the m/n flux in the wall, AW is the jump’ in the radial derivative of
the m/n flux across the wall, and E7 is the m/n wall stability index (calculated assuming
zero reconnection at the rational surface). The stability of non-resonant modes (l.e. n' # n)

is again governed by
AT — BT g =, (52)

According to standard Rutherford island theory,® the non-linear evolution of the m/n
tearing mode satisfies

d /W L ur
TRE(Z) = 1Al = Eyy + En Re( - ) , (53)

where W is the island width, 7 = 0.8227 ,uorf/n”(rs) is the resistive diffusion time-scale, and
7| 1s the parallel plasma resistivity. The non-linear toroidal electromagnetic torque acting
at the rational surface due to eddy currents flowing in the wall is given by?%:29.30
Dy 2
6Li(r,) = ?‘i::_@ X Lo Im(UL07). (54)
L0
Consider the simplest possible case, where the wall stability indices of the non-resonant
modes do not differ appreciably from the vacuum value —2m. This situation is analogous
to that studied in Section IILA.1 provided EZ | — E + EoU,/U? and v — —ic. Here, w
is the angular rotation frequency of the m/n magnetic island. It is assumed that the m/n
wall mode is intrinsically stable, so that £7 < 0. If follows from Eqn. (40) (with the usual
proviso that the angular scales of the wall are much larger than the smoothing angle Ag,,)
that

11



v (1 —twry f/2m) Egw

T, = Tiorall — J(1+ Epn/2m)] — Eay )
Equations (36) and (37) yield
_ (1 = iwry/2m) U], .
|¢wgap| (1 — E.LLJT“-/Q’HI)_]F n (1 — f)a (36)(8)
yn
[twmal (1 —dwre/2m)f + (1 = f)’ (56)()
while Egs. (53) and (54) imply that
( ) (1= f(14 EL[2m]f[2m — L} L
A = s Esw 4 = 9
Tess B $lHund” X Pl — f(1+ EL,/2m)] + (EL,)° I5T)a)
mnlRy o g wyll = F]
T, s = qu 2 L-:\\' i - . 5'_- l
Talre) = = X W X o B e Bl
In the high frequency limit, wry > 1, Eqgs. (55)-(57) reduce to:
i E. f/2m .
T, = T+ Bz S
|thw gapl B |2
~ 58)(1
lI,5 {1 - f 1+ E:\\/“TH ] (5 )( ))
|7rbwml,ll . 2m
~ 1 , (58)(c)
Id"\\' gap | LL)T“'
' x\\ [/ 2m
A, = B ) 58)(d
e 5"+[1—f1+E;;“/7m)] S

Il Ry | U2 (Eaw )2 (1 = )
§T,(ry) =~ = (58)(e
é( S) Ho (""'Tw [1 - f(l + E:\I“/)n?)]z )( )
Equation (58)(a) indicates that a wall with gaps is unable to completely shield the perturbed
flux due to a rapidly rotating tearing mode island from the region outside the wall. Accord-
ing to Eqgs. (58)(b) and (58)(c) the rotating flux is able to penetrate through the wall by

‘squeezing’ through the gaps. Of course, in the limit where the gaps become very narrow (i.e.

f — 0) the amount of flux which gets through the wall becomes negligible. Equation (58)(d)
shows that the tearing mode stability index asymptotes to the fixed-boundary value as the
gaps become very narrow (i.e. f — 0}, and asymptotes to the free-boundary value as the
gaps become very wide (i.e. [ —1). Finally, Eqn (58)(e) shows that the torque exerted on
the rotating tearing mode island by eddy currents induced in the wall asymptotes to zero as
the gaps become very wide (i.e. f — 1).

The above results suggest that the interaction of a rapidly rotating tearing mode island
with a wall possessing thin toroidal gaps is very similar to the corresponding interaction
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with a uniform wall, except that in the former case a small amount of rotating magnetic
flux gets through the wall, and the slowing down torque exerted on the island is shghtly
reduced. A thin toroidal limiter (radius ri, say) can be modelled as a wall with a very large
gap (i.e. f just less than unity). According to the above analysis, such a limiter is ineffective
at shielding magnetic flux from the region r > r, and only exerts a comparatively weak
slowing down torque on any rotating islands inside the plasma.

IV  The Effect of a Modular Wall

A The Stability of Wall Modes

Consider a wall made up of alternate thick and thin sections of time-constants Ty 8110, T,
respectively (7w, > 7y,). It is initially assumed that the angular extent of these sections is
much greater than the smoothing angle, A¢,,, so that the effective wall is almost identical
with the real wall. For this simple case, the single-mode dispersion relation (39) reduces to

727—\'\'1 Twz -+ F}' [27” {il Ty + fQTwz} - E:\i--.v {.f?T\\'] + fl ‘-\\'2}] —2m E‘:\I-w = U? (59)

where f; is the total angular extent of the thick sections, and f, = 1 — f1 is the total extent
of the thin sections. According to Eqn. (37), the ratio of the flux in the thin sections of the
wall to that in the thick sections is

Yo _ 2m + YTy, . (60)
¢'w1 2m + T Tws
In the limit 7, < 7,, Eqn. (59) possess the following asymptotic solutions:
BT
" ~ W W , 61 ;
7T 1 — fo(l — E2, [/2m) (81 )(=)
w“’z ‘)‘T“’]
1+ —, 61)(
U, 4 2m (61J(b)
for B, € 2m(1/f; — 1), and
TTw, = fEL,, (62)(a)
P, Tw,
¢W1 Twa )

for E},, > 2m (1/f, — 1). It can be seen, by comparison with the results of Section LA,
that for a stable or moderately unstable mode the thin sections of the wall act rather like
gaps. However, for a very unstable mode the finite conductivity of the thin sections limits
the accumulation of magnetic flux there, which has the effect of limiting the mode growth-
rate. In fact, the mode is unable to evolve on a faster time-scale than the time-constant of
the thin sections of the wall. Of course, if the angular extent of the thick and thin sections
is much less than the smoothing angle, A¢,, then wall modes experience a uniform effective
wall whose time-constant is the average time-constant of the real wall.

13



B The Interaction with Rotating Tearing Modes

Suppose that a single toroidal harmonic (mode number n, say) has a rational surface lying
inside the plasma, and that the stability indices of the non-resonant harmonics do not differ
appreciably from the vacuum value —2m. In the high frequency limit, wr,, > 1 and
WTw, > 1, a similar analysis to that of Section II1.B yields:

vy i (f2 | ,
d)wl . Es“
7, = szw], (63)(b)
w ES\N
¢‘D: ~ = (63)(c)
WA~ (63)(d)
Inm? U2 ( Loy )? -
o] & ool el (lz_+f_1)_ (63)(c)
o W Twa Tw)

The above results indicate that a modular wall is able to shield the flux due to a rapidly
rotating tearing island from the region beyond the wall. Equations (63)(b) and (63)(c)
show that the residual flux tends to concentrate in the thin sections of the wall. According
to Eqn. (63)(d), the tearing mode stability index asymptotes to the fixed-boundary value.
Finally, Eqn. (63)(c) shows that the slowing torque exerted on a rotating island is the same
as that exerted by a uniform wall with the same average resistance as the modular wall.

V Summary

In principle, the effect of a non-uniform resistive wall on the stability of plasma MHD modes
is calculated as follows. First, the spectrum of helical eddy currents induced i the wall by
a general plasma mode is evaluated [see Eqn. (4)]. Next, the influence of a given helicity of
eddy current on the stability of MHD modes is obtained [see Eqs. (5). (21), and (51)]. Finally,
these two sets of information are combined together in a sell-consistent manner to yield a
dispersion relation for the various coupled modes in the problem. In general, this is a very
difficult calculation to perform. However, there is a considerable simplification for the special
case considered in this paper of a tokamak surrounded by a wall with toroidally varying
resistance. This comes about because most of the different toroidal harmonics coupled by
non-uniform wall eddy currents have the same MHD free-energy (see Sections ILE and ILF).
No corresponding simplification takes place for RFPs, or for tokamaks surrounded by walls
with poloidally varying resistance, because in both cases the modes coupled by non-uniform
wall eddy currents have quite disparate MHD {ree-energies.

In a general tokamalk, low mode-number toroidal harmonics (i.e. |n| < m/¢,), whose sta-
bility is influenced by wall eddy currents which are predominantly toroidal in nature, cannot
couple effectively to very high mode-number harmonics (i.e. In| > m/ey). whose stability is
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influenced by eddy currents which are predominantly poloidal in nature (see Section II.C).
As a direct consequence, MHD modes experience an ‘effective wall’ whose toroidally vary-
ing time-constant is the convolution of the actual time-constant with a smoothing function
whose characteristic (toroidal) angular spread is A¢,, = €w/m (see Section IL.D). Here, m
is the common poloidal mode-number of the various modes coupled by wall eddy currents,
and €, is the inverse aspect-ratio of the wall.

Consider the stability of a set of coupled wall modes (i.e. modes which do not reconnect
magnetic flux inside the plasma) with common poloidal mode-number m. The MHD free-
energy associated with each mode is parameterised by a wall stability index £, (where n
is the toroidal mode number-see Section IL.E). In a general tokamak plasma, the stability
indices of most modes lie close to the vacuum value —2m. Suppose that only one mode
(toroidal mode-number n, say) has a stability index which differs appreciably from the
vacuum value. In this situation, the wall mode dispersion relation reduces to the particularly

simple form

2m nod
m+ E5, o) (64)

= =1,
2m + Y7u(¢) 27
and the perturbed poloidal flux at the wall radius is given by

exp[i(mf — ng)]
2m + 7. (@)
[see Eqgs. (34)—(37)]. Here, v is the growth-rate, 7,,(¢) is the toroidally varying time-constant
of the effective wall, and E7 is the ‘special’ stability index. If there are N modes with
‘special’ stability indices, then the wall mode dispersion relation takes the form of an N x N

(65)

(0, ¢) o

matrix equation [see Eqn. (34)].

Toroidal gaps are incorporated into tokamak vacuum vessels in order to suppress eddy
currents and thereby reduce the penetration time-scale for the vertical magnetic field. How-
ever, it is clear from Eqn. (4) that toroidal gaps only interfere strongly with the non-helical
(i.e. m/n = 0/0) component of the wall eddy current. Helical eddy currents are not sup-
pressed because, unlike the non-helical current, they are able to turn around before reaching
the gaps (see Fig. 4). Of course, large gaps attenuate helical eddy currents to some extent
because they reduce the effective area of the wall.

The influence of toroidal gaps on wall mode stability is investigated in Section IIL.A. For
the case where only one mode has a stability index which differs appreciably from the vacuum
value, it is found that if the mode is stable the perturbed poloidal flux tends to concentrate
in the metal sections of the wall, if the mode is marginally stable the flux becomes evenly
distributed between the metal and gap sections, and if the mode is unstable the flux tends
to concentrate in the toroidal gaps. In fact, if the stability index exceeds a critical value [see
Eqn. (42)] the flux becomes entirely concentrated in the gap regions, and the mode can then
‘explode’ through the gaps with an ideal growth-rate. Of course, wall modes can only ‘see’
gaps whose angular extent is much greater than the smoothing angle Ag,. If more than
one mode possesses a stability index which differs from the vacuum value, then the critjcal
stability index needed for the ideal growth of a given mode is reduced (see Section II1.A.2).
Finally, a wall possessing toroidal gaps is unable to completely shield the flux of a rapidly
rotating tearing island from the region beyond the wall because the flux is able to ‘squeeze’
through the gaps (see Section I11.B).
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In conclusion, the investigation of the influence of a wall with toroidal structure on
tokamak stability has yielded a number of useful and interesting results. Hopefully. the
techniques developed in this paper can be extended to deal with the intrinsically more
difficult problem of the influence of a wall with poloidal structure on tokamalk stability.
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Figure Captions
Fig. 1 Wall eddy current vortices with *square’ ends.

Fig. 2 Variation of the effective time-constant (normalised to the intrinsic time-constant of
the metal sections of the wall) with toroidal angle () for a wall possessing six evenly
spaced toroidal gaps. Four different values of the smoothing angle A¢,, are used: (a)
Ady = 1% (b) Ady = 10°% (c) Agy = 30°% (d) Ady = 60°.

Fig. 3 The function g(\), which specifies the maximum and minimum values of the effective
wall time-constant as a function of smoothing angle [see Eqn. (44)].

Fig. 4 Realistic wall eddy current vortices.
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