AEA FUS 251

AEA Technology
Fusion
(UKAEA/Euratom Fusion Association)

A User's Guide to the PROCESS Systems Code
P. J. Knight

July 1993

AEA Technology

Fusion

Culham, Abingdon
Oxfordshire OX14 3DB
United Kingdom
Telephone 0235 463295
Facsimile 0235 463647






ABSTRACT

The PROCESS systems code is being developed to provide an integrated and
self-consistent treatment of the physics, engineering, economics, safety and
environmental characteristics of tokamak fusion power plants. This user’s guide
relates to a version of the code prior to the incorporation of the safety and
environmental modules, and to improvements and extensions to the modelling in
other areas.






Contents

1 Introduction

1.1 Rationale . . ... .. .. ...
12 HISUOTY . & 56 5 3 8 5 £ 6 5 oot o s m smm n s somon 6 = m o 5 s o mom o o s
1.3 Layout of the User’'s Guide . . . . . . . ... ... ... ...........

2 Program Overview — The Fundamentals

21 TheMachine o o o« v v v o 52 5uiv 5355 50888 88 6 68 s onsons
211 Radieland Vertical Build o« ¢ v s v s s s ma s s s 0 20 55 5.6 4
212 Prindipal Compements: . « s o s s s s smes s mmw e o5 5 5 6 5 5 5
213 ‘Tight Aspect RatioTokarmaks . . v « v v v s s 5 w5 ¢ 68 59 6 5 5 »

22 TheCode . ... .. . . . . .
221 CodeUsage . ... ... .. ...
222 CodeStructure . . . . . .. ...
2.2.3 Variable Descriptor File . . . . .. ... .. ... .. ........

3 Physics and Engineering Models

19

20

20

22

27

28



3.1

3.3

3.4

3.5

Physics Models . . . . . . o oo 28

311 Plastoa Pioliles . . : s vm s s s s s s s wmm v 5% woe v ©mmw s 28
312 Betalimits « = o - s s o0 ¢ 538 95 ¢ v 5 s e cnummess mwosa 29
218 Density LimitE : o s coms e s g ow e 5 5 s now v aomw 60 0 o v 2 s 30
3.1.4 Plasma Current Scaling Laws . . . . ... .. ... ... ...... 31
3.1.5 Confinement Time Scaling Laws . . . . . ... ... ... ...... 32
3.1.6 Bootstrap Current Scalings . . . .. ... ... ... ........ 33
3.1.7 Current Drive . . . . . . . . .. e 34
3.1.8 Other Physics Switches . . . . . . .. ... ... ... 36
Engineering Models . . . . . . ... ..o o 37
321 TFColl Position .. v « « soonm « G5 & 5 55 Bl ¢ 68 58 5 55 &= 37
322 TEClTYPE . - » o ¢ 52 55 s s s s @@ 588 585 8o wix s 5 »owo 37
3.2.3 Superconducting TF Coil Options . . . . .. ... ....... ... 38
324 PR CollOPLIONE . .. 55 54688 @wgs8s® a5 wme v mww 39
2325 OHColl Options . . . . o5 ¢ ¢ 5 60038 @® ¥ 50 s v ww s 40
3.2.6 Other Engineering Models . . . ... ... ... ... ........ 40
Cost Modelg .. .. . . s s 5 655 sme b o@Eess @@ s mme o = mm w s 42
38.] CostOplions = o 2 s s o m e s 3 wwm s s 3 mwmess mw e nn ww o 42
TART SWILEHES . ; o5 ¢ 2 5 & 55 ¢ 8 8 @@ ¢ & 6 8 s & 55 wow oo» 0 =6 43
Other Switchesand Models . . . . . . . .« oo o v i v i i i it e e 44
351 Output Contiol ¢ ¢ : 5w s s v mwn v 53 ww v 5% wm s xmw v oo 44



3.5.2 Code Parameters Affecting Other Models . . . . . ... ... .... 44

4 Execution of the Code 46
4.1 Main Concepds . i s 55 ¢ o 6 5 o« 6 8 5.5 5 £ 8 00w n s s n o e 46
4.1.1 Variable Descriptor File . ... ... ................. 46
4.1.2 Topul Pararmelers: . o s s we s 6 s m@ ¢ 6 8 98 6 8 8 5% 85 5 & 0d 47
4.1.3 Constraint Equations . . . . ... ... .. ... .. ... ...... 47
4.1.4 Iteration Variables . . . . .. .. ... ... ... .......... 51
415 Figuresof Merit . . . . . . . . .. .. 51
4.1.6 Scanning Variables . . . ... ... ... ... .. ... . . . ... 53

4.2 TheInput File ......... e e e e e 54
42,1 PleSlruohire . o s s ¢ 5.0 5 5 5 5.5 0 0 s mom n o s omownse oo 54
422 Format Rules ¢ v v ¢ 50 s s 0 5 50 55 8 5 s 58 ma o nnmeos o 55

23 BunmingtheCode ... ::ssswevammes v omussesesasos 57
4.3.1 Noemeptimisation Mode . o ¢ 4 o we v s 6 s s v 0 5058 5 8 8 0 4 o 57
432 Dptimisation Mode . . « « v v s s v 5 666 vmm v s m@Ees s 6o 59

44 ProblemSolving. . . . . . .. ... 61
4.4.1 General Problems . . . . ... ... ... . ... . ... .. ... .. 61
4.4.2 Optimisation Problems . . . . . ... ... ... ........... 62
4.4.3 Unfeasible Results . . . ... ... .. ... ... ... ....... 63
444 Hints. . . ... .. 64



5 Inclusion of Additional Variables and Equations
5.1 Input Parameters . . . . . . . .. . oo

59 Tteration Variables . . . . . . . o o o i i i i e e e e e

5.3 Other Global Variables . . . . . . . . o o i ot i v oot in v v v n
5.4 Constraint Equations . . . . . . . . .. . o
55 Figuresof Merit . . . . . . .o oo v oo i e
5.6 Scanning Variables . . . . ... ..o

6 Acknowledgements & Bibliography

A Non-optimisation Input File

B Optimisation Input File

C Source Code Documentation

65

65

66

67

68

68

70

70

74

78



Chapter 1

Introduction

1.1 Rationale

The PROCESS systems code is being developed to provide an integrated and self-
consistent treatment of the physics, engineering, economic, safety and environmental
characteristics of tokamak fusion power plants. This will enable issues of the feasibility
and safety advantages of different power plant designs to be systematically explored. This
user’s guide relates to a version of the code prior to the incorporation of the safety and
environmental modules, and to improvements and extensions to the modelling in other

areas.

During the course of studies of a proposed tokamak fusion power plant, there may be
times when questions of the following type arise:

Are the machine’s physics and engineering parameters consistent with one
another?

Which machine of a given size and shape produces the cheapest electricity?

What is the effect of a more optimistic limit on the plasma beta on the amount
of auxiliary power required?

Questions such as these are extremely difficult to answer, since the large number
of parameters involved are highly dependent on one another. Fortunately, computer
programs have been written to address these issues, and PROCESS is one of them.



Chapter 1 Introduction 6

Suppose that an outline power plant design calls for a machine with a given size and shape,
which will produce a certain net electric power. There may be a vast number of different
conceptual machines that satisfy the problem as stated so far, and PROCESS can be used
in non-optimisation mode to find one of these whose physics and engineering parameters
are self-consistent. However, the machine found by PROCESS in this manner may not
be possible to build in practice — the coils may be overstressed, for instance, or the
plasma pressure may exceed the maximum possible value. PROCESS contains a large
number of constraints to prevent the code from finding a machine with such problems,
and running the code in optimisation mode forces these constraints to be met. The
number of possible conceptual machines is thus considerably reduced, and optimisation
of the parameters with respect to (say) the cost of electricity will reduce this number to
a minimum (possibly one).

Formally then, PROCESS is a systems code that calculates in a self-consistent manner
the parameters of a tokamak fusion power plant with a specified performance, ensuring
that its operating limits are not violated, and with the option to optimise a given function
of these parameters.

It would not be fair to call PROCESS a fusion power plant design code, as this implies
that a great deal of complexity would need to be present in each and every model
describing one of the tokamak systems. Such complexity is, however, incompatible with
the code’s iterative approach to solving the optimisation problem, since this requires
repeated evaluation of the same (large number of) expressions. This is not to say that
the models employed by the code are oversimplified — in general they represent good
numerical estimates of present theoretical understanding, or are fits to experimental data.
PROCESS provides a useful overall description of how a conceptual and feasible power
plant may look.

1.2 History

PROCESS is derived from several earlier systems codes, but is largely based on the
TETRA (Tokamak Engineering Test Reactor Analysis) code [1] and its descendant
STORAC (Spherical TOrus Reactor Analysis Code) [2], which includes routines relevant
to the tight aspect ratio class of tokamaks. These codes, and much of the original version
of PROCESS itself, were written by personnel at Oak Ridge National Laboratory in
Tennessee, USA, with contributions from a number of other laboratories in the USA. In
addition, many of the mathematical routines have been taken from a number of different
well-established source libraries.



Chapter 1 Introduction T

Since the code is descended from such a wide range of sources, its structure was initially
not ideal from the programmer’s viewpoint. Non-standard practices and inconsistent
layout within the code could have led to difficulties in modifying, interpreting and indeed
running the code. A great deal of effort has therefore been expended at Culham since the
code’s arrival from ORNL to improve this situation, with the code being given a complete
but careful upgrade, routine by routine. A single master copy of PROCESS now exists,
the details of which are described here. The culmination of the work to improve the
usability of the code is this user’s guide, which hopefully will be of assistance to all users
of PROCESS, whether they are planning to modify or run the code, or are simply trying
to understand what the code aims to achieve.

As with all active research codes, PROCESS will continue to be developed for some time.
As explained earlier in this introduction, the code will be used as the basis of power plant
environmental and safety studies by the inclusion of further models and constraints.

1.3 Layout of the User’s Guide

This user’s guide is divided into a small number of logically separate units, each one of
which provides specific information on a given topic. It depends on the user’s motive for
referring to the manual as to which chapter will be the most useful, although hopefully
the style and structure adopted will allow one to browse through without difficulty.

Chapter 2 provides an overview of the program and the machine that is modelled by it.
Chapter 3 goes into slightly more detail, and discusses the various physics and engineering
models that are used within the code to describe the tokamak power plant systems.
Chapter 4 describes how to run the program from scratch, and provides a number of hints
and suggestions to bear in mind when the code does not find a feasible machine. Chapter 5
shows how to modify the code in specific ways, for example how extra constraints and
variables should be added to the code. Appendices A and B contain example input
files for PROCESS in non-optimisation and optimisation modes, respectively. Finally,
Appendix C contains references for useful Work File Notes [15] that provide information
about the code status, its location, and other details relating to the implementation of

PROCESS to date.

This manual has been written in such a way as to (a) lead a new user of PROCESS into
a clear understanding of the code’s concepts, structure and models, and (b) help a more
experienced user to set up and run the code efficiently and quickly. Potential users of
PROCESS need only a basic knowledge of potential tokamak fusion power plants, and
access to the code itself. No specialised knowledge in computers or computing is required.



Chapter 2

Program Overview — The
Fundamentals

This chapter presents the reader with a first glimpse into the world of PROCESS. It
is clearly important when one is trying to get to grips with a code of the proportions
of PROCESS to be able to visualise the main aspects of the device being simulated at
an early stage, without too much detail obscuring the overall picture. Similarly it is
important to provide the potential users with an overview of the code structure and its
operation before they embark on a closer study. The aim of this chapter is to aid this
visualisation by presenting a brief description of the machine, its subsystems and the code
layout in simple, general terms. Chapter 3 will provide users with more detail about how
to customise the models and parameters mentioned here.

2.1 The Machine

A natural starting point for a systems code manual is the description of the system itself.
In this case, of course, the system is a tokamak fusion power plant, modelled using a
large number of equations based on knowledge of the underlying physics and engineering
models of each subsystem of the machine. As will be emphasised later the bulk of the
program is ordered into modules roughly corresponding to each of the subsystems, so an
early attempt at familiarising the reader with them will hopefully be of some benefit.



Chapter 2 Program Overview — The Fundamentals 9

2.1.1 Radial and Vertical Build

Figure 2.1 shows schematically the layout of a typical tokamak as modelled by PROCESS.
This is the so-called ‘build’ of the machine — the relative locations of the major
components. Their positions are referenced to the (R, Z) coordinate system, where R
is the radial distance from the vertical centreline (axis) of the torus, and Z is the vertical
distance from the equatorial midplane, about which the machine is up-down symmetrical.
Components are often referred to as being ‘inboard’ or ‘outboard’, which simply means
that they lie at a radius R less than or greater than Ry, respectively, where R, is the
plasma major radius (rmajor).

Figure 2.2 shows the FORTRAN variables that describe the thicknesses and positions
involved. It must be emphasised that these two figures are very much schematic, otherwise
they could become slightly misleading. For the sake of clarity the thicknesses are not
drawn to scale, and the space labelled as the divertor does not indicate in any way the
actual shape of that component. The cryostat acts as a dewar or vacuum vessel, and
is therefore continuous in reality, enclosing all of the components within it. Only in the
code’s build calculation is there an apparent gap in the cryostat beneath the top of the
TF coil.

Most of the thicknesses shown in Figure 2.2 are input parameters, so are not changed
during the course of the simulation. The rest are calculated by the code during
execution. In addition, some of the component sizes can be used as iteration variables
(see Section 4.1.4) to help in the optimisation process.

2.1.2 Principal Components

2.1.2.1 Plasma

Arguably, the most important component of the tokamak is the plasma itself. This
is assumed to have an up-down symmetric, double null configuration, with elongation
and triangularity specified by the user. A great number of physics models are coded
within PROCESS describing the behaviour of the plasma parameters such as its current,
temperature, density, pressure, confinement etc., and also the various limits that define
the stable operating domain.



Chapter 2 Program Overview — The Fundamentals 10

PF 2

TF COIL

Z, distance from midplane

PF L
SHIELD
PF 3
DIVERTOR
» PF 3
5]
a
- : A
[=] - - f Ly
@ 3] - :G
I
= = g2l 5 [ ol £ - PF 3
= =) =l & |» e e PLASMA =
= o e O (= Z | < a
L =P B5] el L} < [pof e b
= £ < |2] W || =] o =
= < o [m] = vle @) ! -
~
| B S B | T 1 11 LI | T 7

R, distance from centreline

Figure 2.1: Schematic diagram of a typical tokamak modelled by PROCESS. The relative
positions of the components are as shown, assuming that swilch iohcie is set to 2. If
iohcie is set to 1, the inboard portion of the radial build is altered so that, stariing at
the centreline (R = 0), the component order is: bucking cylinder, T coil, gap, OH cotl,
cryostal, ete. In this case there is no machine bore. The numbers shown in the PF coil
blocks are the values of the ipfloc switch for that block.



Chapter 2 Program Overview — The Fundamentals 11

ifcih

hmax ——

vgap2

{;g’;g"h; — ahldtth

divfix

vgap

! .
+ rminor®

rminor*kappa ! triang
'
;
T L L L LI L LI 1
p s 52 spglss5z £ |5 25335/ 3% 3
2 = e B 9 B g EF e £ g sy % 5| & 8 5
° =3 - Wz £ -5 § § Lte~eZ| g 2
Y L] = [~ B %= Eoa
rbmax T
raldi rmajor rsldo rtot

Figure 2.2:  Schematic diagram of a typical tokamak modelled by PROCESS, showing the
variables used to define the thicknesses of the components. The arrowed labels adjacent
to the axes are the total ‘builds’ to that point. As in Figure 2.1, the relative positions are
shown for the case when iohcie = 2. The precise locations and sizes of the PF coils are
calculated within the code.



Chapter 2 Program Overview — The Fundamentals 12

2.1.2.2 Scrape-off Layer

The region directly outside the last closed flux surface of the plasma is known as the
scrape-off layer, and contains no structural material. Plasma entering this region is not
confined and is removed by the divertor. PROCESS treats the scrape-off layer merely as

a gap.

2.1.2.3 First Wall

The first wall acts as a physical barrier protecting the rest of the tokamak from the hot
plasma. Due to its hostile environment the first wall has only a short lifetime and therefore
needs to be replaced regularly. Its stainless steel structure is water cooled.

2.1.2.4 Divertor

The divertor provides a means of removing plasma reaching the scrape-ofl layer and
heavy ions that are ejected from the first wall. Two divertors are assumed in the
PROCESS tokamak, placed symmetrically above and below the plasma (N. B. see
Section 3.2.6.3). The principal outputs from the code are the divertor heat load, used to
determine its lifetime. and its peak temperature. The divertor is water cooled.

2.1.2.5 Blanket

The blanket performs a number of tasks. An incoming neutron from a deuterium-tritium
(D-T) fusion reaction in the plasma loses energy in the blanket. This energy is removed
by the blanket coolant and used to produce electricity. The neutron may also react with a
lithium nucleus present in the blanket to produce a tritium nuclens which can be re-used
as fuel. The competing requirements of heating and tritium synthesis mean that a neutron
multiplier must be present, to ensure balance hetween tritium destruction and creation.
The blanket therefore contains beryllium to fulfil this purpose. Again, the blanket has a
relatively short lifetime because of the high neutron fluence. Steel is used as a structural
material within the blanket.



Chapter 2 Program Overview — The Fundamentals 13

2.1.2.6 Shield

The shield reduces the neutron flux reaching the TF coils and beyond. This minimises
the radiological impact of the neutrons, and their heating of the TF coils which, if
superconducting, need to remain at liquid helium temperatures. The shield is water
cooled, and as with the blanket the energy deposited in the water is used to produce
electricity.

2.1.2.7 TF Coils

The toroidal field (TT) coils can be either resistive or superconducting. In the
superconductor model, the CICC (Conductor In Cable Conduit) structure shown in
Figure 2.3 is used, and the coils are cooled using a liquid helium cryogenic system. Among
the TF coil parameters calculated by the code are the maximum allowable current density,
the stresses on the structure, the energy stored and the magnetic field produced by the
coils.

The current in the TF coils must be sufficient to produce the right toroidal field at the
centre of the plasma. The field falls off at a rate 1/R, with the peak value occurring at
the outer edge of the inboard portion of the TF coil (Rmax TF = rbmax). The maximum
TF coil current depends on the field it produces and the allowable current density.

Each TF coil is defined in the (R, Z) plane by four circular arcs of different radius, which
create a D-shaped profile. Because of the finite number of TT coils used in a tokamak
(typically around 20), the toroidal field has a ripple introduced into it, the amplitude of
which can be limited to a few per cent by the code by adjusting the outhoard gap thickness
(labelled gapsto in Figure 2.2). Ports are often necessary for auxiliary power systems etc.,
and the gaps between adjacent TTF coils can be made large enough to accommodate such
equipment.

2.1.2.8 Bucking Cylinder

The bucking cylinder provides some strength to the inboard TF coil structure. If the TF
coils are superconducting, the bucking cylinder is cooled by the cryogenic system.



Chapter 2 Program Overview — The Fundamentals 14

View from above

/ \
/ AY
Winding Pack
many turns of cable
! \
! \
! \
] \
I \
Single Turn
—1 o
cable space ™~
steel conduit + insulation
Figure 2.3: Schematic diagram of the cross-section of a superconducting TF coil,

showing the CICC (Conductor In Cable Conduit) construction. The cable space contains
superconducting filaments and circulaling liquid helium coolant.



Chapter 2 Program Overview — The Fundamentals 15

2.1.2.9 Cryostat

The cryostat acts as a dewar and vacuum vessel, and is used to cool those components that
need to operate at liquid helium temperatures. These include any superconducting (TF
or PI') coils, the intercoil structure and the bucking cylinder. PROCESS calculates the
cryogenic power load and the resulting heat exchanger requirements. As stated earlier, the
build picture in Figure 2.1 is slightly misleading in that the cryostat completely encloses
the components within it — there is no large gap beneath the TF coil as is the case in
Figure 2.1.

In addition to this (inner) cryostat, an external cylindrical dewar encloses the whole of
the tokamak.

2.1.2.10 PF Coils

The poloidal field (PF) coils can be either resistive or superconducting, and are used
initially to cancel the vertical field produced at the centre of the plasma by the OH coil
during start-up, and then to maintain the plasma position and shape during the flat-top
period. The positions and sizes of the PI" coils are partly input, and partly calculated
after consideration of the required currents and allowable current density. The PF coils
are generally grouped into up-down symmetric pairs, and each group can be placed in
one of three regions, either vertically above (and below) the OH coil (ipfloc(i)=1),
vertically above (and below) the TF coil (ipfloc(i)=2), or radially outside the TTF coil
(ipfloc(i)=3).

The PI coil currents vary as a function of time during the tokamak operation as indicated
in Figure 2.4.

2.1.2.11 OH Coil

The ohmic heating (OH) coil is a PF coil used primarily during start-up (but also during
the burn phase) to create and maintain the plasma current by inductive means. Swinging
(changing) the current through the OH coil causes a change in the flux linked to the
plasma region, inducing a current in it. PROCESS calculates the amount of flux required
to produce the plasma current, and also the amount actually available. The code measures
the magnetic flux in units of Volt-seconds (= Webers). The OH coil is sometimes referred
to as the central solenoid, and can be either resistive or superconducting.



Chapter 2 Program Overview — The Fundamentals

16

AN
PLASMA
-
=1
¥
et
O Y L T o T etk kel
3 PF COIL
end of flat top
time
N
| g Ut 4
ramp OH swing heat burn dwell
b ‘ -
\
\
\
\
\
\
'
beginning of pulse
\
\
\
\
\‘ OH COIL
Figure 2.4:

PF coil, and the OH cotl.

Plot showing schematically the current waveforms for the plasma, a typical



Chapter 2 Program Overview — The Fundamentals 17

2.1.2.12 Auxiliary Power Systems

The use of purely inductive current drive leads to pulsed plant operation because of the
limited flux swing that can be achieved using the OH coil. This poses problems due
to the fact that fatigue failures may result, and there would also be a need for thermal
storage to maintain a level supply between pulses. However, the plasma current can also
be produced and maintained using non-inductive means which, in principle, removes this
restriction. PROCESS contains a number of auxiliary current drive schemes, including
various RF methods (Lower Hybrid, Electron Cyclotron, and Ion Cyclotron (Fast Wave)
current drives) and also Neutral Beam current drive systems. The code calculates the
efficiency and the resulting power requirements of the chosen system.

2.1.2.13 Structural Components

Structural components are required to provide support for the tokamak systems against
gravity and the magnetic forces that will be encountered during operation. The required
structural masses and their costs are calculated.

2.1.2.14 Power Conversion and Heat Dissipation Systems

The PROCESS power plant takes into account all the systems required to perform the
necessary conversion of fusion power to electricity, from the coolant systems in the plant
components to the heat exchangers and turbines. Figure 2.5 shows schematically the
overall power transfer mechanisms used by the code.

2.1.2.15 Vacuum Systems

The vacuum system is used for four different processes. Firstly, before plasma operations
the chamber must be evacuated to remove outgassed impurities from the structure.
Secondly, the chamber must be re-evacuated between burn operations. Thirdly, helium
ash must be removed to prevent il from diluting the fuel. Finally, deuterium and tritium
is removed on a steady state basis. PROCESS calculates the parameters of a vacuum
system that satisfy all four requirements, with the option of either turbo pumps or cryo
pumps being used.



Chapter 2 Program Overview — The Fundamentals 18

l CORE FUSION I l N.B. FUSION ] I_'ALL PLUG INJECTION PnIERJ
0.8 02 0.8 lu.a (1-efficlency)

I NEUTRON K.E. | ALPHA K.E. J I GHMIC HEATING l

INJECTION POWER

emult fhole f{1-exp{~kx))

MULTIPLIED o POWER elalh etaech etanbi

LOWER HYBRID ELECTRON CYCLOTRON NEUTRAL BEAM

Cond g || Cead
\ / r/’(ﬁﬁm) \!yion

ELECTRONS 1ONS

(1-exp(-kx)) exp(-kx)

POWER TO PLASMA

HEATING / RADIATION POWER

TRANSPORT BREMSSTRAHLUNG SYNCHROTRON LINE

RADIATION RADIATION

I BLANKET i I SHIELD | DIVERTOR I | FIRST WALL I

fiwlg

(t—rtwlg)

RECIRCULATING POWER

HIGH GRADE THERMAL

etath

GROSS ELECTRIC

(1-fgrosbop)

SECONDARY. HEAT WALL PLUG INJECTION POWER
\l TFC NUCL. HTI | TF COIL | ﬁfc HEAT |
\[ LOST n_| | ®rcon | | TRITIUN I | BasE A.Ll WASTE INJ.

Icm’n PLA_NTI '[—cfr rPukp | Insg :chrmc”pux.s:n Loan] [ elc. J

{1-etath)

fgrosbop

NET

ELECTRIC

Figure 2.5:  Schematic diagram showing the power conversion mechanisms used in

PROCESS [15, Note 0166].



Chapter 2 Program Overview — The Fundamentals 19

2.1.2.16 Buildings

The volume and ground area of all the various buildings on a power plant site are included
in the PROCESS calculations for the benefit of the costing algorithms.

2.1.3 Tight Aspect Ratio Tokamaks

PROCESS has the ability to perform studies on tokamaks in the low aspect ratio regime
(major radius < 2x minor radius). The physics and engineering issues [3] associated with
these machines is somewhat different from those of conventional aspect ratio, and this is
reflected by the following special models [2] present in PROCESS.

o

The inboard build of a TART is very different from that in a conventional tokamak.
There is no inboard blanket or shield, and the inboard TF coil legs are replaced by
a single centrepost.

The centrepost is constructed from copper (as are the outhoard TF coil sections),
and is tapered so that it is narrowest at the midplane of the device. The parameters
for the centrepost coolant system are calculated by PROCESS, including the pump
pressure, maximum temperature and pipe radius.

A gaseous divertor model is used, and a simple divertor heat load calculation is

employed.
A simple PF coil current scaling algorithm is available for use with the TART option.

The plasma shaping terms (elongation and triangularity) can be calculated directly
from the given aspect ratio.

Among the physics models that differ from those relevant to conventional aspect
ratio machines are (i) the bootstrap current fraction, (ii) the Troyon beta limit, and
(iii) the neutron heating of the centrepost.

Since PROCESS is set up by default to deal with conventional aspect ratio machines,
TART power plants will only be referred to briefly in the rest of this manual.



Chapter 2 Program Overview — The Fundamentals 20

2.2 The Code

As hinted above, tokamaks are complex devices consisting of many non-linear interactions.
One method that can be used to model this kind of system is to iterate a number
of free parameters in a controlled way so as to find a self-consistent set of device
parameters that satisfy all of the system’s constraints. PROCESS is organised in a
standard equation solver format to enable this task to be performed efficiently. The
physics and engineering routines together serve as a function evaluator, providing the
information used in the solution of the constraints. The numerical software package
present in PROCESS performs the iteration required, and also incorporates the option
to maximise or minimise a given figure of merit.

2.2.1 Code Usage

PROCESS contains two non-linear equation solver packages, which reflect the two major
modes of operation available. Each of these has its own uses, as is now discussed.

2.2.1.1 Non-Optimisation Mode

The first of the two equation solvers present in PROCESS is the non-optimisation package
HYBRID [4, 5]. Formally, HYBRID finds a zero of a system of N non-linear functions in
N variables. This means simply that N variables (tokamak parameters) are iterated by
PROCESS in such a way as to solve a set of N equations (physics or engineering laws),
i.e. a set of self-consistent tokamak parameters are found. This is useful for performing
benchmark comparisons, when the device size is kept fixed, and one only wishes to find
calculated stresses, beta values, fusion powers, etc. A flow diagram of PROCESS in
non-optimisation mode is shown in Figure 2.6.

2.2.1.2 Optimisation Mode

The HYBRID equation solver will naturally find only one of perhaps several possible
machines that may satisfy the prescribed problem. To choose one machine in preference
to the others it is necessary to define a figure of merit, and the selection process then simply
involves finding the machine parameters that maximise or minimise this figure of merit.



Chapter 2 Program Overview — The Fundamentals

21

initialise variables

input from file

|

define {ree parameters

:

define rules

to be obeyed

Y

evaluate physics, engineering

and cost functions

:

apply consistency equations

no

iterate
free parameters

self-consistent?

write 6utput

Figure 2.6: Flow diagram of PROCESS in

non-optimisation mode.



Chapter 2 Program Overview — The Fundamentals 22

The second equation solver within PROCESS, VMCON [6], performs this optimisation,
and therefore finds the “best” machine that satisfies all the given constraints.

The other important advantage that VMCON has over HYBRID is its ability to limit the
ranges of the variables it uses. This prevents the code from attempting to find machines
that are physically unattainable, and ensures that operating limits are not violated. An
example of VMCON’s application is to find the device providing the minimum cost of
electricity which also satisfies the physics and engineering constraints. There is in theory
no upper limit to the number of variables that VMCON can use to optimise the machine,
so a very large region of parameter space can be searched. A flow diagram of PROCESS in
optimisation mode is shown in Figure 2.7.

2.2.1.3 Scans

It is often useful to be able to scan through a range of values of a given parameter to
see what effect this has on the machine as a whole. Sensitivity studies of this kind can
be achieved very easily using PROCESS. Scans are carried out in optimisation mode,
whereby the code performs initially a run using the parameters specified in the mput
file, and then a series of runs using the parameters produced at the end of the previous
iteration. The variable being scanned is specified at every stage. This method ensures
that a smooth variation in the machine parameters is achieved.

2.2.2 Code Structure

The structure of the majority of the code reflects to a certain extent the layout of the
machine being modelled. As stated above, a large proportion of the code is simply
a description of the underlying physics and engineering issues in terms of numerous
expressions and relationships. In effect these define the machine so that the numerical
solver within the code can then get to work adjusting the parameters in its search for a
self-consistent solution.

A modular structure extends throughout the code, from the actual FORTRAN source files
(suffixed with .£) to the input / initialisation routines and variable descriptor file sections.
It is essential for a program of the size and complexity of PROCESS to be modular to a
high degree, in order to simplify the tasks of understanding and maintaining the code. The
INCLUDE files (suffixed with .h) contain COMMON blocks that pass the information for a
given module between the various relevant subroutines, and are summarised in Table 2.1.
The following sections describe briefly the modules into which PROCESS is divided.



Chapter 2 Program Overview — The Fundamentals

initialise variables

:

input from file

!

define free parameters

!

define rules

to be obeyed

:

define performance

requirements

;

define figure-of-merit

Y

evaluate physics, engineering

and cost functions

'

apply consistency equations

and limit equations

no

Y

iterate
free parameters

self-consistent?

no

F-0-M minimised?

write 611tput

Y

Figure 2.7: Flow diagram of PROCESS in optimisation mode.




Chapter 2 Program Overview — The Fundamentals 24

include file associated input block || stored parameters

bldgcom.h BCOM building volumes and clearances
bldgvol.h BLDINP building volumes

build.h BLD tokamak radial and vertical builds
cdriv.h CDDAT current drive quantities

cost.h COSTINP, UCSTINP cost information

divrt.h DIVT divertor parameters

estocom.h EST energy storage data

fwblsh.h FWBLSH first wall, blanket and shield data
heatrinp.h | HTRINP heat transport input parameters
heattr.h HTTINP heat transport parameters
htpwr.h HTPWR heat transport and power data
ineq.h INEQDAT {-values and input limits
labels.h — descriptions

numer.h INPT1 numerics quantities
osections.h | OSECTS output section flags

param.h — global dimensioning parameters
pfcoil.h PFC PF coil data

pfelect.h = peak MVA requirements
phydat.h PHYDAT physics parameters

pwrcom.h — power conversion data
struccom.h | — structural masses

sweep.h SWEP scan variable data

tfcoil.h TFC TTF coil data

times.h TIME times of different plasma phases
torsdat.h — vacuum pump information
vaccom.h VACCY vacuum system parameters
vltcom.h VOLTS volt-second and inductance data

Table 2.1: Summary of the INCLUDE files used within PROCESS. FEach file has an
associated named block in the inpul file, as shown.



Chapter 2 Program Overview — The Fundamentals 25

source file | description

aamain.f | main program

eqns.f constraint equations

caller.f | calls physics and engineering routines
egsolv.f | calls HYBRID non-optimising package
math.f miscellaneous maths routines

math2.f miscellaneous Linpack maths routines
minpac.f | various Minpack routines, including VMCON and HYBRID
optimiz.f || calls VMCON optimising package
svd.f singular value decomposition routine
xe.f adjusts iteration variables

Table 2.2: Summary of the numerics modules in PROCESS.
2.2.2.1 Numerics Modules

eqns.f, caller.f, egsolv.f, math.f, math2.f, minpac.f,
egsolv.f, optimiz.f, svd.f, xc.f
param.h, ineq.h, labels.h, numer.h, sweep.h

These files contain the equation solvers, their calling routines and other relevant
procedures, including the main program itself. Various mathematical routines from a
number of standard libraries are also incorporated into these files. Table 2.2 summarises
the numerics source file contents.

2.2.2.2 Physics Modules

physics.f, cudriv.f, beams.f, lwhymod.f, ech.f, divtmod.f,
geomty.f, outplas.f
phydat.h, cdriv.h, divrt.h

These files contain the main physics routines that evaluate the plasma and fusion
parameters. Also included here are the routines describing the current drive and divertor
systems. Table 2.3 summarises the physics source file contents.



Chapter 2 Program Overview — The Fundamentals 26

source file | description
physics.f || plasma and fusion calculations
cudriv.f || current drive efficiency parameters

beams.f neutral beam wall plug power
lwhymod.f || lower hybrid wall plug power
ech.f electron cyclotron CD wall plug power

divtmod.f | divertor model calculations
geomty.f || plasma geometry algorithms
outplas.f || writes physics output to file

Table 2.3: Summary of the physics modules in PROCESS.

2.2.2.3 Engineering Modules

radialb.f, tfcoil.f, induct.f, fwbs.f, heatpwr.f, acpow.f,
pfcoil.f, pfscl.f, pwrconv.f, sctfcoil.f, struct.f, supercond.f,
tfcpwr.f, bldgs.f, vacuum.f

bldgcom.h, bldgvol.h, build.h, estocom.h, fwblsh.h, heatrinp.h,
heattr.h, htpwr.h, pfcoil.h, pfelect.h, pwrcom.h, struccom.h,
tfcoil.h, times.h, torsdat.h, vaccom.h, vltcom.h

These files contain the description of the machine geometry and its major systems,
including the PF and TF coil sets, the first wall, blanket and shield, and other items
such as the buildings, vacuum system, power conversion and the structural components.
Table 2.4 summarises the engineering source file contents.

2.2.2.4 Costing Modules

costs.f
cost.h

These files perform all the cost calculations, including values in M$ for each machine
system, and the cost of electricity in m$/kWh.



Chapter 2 Program Overview — The Fundamentals 27

source file description

radialb.f machine build

fubs.f first wall, blanket and shield
pfcoil.f PI* coil calculations

pfscl.f PF coil current scaling method
induct.f inductance calculations
tfcoil.f TF coil calculations

sctfcoil.f | superconducting TF coil calculations
supercond.f | superconducting coil limits

tfcpwr.f superconducting TF coil power conversion
pwrconv.f TT and PT coil power conversion
heatpwr.f heat transport and power balances
acpow.f total plant power needs

struct.f support structure calculations

bldgs.f buildings calculations

vacuum.f vacuum system calculations

Table 2.4: Summary of the engineering modules in PROCESS.

2.2.2.5 Other Modules

aamain.f, initial.f, input.f, output.f
osections.h

These files perform miscellancous tasks, such as initialisation of variables and file input
/ output. File aamain.f contains the main program, and includes the overall controlling
loop.

2.2.3 Variable Descriptor File

The variable descriptor file, var.des, contains a great deal of information of value to the
user of PROCESS. Every variable contained in the INCLUDE files is described in detail,
including the meanings of all the switch settings, the default values of those parameters not
calculated in the code, and the units that quantities are measured in. The file is ordered
into sections that again reflect the modular structure of PROCESS, and by referring to it
the user can instantly see which variables are capable of being changed in the input file.



Chapter 3

Physics and Engineering Models

There are a great number of individual models within PROCESS, characterising many
different aspects of a tokamak power plant. Several of these will always be used by the
code and so require no input by the user to activate them. However, in many cases there
is a choice of model available, and each of these has its own user-controlled switches or
flags. This chapter summarises these models, and indicates their location and interaction
within the code, together with the relevant switch settings and required parameter values.
The nomenclature used, and instructions on how to set switches, etc., are explained fully
in Chapter 4.

3.1 Physics Models

3.1.1 Plasma Profiles

All the plasma profiles are assumed to be parabolic, that is, of the form

Density : n(r) = np (1 - (2)2) " (3.1)

a

7, (1 - (-’&) )GT (3.2)

Current : J(r) = Jo (1 - (1)2) - (3.3)

Temperature : T'(r)

a

where r varies from 0 to «, the plasma minor radius. This gives volume-averaged values
(n) = no/(1 + a,), etc. These volume averages are used throughout the code, along with
the profile indices a, thus making the code “1-D”. The relevant profile index variables
alphan, alphat and alphaj in the code are set in input block PHYDAT.

28



Chapter 3 Physics and Engineering Models 29

3.1.2 Beta Limits
3.1.2.1 Troyon limit on the total beta [8]
The Troyon beta limit is given by

gI(MA)

(B) < W (3.4)

where By is the axial vacuum toroidal field, and £ is defined with respect to the total
equilibrium B-field [7].
Flags : e Set dnbeta in input block PHYDAT to the required coefficient g¢.
e Set iculbl = 0 in input block PHYDAT

e Turn on constraint equation no. 24 with iteration variable no. 36
(fbetatry) — see Chapter 4.

Routines : e CULBLM is called by PHYSICS

3.1.2.2 Troyon limit on the thermal beta [7]

The Troyon beta limit is given by Equation 3.4. To apply the limit to only the thermal
component of the plasma beta, use the following:

Flags : e Set dnbeta in input block PHYDAT to the required coefficient g.
e Sct iculbl = 1 in input block PHYDAT

e Turn on constraint equation no. 24 with iteration variable no. 36
(fbetatry)

Routines : e CULBLM is called by PHYSICS

3.1.2.3 Limit on e.f3, value

To apply a limit to the value of €.3,, where ¢ = a/R is the inverse aspect ratio:-

Flags : e Set epbetmax in input block PHYDAT to the required limiting value

e Turn on constraint equation no. 6 with iteration variable no. 8
(fbeta)



Chapter 3 Physics and Engineering Models 30

3.1.3 Density Limits

Six density limit models [7] are available in PROCESS. These are calculated in routine
CULDLM, which is called by PHYSICS. To enforce any of these limits, set iculdl = 1 in
input block PHYDAT, and turn on constraint equation no. 5 with iteration variable no. 9
(fdene). In addition, flag idensl must be set to the relevant value, as follows:-

3.1.3.1 ASDEX model
Flags : e Set idensl = 1 in input block PHYDAT

3.1.3.2 Borrass model for ITER, I
Flags : e Sel idensl = 2 in input block PHYDAT

3.1.3.3 Borrass model for ITER, II
Flags : e Sect idensl = 3 in input block PHYDAT

3.1.3.4 JET edge radiation model

Flags : e Sect idensl = 4 in input block PHYDAT

3.1.3.5 JET simplified model
Flags : e Set idensl = 5 in input block PHYDAT

3.1.3.6 Hugill-Murakami M.q model
Flags : e Sct idensl = 6 in input block PHYDAT



Chapter 3 Physics and Engineering Models 31

3.1.4 Plasma Current Scaling Laws

Seven plasma current scaling laws exploiting the inverse relationship between plasma
current and edge safety factor ¢, [7] are available in PROCESS. These are calculated in
routine CULCUR, which is called by PHYSICS. Flag iculcr must be set to 1 in input block
PHYDAT. In addition, flag icurr must be set to the relevant value, as follows:-

3.1.4.1 Peng analytic fit
Ilags : e Set icurr = 1 in input block PHYDAT

3.1.4.2 Peng double null divertor scaling (TART)
Flags : e Set icurr = 2 in input block PHYDAT

Routines : e PLASC is called by CULCUR

3.1.4.3 Simple ITER scaling
Flags : e Set icurr = 3 in input block PHYDAT

3.1.4.4 Revised ITER scaling
Flags : e Set icurr = 4 in input block PHYDAT

3.1.4.5 Todd empirical scaling I
Flags : e Set icurr = 5 in input block PHYDAT

3.1.4.6 Todd empirical scaling II
IFlags : e Set icurr = 6 in input block PHYDAT

3.1.4.7 Connor-Hastie model
Flags : e Set icurr = 7 in input block PHYDAT

Routines : e CONHAS is called by CULCUR



Chapter 3 Physics and Engineering Models 32

3.1.5 Confinement Time Scaling Laws

No less than twenty energy confinement time scaling laws [7, 8, 9] are present within
PROCESS. These are calculated in routine PCOND. The value of isc in input block
PHYDAT determines which of the scalings is used in the plasma energy balance calculation.
Table 3.1 summarises the available scaling laws.

Routines : e GAMFUN is called by PCOND
e PCOND is called by PHYSICS, FHZ and IGMARCAL
e FHZ is called (indirectly) by IGMARCAL
e IGMARCAL is called by OUTPUT

isc || scaling law

1 || Neo-Alcator (ohmic)

2 || Mirnov (H-mode)

3 || Merezhkin-Muhkovatov (L-mode)
4 || Shimomura (H-mode)

5 || Kaye-Goldston (L-mode)

6 || ITER 89-P (L-mode)

7 || ITER 89-O (L-mode)

8 || Rebut-Lallia (L-mode)

9 || Goldston (L-mode)

10 || T10

11 || JAERI-88

12 || Kaye-Big Complex

13 || ITER 1190-P (H-mode)

14 || ITER Mix (minimum of 6 and 7)
15 || Riedel (L-mode)

16 || Christiansen et al. (L-mode)
17 || Lackner-Gottardi (L-mode)
18 || Neo-Kaye (L-mode)

19 || Riedel (H-mode)

20 || ITER H90-P (amended)

Table 3.1: Summary of the energy confinement time scaling laws in PROCESS. These
laws are all cited in [7, 8] and references therein, with the exception of law 20 [9].



Chapter 3 Physics and Engineering Models 33

3.1.6 Bootstrap Current Scalings

The fraction of the plasma current provided by the so-called bootstrap effect can be either
input into the code directly, or calculated using one of three methods, as summarised here.

3.1.6.1 Direct input
Flags : e Set bscfmax in input block PHYDAT to (—1) times the required
bootstrap current fraction.
3.1.6.2 ITER scaling (not TART) [8]

Flags : e Set bscfmax in input block PHYDAT to the maximum required
bootstrap current fraction (< 1).

e Set ibss = 1 in input block PHYDAT

Routines : e BOOTST is called by PHYSICS

3.1.6.3 General scaling [10]

Flags : o Set bscfmax in input block PHYDAT to the maximum required
bootstrap current fraction (< 1).

e Set ibss = 2 in input block PHYDAT

Routines : e BSINTEG is called (indirectly) by FNEWBS
e FNEWBS is called by PHYSICS

3.1.6.4 Numerically fitted scaling [7]

Flags : e Set bscfmax in input block PHYDAT to the maximum required
bootstrap current fraction (< 1).

e Set ibss = 3 in input block PHYDAT

Routines : o CULBST is called by PHYSICS



Chapter 3 Physics and Engineering Models ' 34

3.1.7 Current Drive

In addition to inductive current drive, eight non-inductive current drive efficiency
models [7] are present in PROCESS. The fraction of the volt-seconds to be produced
by non-inductive means, fvsbrani, should be set in input block PHYDAT, and flag irfcd
in input block CDDAT should be set to 0 for purely inductive scenarios, or 1 otherwise.
The current drive efficiency model to be used in this latter case is defined by the value of
flag iefrf in input block CDDAT:-

3.1.7.1 Fenstermacher Lower Hybrid model
Flags : e Set iefrf = 1 in input block CDDAT

Routines : e CUDRIV is called by CALLER

3.1.7.2 Ion cyclotron model [8]
Flags : e Set iefrf = 2 in input block CDDAT

Routines : e CUDRIV is called by CALLER

3.1.7.3 Fenstermacher electron cyclotron resonance model

Flags : e Set iefrf = 3 in input block CDDAT

Routines : o CUDRIV is called by CALLER

3.1.7.4 Ehst Lower Hybrid model
Flags : e Set iefrf = 4 in input block CDDAT

Routines : e CUDRIV is called by CALLER

3.1.7.5 ITER neutral beam model [8, 7]
Flags : e Set iefrf = 5 in input block CDDAT
Routines : e XLMBDABI is called by CFNBI

e CFNBI, ETANB and SIGBEAM are called by ITERNB
e ITERNB is called by CUDRIV



Chapter 3 Physics and Engineering Models 35

3.1.7.6 Culham Lower Hybrid model [7]
Flags: e Set iefrf = 6 in input block CDDAT
Routines : e LHEVAL is called by LHRAD

e LHRAD is called by CULLHY
e CULLHY is called by CUDRIV

3.1.7.7 Culham electron cyclotron model [7]

IFlags : e Set iefrf = 7 in input block CDDAT

Routines : e LEGEND is called by ECCDEF
e ECCDEF is called by CULECD
e CULECD is called by CUDRIV

3.1.7.8 Culham neutral beam model [7]
Flags : e Set iefrf = 8 in input block CDDAT

Routines : o XLMBDABI is called by CFNBI
e CFNBI, GAMFUN, SIGBEAM and ETANB2 are called by CULNBI
e CULNBI is called by CUDRIV
It is sometimes useful to adjust artificially the current drive efficiency values produced
by these routines. This can be achieved by setting the scaling coefficient feffcd in input

block CDDAT. The wall plug to plasma efficiencies can also be adjusted, by changing the
relevant variable etaech, etalh or etanbi in input block CDDAT.



Chapter 3 Physics and Engineering Models 36

3.1.8 Other Physics Switches
3.1.8.1 Plasma cross-sectional shape

Switch ishape in input block PHYDAT controls whether the the input values for the plasma
elongation (kappa) and triangularity (triang) should be used (ishape = 0), or whether
they should be scaled with the plasma aspect ratio (ishape = 1). The latter case should
only be used with a TART machine.

3.1.8.2 Fusion power calculations

Switch iiter in input block PHYDAT controls which model for the fusion power calculations
should be used. Il iiter = 1, the ITER model [8] is used.

3.1.8.3 Neo-classical correction effects

Switch ires in input block PHYDAT controls whether neo-classical correction effects are
included in the calculation of ohmic heating power in routine POHM, which is called by
routine PHYSICS. If ires = 1, these ellects are included.

3.1.8.4 Aspect ratio scaling of Troyon g coefficient

Switch gtscale in input block PHYDAT determines whether the Troyon g coeflicient dnbeta
(Equation 3.4) should scale with aspect ratio (gtscale # 0), or be fixed at the input value
(gtscale = 0).

3.1.8.5 Inverse quadratic in 7z scaling laws

Switch iinvqd in input block PHYDAT determines whether the energy confinement time
scaling laws due to Kaye-Goldston (isc = 5) and Goldston (isc = 9) should include an
inverse quadratic scaling with the Neo-Alcator result (isc = 1). A value iinvqd = 1
includes this scaling.



Chapter 3 Physics and Engineering Models 37

3.2 Engineering Models

3.2.1 TF Coil Position

The relative radial positions of the TF coil inboard legs and the OH coil are controlled
using flag iohcie in input block BLD. If this is set to 2, then the relative positions are as
shown in Figure 2.1. If, however, iohcie = 1, the radial build is altered so that, starting
from the centreline (R = 0), the component order is: bucking cylinder, TF coil, gap, O
coil, cryostat, and then continuing as in Figure 2.1. This latter case is generally only used
for TART machines, which have a zero thickness machine bore, thereby creating a single
centrepost out of the inner TF coil legs.

3.2.2 TF Coil Type

The TT coils can be either resistive (copper) or superconducting. The following switches
control the options available for the different TF coil types.

3.2.2.1 Copper centrepost

IFlags : e Set itart = 1 in input block PHYDAT
e Set itfsup = 0 in input block TFC

Routines : o CNTRPST is called by CALLER and OUTPUT
' e TFCOIL is called by CALLER
e FWBS is called by CALLER and OUTPUT

3.2.2.2 Superconducting TF coils

Ilags : e Set itart = 0 in input block PHYDAT
e Set itfsup = 1 in input block TFC

Routines : o COILSHAP, TFCIND, STRESSCL and OUTTF are called by SCTFCOIL
e SCTFCOIL is called by TFCOIL
e PROTECT is called by SUPERCON
e SUPERCON is called by TFSPCALL
e TFSPCALL is called by CALLER and OUTPUT



Chapter 3 Physics and Engineering Models 38

3.2.2.3 Resistive TF coils (not TART)
Flags : e Set itart = 0 in input block PHYDAT
e Set itfsup = 2 in input block TFC

Routines : e CONCOPTF is called by TFCOIL

3.2.3 Superconducting TF Coil Options

The following options are available within the superconducting TF coil model, for which
flags itart = 0 and itfsup = 1.

3.2.3.1 Stress model

Switch itfmod in input block TFC controls whether a simple or more complex stress model

should be used.
Simple stress model:

Flags : e Set itfmod = 0 in input block TFC
Routines : e SCTFJALW is called by STRESSCL
e STRESSCL is called by SCTFCOIL
Complex stress model:
Flags : e Set itfmod = 1 in input block TFC

Routines : e EYNGEFF, TFSTRESS and SIGVM are called by STRESSCL
e STRESSCL is called by SCTFCOIL

3.2.3.2 Superconducting materials

Three superconducting materials are presently available within PROCESS. The one used
by the code is determined from the value of switch isumat in input block TFC:

Flags : e Set isumat = 1 for binary Nb3Sn superconductor

Sel isumat = 2 for ternary NbsSn superconductor

e Set isumat = 3 for NbTi superconductor

Routines : o PROTECT is called by SUPERCON
SUPERCON is called by TFSPCALL
TFSPCALL is called by CALLER and OUTPUT



Chapter 3 Physics and Engineering Models 39

3.2.4 PF Coil Options
3.2.4.1 PF Coil Position

The PI coil locations are controlled using a set of switches stored in array ipfloc (see
Figure 2.1), and are calculated in routine PFCOIL. The coils are (usually) organised into
groups containing two PF coils placed symmetrically above and below the midplane, and

each group j has an element ipfloc(j) assigned to it.
In the following, all variables are defined in the variable descriptor file var.des. The
values for rpf1, rpf2, zref(j) and routr in input block PFC should be adjusted by the

user to locate the PF coils accurately.

Flags : e Set ngrp in input block PFC to the number of symmetric pairs of
PF coils.

o Set ncls(j) in input block PFC to the number of coils in each
group j — this should be 2 in each case.

e Set ipfloc(j) in input block PFC as follows:

ipfloc(j) = 1 : PF coils are placed above the OH coil:

R = rohc + rpfi
Z = =(hmax*ohhghf + 0.3)

Clearly, only one group of PF coils can be placed here.

ipfloc(j) = 2 : PF coils are placed above the TF coils:

R = rmajor + rpf2*triang*rminor
7 - +(hmax - zref(j)) iohcie = 1 (TART)
~ | *(hmax + tfcth + 0.86) iohcie = 2

Clearly, only one group of PF coils can be placed here if iohcie = 2.

ipfloc(j) = 3 : PF coils are placed radially outside the TF coils:

R = rtot + tfthko/2.0D0 + routr
Z = Z(rminor*zref(j))

Any number of groups of PF coils can be placed here.



Chapter 3 Physics and Engineering Models 40

3.2.4.2 PF Coil Resistance

The PT coils can be either resistive or superconducting. This is determined from the
value of ipfres in input block PFC. If ipfres = 0, the PF and OH coils are assumed
to be superconducting. If ipfres = 1, they are assumed to be resistive, with resistivity
given by the value of variable pfclres in input block PFC.

3.2.4.3 PF Coil Current Scaling

The PT coil current scaling algorithm used by PROCESS depends on the value of switch
istokpf in input block PFC. If istokpf = 1, then a simple scaling is used which is relevant
to TART machines. If istokpf = 2 a more complicated scaling is used, which is valid
for conventional aspect ratio machines.

3.2.5 OH Coil Options

Switch iohcl in input block BLD controls whether an OH coil is present. A value of 1
denotes that this coil is present, and should be assigned a non-zero thickness ohcth in
input block BLD. A value of iohcl = 0 denotes that no OH coil is present, in which case
the thickness ohcth should be set to zero.

3.2.5.1 OH Coil Swing Time

The length of time taken for the OH coil current to reverse (see Figure 2.4) is determined
from the value of switch tohsin in input block TIME. If tohsin = 0.0DO0, then the swing
time tohs is given by tohs = I,/0.5, where I, is the plasma current in MA. If tohsin
# 0.0DO0, the swing time tohs = tohsin.

3.2.6 Other Engineering Models
3.2.6.1 Scrape-off width

Switch iscrp in input block PHYDAT determines whether the scrape-off widths should be
calculated as 10% of the plasma minor radius (iscrp = 0), or set equal to the input
values scrapli and scraplo (iscrp = 1).

3.2.6.2 First wall, blanket and shield

The various material fractions making up these components are all available to be changed
in input block FWBLSH.



Chapter 3 Physics and Engineering Models 41

3.2.6.3 Divertor model
Two switches in PROCESS determine which divertor model to use. The first of these,

idivrt in input block PHYDAT, controls the plasma configuration:

Flags : e Set idivrt = 0 for limiter configuration

1 for single null configuration (diverted side down)

e Set idivrt

e Set idivrt = 2 for double null configuration

In fact, it is recommended that only idivrt = 2 should be used, as the PF coil current
scaling algorithms only allow for this model.

The second switch relevant to the divertor system is istok in input block PHYDAT. This
controls whether a gaseous divertor concept [2] is assumed and a simple divertor heat
load calculation is employed (istok = 1), or whether the Harrison-Kukushkin-Hotston
model [8] developed for ITER is used (istok = 2). The first of these is relevant only for
TART machines. The second, more complicated model, is appropriate for conventional
aspect ratio machines, but care should be taken in inputting the divertor magnetics for
this model, and projections far from the ITER CDA machine parameters are likely to be
unreliable.

The divertor calculations are carried out in routines DIVCALL and DIVERT.

3.2.6.4 Heat transport and power conversion

Many of the power conversion efficiencies shown in Figure 2.5 can be adjusted by the

user. The primary coolant is controlled by switch ihts in input block HTPWR. If ihts =
0, water is used; if ihts = 1, a liquid metal coolant is assumed.

3.2.6.5 Vacuum pump

Switch ntype in input block VACCY controls whether a turbopump (ntype = 0) or a
cryopump (ntype = 1) is used in the vacuum system.



Chapter 3 Physics and Engineering Models 42

3.3 Cost Models

The cost accounting used by PROCESS combines methods [11] used in the TETRA
code [1] and the Generomak [12] scheme. The costs are split into the standard accounting
categories [13] generally used in the reporting of power plant costs. The best references
for the algorithms used are [2], and source file costs.f in the code itself.

The majority of the costed items have a unit cost associated with them. These values scale
with (for example) power output, volume, component mass etc., and many are available
to be changed in input block COSTINP. All costs and their algorithms correspond to 1990
dollars.

3.3.1 Cost Options
3.3.1.1 Level of safety assurance

Many of the unit costs have four possible choices, relating to the level of safety
assurance [14] flag 1sa in input block COSTINP. A value 1sa = 1 corresponds to a plant
with a full safety credit (i.e. is truly passively safe). Levels 2 and 3 lie between the two
extremes, and level 4 corresponds Lo a present day fission reactor, with no safety credit.
It is recommended that a value of 1sa = 3 or 1sa = 4 should be used.

3.3.1.2 Replaceable components

The first wall, blanket, divertor and current drive system have relatively short lifetimes
because of their hostile environment, after which they must be replaced. Because of this
frequent renewal they can be regarded as though they are “fuel” items, and can be costed
accordingly. Switch ifueltyp in input block COSTINP is used to control whether this
option is used in the code. If ifueltyp = 1, the costs of the first wall, blanket, divertor
and a fraction fcdfuel of the cost of the current drive system are treated as fuel costs. If
ifueltyp = 0, these are treated as capital costs. Variable fcdfuel is contained in input
block COSTINP.

3.3.1.3 Cost of electricity calculations

Switch ireactor in input block COSTINP determines the type of cost of electricity
calculation that is performed. If ireactor = 0, no cost of electricity calculation is
performed. If ireactor = 1, then this calculation s performed, with the value quoted in
units of m$/kWh. If ireactor = 3 a simple capital cost calculation is performed only.



Chapter 3 Physics and Engineering Models 43

3.3.1.4 Net electric power calculation

Related to the cost of electricity is the net electric power calculation performed in routine
POWER. It is possible that the net electric power can become negative due to a high
recirculating power. Switch ipnet in input block COSTINP determines whether the net
electric power is scaled to always remain positive (ipnet = 0), or whether it is allowed to
become negative (ipnet = 1), in which case no cost of electricity calculation is performed.

3.4 TART Switches

As stated above, there are many switches that must be set if a TART machine is to be
modelled by PROCESS. Switch itart is used to provide overall control of the various
switches relating to conventional and tight aspect ratio machine options. Table 3.2
summarises the switch values relevant to each aspect ratio regime.

conventional aspect ratio | tight aspect ratio

switch itart = 0 itart = 1
ibss 1,23 2,3

icurr 1,3,4,5,6,7 2

ishape 0 0,1

istok 2 1

itfsup 1,2 0
istokpf 2 1

iohcie 2 1

Table 3.2: Summary of the switch values in PROCESS that relate to conventional aspect
ratio and light aspect ratio machines. The value of itart provides overall control of these
options — the code will stop if an inconsistent set of values is attempted.



Chapter 3 Physics and Engineering Models 44

3.5 Other Switches and Models

3.5.1 Output Control

Since the user may only be interested in a small proportion of the code’s output, a set of
switches exist in input block 0SECTS that control whether a given section of the output
file is produced. Table 3.3 indicates how these switches affect the output.

switch | relevant output section
sect01 | power plant costs
sect02 | detailed costings
sect03 | plasma

sect04 | current drive system
sect05 | divertor

sect06 | machine build

sect07 | TT coils

sect08 | PF coils

sect09 | volt second consumption
sect10 | support structure
sectil | PF coil inductances
sect12 | shield / blanket
sect13 | power conversion
sect14 | heat transport

sect15 | vacuum system

sect16 | plant buildings

sect17 | AC power

sect18 | neutral beams

sect19 | electron cyclotron heating
sect20 | Lower Hybrid heating

Table 3.3: Summary of the switches in PROCESS that control the format of the outpu
file. If a swilch has a value 0, the relevant oulput section does not appear in the output
file. If its value is 1, the oulpul section is included in the output file.

3.5.2 Code Parameters Affecting Other Models

This chapter has summarised the methods by which several of the models in the code can
be activated. There are many others present, however, and it is suggested that the user
refers to the variable descriptor file, var.des. As stated earlier, this contains details of



Chapter 3 Physics and Engineering Models 45

all the parameters within the code that can be changed by the user, in order to customise
the machine modelled by PROCESS.



Chapter 4

Execution of the Code

The intention of this chapter is to provide a comprehensive prescription for setting up
and performing runs with the code. Firstly, the main concepts relating to the numerics
of PROCESS are defined. Then the input file’s structure and format is described. The
user is then taken through the process of setting up the code to model a new machine,
and finally an attempt is made to indicate and solve the problems that the user will face
whilst trying to achieve a feasible solution.

4.1 Main Concepts

4.1.1 Variable Descriptor File

Great emphasis has already been placed on using the variable descriptor file because of
its role as an invaluable resource for the user of PROCESS. It acts as a dictionary /
reference manual for the code’s variables, and contains the following information about
each:

® name

e type — real = single precision real; dble = double precision real; intg = integer;
char = character string

e dimensions (of arrays)

46



Chapter 4 Execution of the Code 47

default value(s) of those variables that are not initially derived from a combination
of other values. The default values are mostly set in routine INITIAL

description, including physical units if relevant

for switches/flags, the meanings of all allowed values

e iteration variable number, if relevant

e corresponding constraint equation, if relevant

In addition, global code parameters are labelled PAR. These can only be changed by
editing the relevant INCLUDE file, but this should not be carried out unless it is absolutely
necessary.

All the variables that are shown with a default value are available to be changed by the
user using the input file (Section 4.2), except for those which are labelled FIX. Variables
not shown with a default value are calculated by the code from a combination of other
parameters, and so it would be meaningless to initialise them. Obviously, these variables
cannot be changed using the input file.

It is exceedingly important to keep the variable descriptor file up to date.

4.1.2 Input Parameters

Input parameters make up a large proportion of the variables listed in the variable
descriptor file. They comprise all those variables that, once set in the initialisation routine
or redefined in the input file, do not change throughout a PROCESS run. In fact, only
those variables defined as iteration variables (Section 4.1.4) can change during the course

of a run.

4.1.3 Constraint Equations

Any computer program naturally contains myriads of equations. The built-in equation
solvers within PROCESS act on a special class, known as constraint equations, all of which
are formulated in routine CON1 in source file eqns.f. Table 4.1 summarises the constraint
equations available in PROCLSS. These can be split into two types — (1) consistency
equations, that enforce consistency between the physics and engineering parameters, and



Chapter 4 Execution of the Code 48

(2) limit equations, that enforce various parameters to lie within their allowed limits. The
neqns constraint equations that the user chooses for a given run are activated by including
the equation numbers in the first neqns elements of array icc in input block INPT1.

4.1.3.1 Consistency equations

Consistency equations are usually equalities that ensure that the machine produced
by PROCESS is self-consistent. This means, therefore, that many of these constraint
equations should always be used, namely equations 1, 2, 10 and 11 (see Table 4.1).
Equation 7 should also be activated if neutral beam injection is used and equation 15
should be used if a TART machine is being modelled. The other consistency equations
can be activated if required.

A typical consistency equation ensures that two functions g and h are equal:

g(.’lf,y, Zyes ) = h(.’L‘,y, By )
g

c = 1—=
h

The equation solvers VMCON and HYBRD need the constraint equations ¢; to be given
in the form shown, since they adjust the iteration variables so as to obtain ¢; = 0, thereby

ensuring that ¢ = h.

4.1.3.2 Limit equations

The limit equations are usually inequalilies that ensure thatl various physics or engineering
limits are not exceeded. Each of these equations has an associated f-value, which allow
them to be coded as equalities. The f-values are used as follows.

In optimisation mode, all iteration variables have prescribed lower and upper bounds. In

general, limit equations have the form

caleulated quantity = f X mazimum allowable value

where f is the f-value. If f has a lower bound of zero and an upper bound of one, then
the limit equation does indeed constrain the calculated quantity to lie between zero and
its maximum allowable value, as required.



Chapter 4 Execution of the Code 49

As with the consistency equations, the general form of the limit equations is
g
C;, = 1-f.=
f h
where g is the maximum allowed value of the quantity h.

Sometimes, the limit equation and f-value are used to ensure that quantity A is larger
than its minimum value g. In this case, 0 < f <1 (as before), but the equation takes the

{form 5
e =1~—f—
g

By fixing the f-value (i.e. not including it in the ixc array), the limit equations can be
used as equality constraints. For example, to set the net electric power to a certain value,

the following should be carried out:

1. Activate constraint equation 16 by including it in the first neqns elements of array
icc in input block INPT1

)

Set fpnetel = 1.0DO0 in input block INEQDAT

3. Ensure that fpnetel (iteration variable no. 25) DOES NOT appear in array ixc in
mput block INPT1

4. Set pnetelin in input block INEQDAT to the required net electric power

Limit equations are not restricted to optimisation mode. In non-optimisation mode,
the iteration variables are not bounded, but the f-values can still be used to provide
information about how calculated values compare with limiting values, without having to
change the characteristics of the device being benchmarked to find a solution.

It is for this reason that all the constraint equations used in PROCESS are formulated as
equalities, despite the fact that equation solver VMCON can solve for inequalities as well.
The use of {-values precludes this need, and allows the non-optimising equation solver
HYBRD to use the same constraint equations.



Chapter 4 Execution of the Code

50

ice corresponding
no. | description ype | ixc variables

1 | plasma beta consistency C |5

2 | global power balance @ 10,1,2,3,4,6,11

3 | ion power balance C |10,1,2,3,4,6,11

4 | electron power balance ¢ 10,1,2,3,4,6,11

5 | density limit L |91,234,56

6 | epsilon-beta poloidal limit L |81,2346

7 | beam ion density (NBI) c |7

8 | wall load limit L 14,1,2,3,4,6

9 | fusion power limit L 6,1,2,3,4

10 | field at coil / field on axis C [12,1,2,3,13

11 | radial build = major radius c |3,1,13,16,29

12 | volt second limit L 15,1,2,3

13 | edge q limit L 17,1,2,3,18

14 | beam energy (NBI) C |[19,1,2,36

15 | centrepost conductor average temperature (TART) | C | 20,21,22,23

16 | net electric power limit L 25,1,2,3

17 | peak centrepost temperature limit (TART) L | 26,13,16,21,22,23
18 | divertor heat load limit L |27

19 | MVA limit L |30

20 | port size limit L 33.31,3,13

21 | minor radius limit L |32

22 | divertor collisionality limit L |34

23 | TF coil current density limit L 28,12

24 | Troyon beta limit L | 36,1,2,3,4,6,18
25 | toroidal field limit L 35,3,13,29

26 | OH coil current density at End of Flat-top L | 38,12

27 | Ol coil current density at Beginning of Pulse L | 39,2

28 | energy multiplication @ limit L | 454740

29 | inboard radial build = specified value C |31

30 | injection power limit L |4647,11

31 | TF coil case stress limit (SCTF) L | 48,56,57,58,59,60
32 | TF coil conduit stress limit (SCTT') L | 49,56,57,58,59,60
33 | Ioperational/ Teritical limit (SCTF) L |50,56,57,58,59,60
34 | dump voltage limit (SCTF) L | 51,56,57,58,59,60
35 | Jwinding pack! Tprotection limit (SCTF) L | 53,56,57,58,59,60
36 | TF coil temperature margin limit (SCTT) L | 54,56,57,58,59,60
37 | current drive gamma limit L | 4047

Table 4.1: Summary of the constraint equations used in PROCESS. Consistency equations
are marked C, limil equations are marked L. Some (non-ezhaustive) iteration variable
numbers (see Table 4.2) that dirvectly affect the associated constraint equations are given,
the one listed first being the most relevant.



Chapter 4 Execution of the Code 51

4.1.4 Iteration Variables

It is necessary to calculate numerical derivatives during the solution of the constraint
equations. The iteration variables are the parameters that the equation solvers use for
this purpose — all the other code variables (input parameters — see above) remain fixed
at their initial value. Successive calls are made to the physics and engineering routines,
with slightly different values for the iteration variables on each call, and the equation
solver determines the effect on the output due to these small changes to the input (see
Figures 2.6 and 2.7). The nvar iteration variables that the user chooses for a given run
are activated by including the variable numbers in the first nvar elements of array ixc in
input block INPT1. Table 4.2 summarises the iteration variables available in PROCESS.

Clearly, the equation solvers need at least as many variables to iterate as there are
equations to solve, i.e. nvar > neqns. If the run is a non-optimising case, then neqns
variables are iterated — the values of the remaining (nvar-neqns) variables are left alone.
If the run is an optimising case, then all the active iteration variables are adjusted so as
to find the minimum (or maximum) value of a parameter (the figure of merit) in the
nvar-dimensional space of the problem.

All the iteration variables are constrained to lie between lower and upper bounds, stored
in arrays boundl and boundu, respectively, in input block INPT1. For instance, the plasma
electron density is, by default, confined to lie between the values 10'® m~2 and 102! m~3.
Of course, it can also be constrained to lie below the calculated density limit, if constraint
equation 5 is activated and the f-value fdene (iteration variable no. 9) is bounded by the
values 0 and 1.

4.1.5 Figures of Merit

In optimisation mode, PROCESS finds the self-consistent set of iteration variable values
that maximises or minimises a certain function of them, known as the figure of merit.
Several possible figures of merit are available, all of which are formulated in routine
FUNFOM in source file optimiz.£f. Switch minmax in input block INPT1 is used to control
which figure of merit is to be used, as summarised in Table 4.3. If the figure of merit is
to be minimised, minmax should be positive, and if a maximised figure of merit is desired,
minmax should be negative.



Chapter 4 Execution of the Code

52

ixc icc lower upper
no. | variable name description eqn bound bound
1 aspect plasma aspect ratio 1.100D0 | 10.00DO
2 bt toroirlal field on axis 0.010D0 | 100.0DO
3 rmajor plasma major radius 0.100D0 | 10.00DO
4 te electron temperature 5.000D0 | 500.0DO
5 beta plasma beta 0.001D0 | 1.000DO
6 dene electron density 1.00D19 | 1.00D21
7 rnbeam hot beam density / electron density 1.00D-6 | 1.00D20
8 fbeta f-value for ¢.3p limit eqn 6 0.001D0 | 1.000DO
9 fdene f-value for density limit eqn 5 0.001D0 | 1.000DO
10 | hfact confinement time H-factor 0.100D0 | 3.000DO
11 pheat healing power not used for current drive 1.000D6 | 1.000D9
12 | oacdcp overall current density in TF coil inner leg 1.000D5 | 1.500D8
13 | tfcth TF coil inner leg thickness 0.100D0 | 5.000D0
14 fwalld f-value for wall load limit eqn 8 0.001D0 | 1.000DO
15 | fvs f-value for volt second limit eqn 12 0.000D0 | 1.000D0
16 | ohcth Ol coil thickness 0.001D0 | 1.000D2
17 | fq f-value for edge ¢ limit eqn 13 | 0.001DO | 1.000DO
18 | ¢q edge safety factor 2.000D0 | 100.0DC
19 | enbeam neutral beam energy 1.000D0 | 1.000D6
20 | tcpav average centrepost. temperature 40.00D0 | 1.000D3
21 vcool maximum coolant flow speed in centrepost 1.000D0 | 1.000D2
22 rcool average radius of coolant channel in centrepost 0.001D0 | 0.010D0O
23 | fcoolcp coolant fraction of centrepost 0.100D0 | 0.500D0
24 | cdtfleg TF coil leg overall current density 1.000D4 | 1.000D8
25 | fpnetel f-value for net electric power limit eqn 16 1.000D0 | 1.000D0
26 | fptemp f-value for peak centrepost temperature limit eqn 17 | 0.001D0O | 1.000D0
27 | fhldiv f-value for divertor heat load limit egn 18 | 0.001DO | 1.000D0O
28 | fjtfc f-value for TF coil current density limit egn 23 | 0.100D0 | 1.000DO
29 | bore machine bore 0.100D0 | 10.00D0O
30 | fmva f-value for MVA limit eqn 19 | 0.010D0 | 1.000DO
31 | gapomin minimum gap between outer shield and TF coil 0.001D0 | 1.000D1
32 frminor f-value for minor radius limit eqn 21 0.001D0 | 1.000DO
33 | fportsz f-value for port size limit eqn 20 | 0.010D0 | 1.000DO
34 | fdivcol f-value for divertor collisionality limit eqn 22 | 0.001D0O | 1.000DO
35 | fpeakb f-value for peak toroidal field limit egn 25 | 0.001DO | 1.000DO
36 | fbetatry f-value for Troyon beta limit eqn 24 0.001D0 | 1.000DO
37 | coheof OH coil current density at end of flat-top 1.000D5 | 1.000D8
38 | fjohc f-value for OH coil current at EOF limit eqn 26 | 0.010D0 | 1.000DO
39 | fjohcO f-value for OH coil current at BOP limit eqn 27 | 0.001DO | 1.000DO
40 | fgamcd [-value for current drive gamma limit egn 37 | 0.001DO | 1.000D0O
41 | fcohbop OH coil current density ratio BOP/EOF 0.001D0 | 1.000D0
42 | fhldiv (REDUNDANT) | f-value for divertor heat load limit eqn 0.001D0 | 1.000DO
43 cfel iron impurity fraction 1.00D-6 | 3.00D-3
44 | fvsbrnni fraction of volt seconds from non-inductive means 0.001D0 | 1.000DO
45 | fqval f-value for energy multiplication limit egn 28 | 0.010D0 | 0.330D0
46 | fpinj f-value for injection power limit eqn 30 | 0.001DO | 1.000DO
47 | feffed current drive efficiency multiplier 0.001D0 | 1.000DO
48 | fstrcase f-value for TF coil case stress limit eqn 31 0.001D0 | 1.000D0
49 | fstrcond f-value for TF coil conduit stress limit eqn 32 | 0.001D0O | 1.000DO
50 | fiooic f-value for TF coil operational current limit eqn 33 | 0.001D0O | 0.500D0
51 | fvdump f-value for TF coil dump voltage limit eqn 34 | 0.001DO | 1.000DO
52 | vdalw allowable TF coil dump voltage 0.001DO | 1.000D6
53 | fjprot f-value for TF coil current protection limit eqn 35 | 0.001DO | 1.000DO
54 | ftmargtf [-value for TF coil temperature margin limit egn 36 | 0.001DO | 1.000DO
55 | tmargmin minimum allowable TF coil temperature margin 0.001D0 | 100.0DO
56 | tdmptf dump time for TF coil 10.00D0 | 1.000D6
57 thkcas TF coil external case thickness 0.050D0 | 1.000DO
58 | thwendut TF coil conduit case thickness 0.001D0 | 1.000DO
59 | fcutfsu copper [raction of cable conductor 0.001DO | 1.000DO
60 | cpttf current per turn in the TF coils 0.001D0 | 4.000D4

Table 4.2: Summary of the iteration variables used in PROCESS.
to the given constraint equations (see Table 4.1).

The f-values correspond



Chapter 4 Execution of the Code 53

minmax | description

1 plasma major radius
=2 ratio of fusion power to input power
+3 neutron wall load
+4 total TF coil + PF coil power
+5 ratio of fusion power to injection power
+6 cost of electricity

capital cost if ireactor = 3
+=7 direct cost if ireactor = 0

constructed cost otherwise
+8 aspect ratio

+9 divertor heat load

+10 | toroidal field on axis

+11 injection power

Table 4.3: Summary of the figures of merit used in PROCESS. If the figure of merit is
to be minimised, minmax should be positive, and if @ mazimised figure of merit is desired,
minmax should be negative.

4.1.6 Scanning Variables

One of a number of variables can be scanned during the course of a PROCESS run. This
option provides a method of determining the sensitivity of the results to different input
assumptions. The user specifies which variable is to be scanned (see Table 4.4) and its
required value at each point in the scan. The scanned variable is defined by the value of
nsweep in input block SWEP, and this variable’s values during the scan are set in array
sweep, also in input block SWEP.

Runs involving scans of this kind can only be performed in optimisation mode. The results
from the previous scan point are used as the input to the next scan point. Routine SCAN
in source file aamain.f stores many of the output quantities in a separate file for use with
a plotting program.

Scanning of derived quantities requires use of the appropriate constraint equations. For
instance, if the net electric power is scanned, constraint equation 16 should be employed.



Chapter 4 Execution of the Code 54

nsweep | scan variable | description
1 aspect aspect ratio
2 hldivlim maximum divertor heat load
3 pnetelin required net electric power
4 hfact confinement time H-factor
5 oacdcp overall current density in TF coil inner leg
6 walalw allowable wall load
7 beamfus0 beam-background fusion multiplier
8 fqval f-value for energy multiplication equation
9 te electron temperature
10 boundu(15) | upper bound on f-value fvs
T dnbeta Troyon ¢ coefficient
12 bscfmax bootstrap current fraction (use negative values)

Table 4.4: Summary of the scanning variables available in PROCESS.

4.2 The Input File

The input file is used to change the values of the physics, engineering and other code
parameters from their default values, and to set up the numerics (constraint equations,
iteration variables etc.) required to define the problem to be solved.

4.2.1 File Structure

The input file is divided into input blocks pertaining to the modular structure of
PROCESS itself. Each INCLUDE file has a corresponding input block, as shown in
Table 2.1.

This file structure is derived from that used in an old version of PROCESS, which
used the NAMELIST method to read in data. This has now been superseded by
FORTRAN 77 standard routines, which also allow a great deal of error-trapping to be
carried out at the input stage. All input data are now screened for non-sensible values.
This is a necessary addition to the code, since UNIX workstation systems using RISC
processors are notorious at not terminating programs when an arithmetically impossible
or undefined operation (“NaN” error) is encountered.



Chapter 4 Execution of the Code 55

4.2.2 Format Rules

The following rules must be obeyed when writing an input file:

o

ot

-1

o

9,

10.

11.

13.

14.

Each input block must start with the block name preceded by a dollar sign ($), and
end with a $END statement.

Each variable must be on a separate line, within the correct input block.

There should be no leading spaces before the variable name, input block name or
$END statement.

Variable names, input block names and $END statements can be upper case, lower
case, or a mixture of both.

Spaces may not appear within a variable name or data value.
Other spaces within a line, and trailing spaces, are ignored.
Commas are not necessary between variables.

Data can extend over more than one line.

One-dimensional arrays can be explicitly subscripted, or unscripted, in which case
the following element order is assumed: A(1), A(2), A(3),...

At present, multiple dimension arrays can only be handled without reference to
explicit subscripts, in which case the following element order is assumed: B(1,1),
B(2,1), B(3,1),... The use of the input file to specify multiple dimension array
elements is prone to error.

Unscripted array elements must be separated by commas.
Blank lines are allowed anywhere in the input file.
Lines starting with a * are assumed to be comments.

Comment lines starting with five or more asterisks (i.e. *****) are reproduced
verbatim in the output file. These should be used copiously to give a great deal
of information about the run being performed, and should be updated before every
single run of the code, as it is very easy to lose track of what is being attempted.



Chapter 4 Execution of the Code 56

It is good practice to include all the input blocks in the input file, even if none of
the variables in some of them need changing. In this case, the $END statement should
immediately follow (on the next line) the input block name statement, or a variable
should be added in the usual way, but given its default value as set in routine INITIAL.

The following is a valid input block in the input file (the vertical lines denote the “edge”
of the input file) :

* This line is a comment that will not appear in the output
***** This line is a comment that will appear in the output
$inptl
boundl (1) = 2.5,
BOUNDU(10) = 3.,
BOUNDU(45) = 1,
* Another comment... Note that real values can be entered as if
* they were integers, but NOT vice versa.
epsfcn = 10.e-4,
Ftol = 1.D-4,
Icc = 2, 10, 11, 24, 31
ixec = 10, 12, 3, 36, 48,
1, 2, 6, 13, 16,

IOPTIMZ = 1,
maxcal = 200
NEQNS = 5,
NVAR = 10,
$END

The following are invalid entries in the input file:

$inptl
boundl(1,1) = 2.5,
BOUNDU(N) = 3.,
A line of ‘random’ characters like this will clearly wreak havoc
* This is a comment with the asterisk not in the first column
eps fcn = 10.e-4, ftol = 1.D-4
epsvmc = 1.0 e-4
maxcal = 200
ICC = 2 10 11 24 31
IOPTIMZ = 1.0,
$END




Chapter 4 Execution of the Code 57

4.3 Running the Code

This section will attempt to guide the user through the actual running of the code in its
various modes. In most cases only minor changes to the input file are necessary to change
the code’s mode of operation — usually the physics and engineering variables, etc. remain
unchanged, with the major differences occurring in the numerical input only.

4.3.1 Non-optimisation Mode

Non-optimisation mode is used to perform benchmark comparisons, whereby the machine
size, output power etc. are known and one only wishes to find the calculated stresses,
beta values and fusion powers, for example. When starting to model a new machine,
PROCESS should always be run first in non-optimisation mode, before any attempt is
made to optimise the machine’s parameters.

The first thing to do is to add to the input file all the known details about the machine
to be modelled. This may include some or all of the following:

¢ machine build (input block BLD)

e aspect ratio (input block PHYDAT)

o PI° coil locations (input block PFC)

e type of current drive to be used (input block CDDAT)
e net electric power (input block INEQDAT)

e various physics parameters (input block PHYDAT), e.g.

— toroidal field on axis
— electron density

— electron temperathre
— elongation

— triangularity

— Troyon g¢ coeflicient

— edge safety factor



Chapter 4 Execution of the Code 58

In addition, some of the switch values summarised in Chapter 3 may have to be altered
from their default values.

Next, the relevant numerics information must be entered. Switch ioptimz in input block
INPT1 must be set to -1 for non-optimisation mode. Then the user must decide which
constraint equations and iteration variables to activate — this choice is dictated partly
by the information required by the user, and partly by the machine being modelled itself.

As stated earlier, all the relevant consistency equations must be activated, together with
the corresponding iteration variables. A number of limit equations can also be activated,
to investigate how the calculated values compare with the physics or engineering limits.
The following is part of an example non-optimisation input file:

$INPT1
IOPTIMZ
NEQNS =
NVAR = 8

Icc= 1, 2, 10, 11, 7, 16, 5, 24,
TG 5, 10, 12, 29, 7, 9, 36, 4,
$END

= -1
8

$INEQDAT

FPNETEL = 1.0
PNETELIN = 1200.0
$END

Consistency equations 1, 2, 10, 11 and 7 are activated, together with limit equations 16,
5 and 24. This example assumes that neutral beam current drive is present (equation 7
with variable 7), and that the net electric power is to be fixed at 1200 MW. Note
the practice of vertically aligning corresponding equations and variables — constraint
equation 16 has no corresponding iteration variable (which would normally be no. 25,
fpnetel), as we want the net electric power to be fixed at the value given by pnetelin.
Since in non-optimisation mode, the number of variables must be equal to the number of
equations, we have scope to add a “free” iteration variable, in this case no. 4 — electron
temperature, to help raise the fusion power sufficiently to obtain the required net electric
power. Finally, note the use of the density and Troyon beta limit equations; the values of
the corresponding f-values will indicate if the limits are exceeded and by how much.

On running PROCESS and (hopelully) achieving a feasible result, examination of the
output may well show up discrepancies between some of the parameter values produced



Chapter 4 Execution of the Code 59

and their known values (if available). Remember that, of all the variables shown in
the variable descriptor file with a default value, only those declared as active iteration
variables can change from their initial values, whether they are set in the input file or
in the initialisation routine INITIAL. However some of the calculated parameters may be
wrong, the most common of which are as follows:

e Plasma current. This can be adjusted using the edge safety factor q in input block
PHYDAT: I, o 1/¢

o Fusion power. This scales roughly with the density profile factor alphan in input
block PHYDAT.

¢ Build parameters. It may be necessary to change non-critical thicknesses to achieve
the correct machine build.

It may still be difficult, if not impossible, to reconcile the fusion power and the net electric
power with the required values. This may well be due to the power conversion efficiency
values being used — refer to Figure 2.5.

With luck, a few iterations of this process will produce an adequate benchmark case.
A typical input file for use with PROCESS in non-optimisation mode is contained in

Appendix A.

4.3.2 Optimisation Mode

Running PROCESS in optimisation mode requires few changes to be made to the input
file from the non-optimisation case, except in input blocks INPT1, INEQDAT and SWEP —
the blocks associated with the numerics of the problem. The main differences between
optimisation mode and non-optimisation mode are:

1. Optimisation mode applies lower and upper bounds to all active iteration variables.

2. There is no upper limit to the number of active iteration variables in optimisation
mode.

3. A figure of merit must be specified in optimisation mode.

4. Scans can be performed in optimisation mode.



Chapter 4 Execution of the Code 60

Switch ioptimz in input block INPT1 must be set to 1 for optimisation mode. As before,
the user must decide which constraint equations and iteration variables to activate. Again,
the choice depends largely on the information required by the user and the extent of the
freedom that the code may have with the machine’s parameters.

The following is part of an example optimisation input file:

$INPT1

IOPTIMZ = 1

NEQNS = 16

NVAR = 19

Icc = 1, 2, 10, 11, 7, 16, 5, 24, 14, 8, 31, 32, 33, 34, 35, 36,
%6 = b, 10, 12, 28, 7, 9, 36, 19, 14, 48, 49, 50, 51, 53, 54,
4, 6, 1, 18,

BOUNDL(1) = 2.5
BOUNDU(10) = 2.0
MINMAX = 6

$END

$INEQDAT

FPNETEL = 1.0
PNETELIN = 1200.0
WALALW = 4.4

$END

$SWEP

ISWEEP = 3

NSWEEP = 11

SWEEP = 3.5, 3.7, 3.9
$END

The figure of merit in this example is the (minimum) cost of electricity (minmax = 6).
Note that additional limit equations are now active, along with a second consistency
equation related to the neutral beam current drive — the number of decay lengths to
the plasma centre is constrained to be equal to the input value (tbeamin in input block
CDDAT, which is not shown here). Furthermore, there are now more iteration variables
than constraint equations, to aid the minimisation process. Finally, note that a three-
point scan in the Troyon g coefficient dnbeta — scanning variable 11, is to be performed.



Chapter 4 Execution of the Code 61

A useful practice in optimisation mode is to perform “stationary” scans, whereby the
same value is given to the scanning variable at successive iterations. This provides a
check as to how well converged the solution has become. If scans of a given variable
are to be made over a large range of values, it is often a good idea to start the scan in
the middle of the desired range, and to split the scan in two — one going downwards
from the initial value, and the other upwards. This ensures that the whole range of the
scan produces well-converged machines (assuming a “good” initial point), without sharp
changes in gradient in the parameter values.

It should be remembered that the value of the scan variable is set in the array sweep, and
this overrules any value set for the variable elsewhere in the input file. For instance, in
the example above, the values of dnbeta set in the sweep array would overrule any value
for dnbeta set in the PHYDAT input block.

The output from an optimisation run contains an indication as to which iteration variables
lie at their limiting values. On the whole there is a greater chance of unfeasible solutions
being found whilst in optimisation mode, and Section 4.4 will hopefully be of some use
in this situation. A typical input file for use with PROCESS in optimisation mode is
contained in Appendix B.

4.4 Problem Solving

Experience has shown that the first few attempts at running PROCESS with a new input
file tends to produce unfeasible results — that is, the code will not find a consistent set of
machine parameters. The highly non-linear nature of the numerics of PROCESS is the
reason for this difficulty, and it can be a painstaking task to overcome.

4.4.1 General Problems

A code of the size and complexity of PROCESS contains myriads of equations and
variables. Virtually everything depends indirectly on everything else because of the nature
of the code structure, so perhaps it is not surprising that it is often difficult to achieve a
successful outcome.

Naturally, problems will occur if some of the parameters become unphysical. For example,
if the aspect ratio becomes less than or equal to one, then we must expect problems to
appear. For this reason, the bounds on the iteration variables and the allowed ranges of



Chapter 4 Execution of the Code 62

all the input variables have been selected with great care.

The code contains a large (though probably not exhaustive) number of error traps to
try and prevent problems from propagating. These include tests for unphysical values,
and checks to prevent divisions by zero, and non-sensible arguments for logarithms and
square roots, etc. However, occasionally arithmetic (“NaN”) errors still occur, although
their incidence is low. They now usually only occur due to unfeasibility problems (see
later).

The error messages produced by the code attempt to provide diagnostic information,
telling the user where the problem occurs, and also suggest a possible solution. These
messages are out of necessity briefl, and so cannot promise to lead to a more successful
outcome.

4.4.2 Optimisation Problems

On reflection it is perhaps surprising that PROCESS ever does manage to find the global
minimum figure of merit value, since if there are nvar iteration variables active the search
is over nvar-dimensional parameter space, in which there may be many shallow minima
of approximately equal depth. Remember that nvar is usually of the order of twenty.

The machine found by PROCESS may not, therefore, be the absolutely optimal device.
It is quite easy to have two or more solutions, with results only a few per cent different,
but a long way apart in parameter space. The technique of “stationary” scans described
in Section 4.3.2 above can often help in this situation, which is why this method is
recommended at all times.

Scans should be started in the middle of a range of values, to try to keep the scan within
the same family of machines. The optimum machine found may otherwise suddenly
jump to a new region of parameter space, causing the output variables to seem to vary
unpredictably with the scanning variable.

It should be noted that in general the machine produced by PROCESS will always sit
against one or more operation limits. If, during a scan, the limit being leant upon changes
(i.e. if the machine jumps from leaning on the beta limit to leaning on the density limit) the
output parameters may well become discontinuous in gradient, and trends may suddenly
change direction.



Chapter 4 Execution of the Code 63

4.4.3 Unfeasible Results

In the numerics section of the output file, the code indicates whether the run produced
a feasible or unfeasible result. The former implies a successful outcome. An unfeasible
result, however, occurs if PROCESS cannot find a set of values for the iteration variables
which satisfies all the given constraints. In this case, the values of the constraint residues
shown in the output give some indication of which constraint equations are not being
satisfied — those with the highest residues should be examined further. In optimisation
mode, the code also indicates which iteration variables lie at the edge of their allowed
range.

Unfeasible runs are caused either by ill-defining the problem to be solved, or by starting
the problem in an unfavourable region of parameter space. The latter can be checked
simply by changing the initial values of the active iteration variables in the input file, but
the former requires some extra work. This situation arises if there are insufficient iteration
variables for the given constraint equations. It is important to choose the right number
of useful iteration variables for the problem to be solved — it is possible to activate too
many iteration variables as well as too few, some of which may be redundant.

Unfeasible cases often produce unrealistic machines, so one should not believe the output
values from these runs. Unfortunately, the stationary scan method sometimes, though
not always, fails to help these cases, since it will tend to keep starting the run at the same
point. Ill-defined problems sometimes produce arithmetic errors, for obscure reasons.

Though a great deal of work has been performed on the code to improve its standard, there
can be no guarantee that PROCESS is entirely bug-free, simply because of its large size.
Rarely, then, it may be that an unfeasible result indicates that the code has encountered
a programming error, although its precise location will be almost impossible to find by
simply examining the output file.

It may be the case that the act of satisfying all the required constraints is impossible. No
machine can exist if the allowed operating regime is too restrictive, or if two constraint
equations require conflicting parameter spaces. In this case some relaxation of the
requirements is needed for the code to produce a successful machine design.



Chapter 4 Execution of the Code 64

4.4.4 Hints

The above sections should indicate that it is the complex interplay between the constraint
equations and the iteration variables that determines whether the code will be successful
at producing a useful result. It can be a somewhat laborious process to arrive at a working
case, and (unfortunately, perhaps) experience is often of great value in this situation.

It should be remembered that sufficient iteration variables should be used to solve each
constraint equation. For instance, a particular limit equation may be A < B, i.e. A= fB,
where the f-value f must lie between zero and one for the relation to be satisfied. However,
if none of the iteration variables have any effect on the values of A and B, and A happens
to be greater than B, then PROCESS will clearly not be able to solve the constraint.

The lower and upper bounds of the iteration variables are all available to be changed
in the input file. Constraints can be relaxed in a controlled manner by moving these
bounds, although in some cases care should be taken to ensure that unphysical values
cannot occur. The code indicates which iteration variables lie at the edge of their range.

It is suggested that constraint equations should be added one at a time, with sufficient
new iteration variables activated at each step. If the situation becomes unfeasible it can
be helpful to reset the initial iteration variable values to those shown in the output from
a previous feasible case, and rerun the code.

Finally, it should be borne in mind that the machine that is envisaged may not be a valid
solution to the constraints being imposed, no matter how many degrees of freedom (i.e.
iteration variables) are available. In this case, and many others, the user has to relax the
constraints slowly until a feasible result is found.



Chapter 5

Inclusion of Additional Variables
and Equations

It is often useful to add extra features to the code in order to model new situations. This
chapter provides instructions on how to add various numerics related items to PROCESS.

5.1 Input Parameters
Input parameters (see Section 4.1.2) are added to the code in the following way:

1. Choose the most relevant INCLUDE file, and, keeping everything in alphabetical
order, add the parameter to

(a) the correct type declaration block, and

(b) the corresponding COMMON block.

2. Ensure that all the routines that use the new variable reference the relevant
INCLUDE file.

3. Add the parameter to the relevant section in routine INITIAL in source file
initial.f, giving it a “sensible” default value. Keep to alphabetical order.

4. Add the parameter to the relevant routine in source file input.f, including the
comments at the start of the routine. The comments in routine READNL provide

65



Chapter 5 Inclusion of Additional Variables and Equations 66

full instructions on how to do this. Note that real (i.e. double precision) and
integer variables are treated differently, as are scalar quantities and arrays. Keep
to alphabetical order. Also, add the parameter to the relevant comment in routine
INPUT.

5. Add the details of the parameter to the relevant section of the variable descriptor
file var.des, keeping to alphabetical order.

5.2 Iteration Variables

New iteration variables (sce Section 4.1.4) are added in the same way as input parameters,
with the following additions:

1. Increment the parameter ipnvars in INCLUDE file param.h to accommodate the
new iteration variable.

b2

Add the variable to routines LOADXC and CONVXC in source file xc.f, mimicking the
way that the existing iteration variables are coded. Remember to ensure that these
routines reference the relevant INCLUDE file.

3. Assign sensible values for the variable’s bounds to the relevant elements in arrays
boundl and boundu in routine INITIAL in source file initial.f.

4. Assign the relevant element of character array lablxc to the name of the variable,
in routine INITIAL in source file initial.f.

5. Document the changes to ipnvars and ixc in the variable descriptor file var.des.

If an existing input parameter is now required to be an iteration variable, then simply
carry out the tasks mentioned here.



Chapter 5 Inclusion of Additional Variables and Equations 67

5.3 Other Global Variables

This type of variable embraces all those present in the INCLUDE files which do not need
to be given initial values or to be input, as they are calculated within the code. These
should be added to the code in the following way:

1. Choose the most relevant INCLUDE file, and, keeping everything in alphabetical
order, add the parameter to
(a) the correct type declaration block, and

(b) the corresponding COMMON block.

2. Ensure that all the routines that use the new variable reference the relevant
INCLUDE file.

3. Add the parameter to the relevant section in routine INITIAL in source file
initial.f, giving it a default value of zero. This is done to ensure that the variable
is defined immediately, preventing possible problems later. Keep to alphabetical
order, as always.

4. Add the details of the parameter to the relevant section of the variable descriptor
file var.des.

5.4 Constraint Equations

Constraint equations (see Section 4.1.3) are added to PROCESS in the following way:

1. Increment the parameter ipegns in INCLUDE file param.h to accommodate the new
constraint.

2. Add the constraint equation to routine CON1 in source file eqns.f, ensuring that
all the variables used in the formula are contained in the INCLUDE files present at
the start of this routine. Use a similar formulation to that used for the existing
constraint equations, remembering that the code will try to force cc(i) to be zero.

3. Assign a description of the new constraint to the relevant element of array lablcc
in routine INITIAL in source file initial.f, using 34 characters or less.

4. Document the changes to ipeqns and icc in the variable descriptor file var.des.



Chapter 5 Inclusion of Additional Variables and Equations 68

Remember that if a limit equation is being added, a new f-value iteration variable may
also need to be added to the code.

5.5 Figures of Merit

New figures of merit (see Section 4.1.5) are added to PROCESS in the following way:

v

Increment the parameter ipnfoms in INCLUDE file param.h to accommodate the
new figure of menit.

Add the new figure of merit equation to routine FUNFOM in source file optimiz.f,
following the method used in the existing examples. The value of fc should be of
order unity, so select a reasonable scaling factor if necessary.

Ensure that all the variables used in the formula are contained in the INCLUDE files
present at the start of this routine.

Add a short description of the new figure of merit to the minmax entry in routine
RDNLO1 in source file input.f.

Assign a description of the new figure of merit to the relevant element of array
lablmm in routine INITIAL in source file initial.f, using 22 characters or less.

Document the changes to ipnfoms and minmax in the variable descriptor file
var.des.

5.6 Scanning Variables

Scanning variables (see Section 4.1.6) are added to PROCESS in the following way:

1,

2.

Increment, the parameter ipnscnv in INCLUDE file param.h to accommodate the
new scanning variable.

Add a new assignment to the relevant part of routine SCAN in source file aamain.f,
following the examples already present, including the inclusion of a short description
of the new scanning variable in variable xlabel.



Chapter 5 Inclusion of Additional Variables and Equations 69

3. Ensure that the scanning variable used in the assignment is contained in one of the
INCLUDE files present at the start of this routine.

4. Add a short description of the new scanning variable to the nsweep entry in routine
RDNL15 in source file input.f.

5. Document the changes to ipnscnv and nsweep in the variable descriptor file
var.des.



Chapter 6

Acknowledgements & Bibliography

The author would like to thank the following people for many useful and revealing
discussions during his work on PROCESS:

— John D. Galambos, Paul C. Shipe and Y-K. Martin Peng from Oak Ridge National
Laboratory,

— Roger Hancox, Neill Taylor and John Hicks from Theoretical and Strategic Studies
Department, AEA Fusion,

— Tim Hender from Microwave and Interpretation Department, AEA Fusion, and all
the co-authors of reference [7].

This manual was produced as part of Theoretical and Strategic Studies, AEA Fusion
project number CIRE 5523 on the PROCESS Reactor Systems Code.

This work was funded by the UK Department of Trade and Industry, Euratom, and by
internal research funds of AEA.

70



Bibliography

1]

[2]

3]

[4]

[5]

[7]

8]

[9]

[10]

R.L.Reid et al., “ETR/ITER Systems Code”, Oak Ridge Report ORNL/FEDC-87/7
(1988)

J. D. Galambos, “STAR Code : Spherical Tokamak Analysis and Reactor Code”,
Unpublished internal Oak Ridge document. A copy exists in the PROCESS Project
Work File [15].

Y-K. M. Peng and J. B. Hicks, “Engineering Feasibility of Tight Aspect Ratio
Tokamak (Spherical Torus) Reactors”, AEA Fusion Report AEA FUS 64 (1990)

J. J. More, B. S. Garbow and E. Hillstrom, “User Guide for MINPAC-1”, Argonne
National Laboratory Report ANL-80-74 (1980)

M. J. D. Powell, “A Hybrid Method for Non-linear Algebraic Equations”, Numerical
Methods for Non-linear Algebraic Equations, ed. P. Rabinowitz, Prentice-Hall

R. L. Crane, K. E. Hillstrom and M. Minkoff, “Solution of the General Nonlinear
Programming Problem with Subroutine VMCON”, Argonne National Laboratory
Report ANL-80-64 (1980)

T. C. Hender, M. K. Bevir, M. Cox, R. J. Hastie, P. J. Knight, C. N. Lashmore-
Davies, B. Lloyd, G. P. Maddison, A. W. Morris, M. R. O’Brien, M. F. Turner and
H. R. Wilson, “Physics Assessment for the European Reactor Study”, AEA Fusion
Report AEA FUS 172 (1992)

N. A. Uckan and ITER Physics Group, “ITER Physics Design Guidelines: 19897,
ITER Documentation Series, No. 10, IAEA/ITER/DS/10 (1990)

J. P. Christiansen et al., “Global Energy Confinement H-Mode Database for ITER”,
Nuclear Fusion 32 (1992) 291-338, Eqn. 6

W. M. Nevins et al., “Summary Report: ITER Specialists’ Meeting on Heating and
Current Drive”, ITER-TN-PH-8-4, 13-17 June 1988, Garching, FRG

71



Chapter 6 Acknowledgements & Bibliography 72

[11] R. L. Reid and Y-K. M. Peng, “Potential Minimum Cost of Electricity of
Superconducting Coil Tokamak Power Reactors”, Proceedings of 13th IEEE
Symposium on Fusion Engineering, Knoxville, Tennessee, October 1989, p. 258

[12] J. Sheffield et al., “Cost Assessment of a Generic Magnetic Fusion Reactor”, Fusion
Technology 9 (1986) 199

[13] S. Thompson, “Systems Code Cost Accounting”, memo FEDC-M-88-SE,-004 (1988)

[14] J. P. Holdren et al., “Report of the Senior Committee on Environmental Safety and
Economic Aspects of Magnetic Fusion Energy”, LLNL Report UCRL-53766 (1989)

[15] N. P. Taylor (holder) and P. J. Knight, “PROCESS Reactor Systems Code”, AEA
Fusion Project Work File, F/RS/CIRE5523/PWT (1992)



Appendix A

Non-optimisation Input File

The following is a typical input file used to run PROCESS in non-optimisation mode.
Comments have been added to the right of each line.

$inpti | Start of input block INPT1 (numerics)
NEQNS = 14, | Number of active constraint equations
NVAR = 14, | Number of active iteration variables

Icc= 1, 2,10, 11, 7, 16, 24, 5, 31, 32, 33, 34, 35, 36, | Constraint egns

ixc = 6, 10, 12, 3, 7, 6, 36, 9, 48, 49, 50, 51, 53, 54, | Iteration variables
IOPTIMZ = -1, | Turn off optimisation

$end End of input block INPT1

$INEQDAT Start of input block INEQDAT (f-values etc)
FBETATRY = 1.0 N.B. active iteration variable 36

$end End of input block INEQDAT

$PHYDAT Start of input block PHYDAT (physics)
ASPECT = 3.5, Machine aspect ratio

|
|
|
|
[
|
[
|
BETA = 0.042, | N.B. active iteration variable 5
BT = 6., | Toroidal field on axis
DENE = 1.5e20, | N.B. active iteration variable 6
FVSBRNNI = 1.0, | Non-inductive volt seconds fractiom
|
|
|
|
|
I
[

DNBETA = 3.5, Troyon g coefficient

HFACT = 2., N.B. active iteration variable 10

ICURR = 4, Use ITER current scaling

IsC = 6, Use ITER 89-P confinement time scaling law
ISTOK = 2, Use conventional tokamak divertor model
IINVQD = 1, Use inverse quadrature

IITER = 1, Use ITER fusion power calculations

ISHAPE = 0, | Use input values for KAPPA and TRIANG
KAPPA = 2.218, | Plasma elongation

73



Appendix A Non-optimisation Input File 74

Q = 3.0,
RMAJOR
RNBEAM
TE = 15.,
TRIANG = 0.6
$END

7.0,
0.0002,

L]

$CDDAT
IRFCD = 1,
IEFRF = 5
FEFFCD = 3.,
$END

$TIME
TBURN = 227.9
$END

$DIVT
ANGINC=0.262,
PRN1=0.285
$END

$BLD

BORE = 0.12,
OHCTH = 0.1,
GAPOH = 0.08,
TFCTH = 0.9,
DDWI = 0.07,
SHLDITH = 0.69,
BLNKITH = 0.115,
FWITH = 0.035,
SCRAPLI = 0.14,
SCRAPLO = 0.15,
FWOTH = 0.035,
BLNKOTH = 0.235,
SHLDOTH = 1.05,
GAPOMIN = 0.21,
VGAPTF = 0,
IOHCIE = 2

$END

$TFC

DACDCP = 1.4e7,
ITFSUP = 1,
RIPMAX = 5.,
$END

$PFC

ISTOKPF = 2,

Edge safety factor

N.B. active iteration variable 3
N.B. active iteration variable 7
Electron temperature

Plasma triangularity

End of input block PHYDAT

Start of input block CDDAT (current drive)
Use current drive

Use ITER neutral beam current drive
Artificially enhance efficiency

End of input block CDDAT

Start of input block TIME (times)
Burn time
End of input block TIME

Start of input block DIVT (divertor)

Angle of incidence of field lines on plate
Density ratio

End of input block DIVT

Start of input block BLD (machine build)
Machine bore

OH coil thickness

Inboard gap

Inboard TF coil leg thickness
Internal dewar thickness

Inboard shield thickness

Inboard blanket thickness

Inboard first wall thickness
Inboard scrape—-off layer thickness
Outboard scrape-off layer thickness
Outboard first wall thickness
Outboard blanket thickness

Outboard shield thickness

Outboard gap

Vertical gap

Use conventional machine layout

End of input bleck BLD

Start of input block TFC (TF coils)
N.B. active iteration variable 12
Use superconducting TF coils
Maximum TF ripple

End of input block TFC

Start of input block PFC (PF coils)
Use conventional PF coil current scaling



Appendix A Non-optimisation Input File i

NGRP = 3, | Three groups of PF coils
IPFLOC = 1,2,3, | Locations for each group
NCLS = 2,2,2,1, | Number of coils in each group
COHEOF = 1.85e7, | OH coil current at End Of Flat-top
FCOHBOP = 0.9, | OH coil current at Begin. Of Pulse / COHEOF
ROUTR = 1.5, | Radial position for group 3
ZREF(3) = 2.5, | Z position for group 3
OHHGHF = .71 | Height ratio OH ceil / TF coil
$END | End of input block PFC
|
$VOLTS | Start of input block VOLTS (empty)
$END | End of input block VOLTS
I
$FWBLSH | Start of input block FWBLSH (1st wall etc.)
DENSTL=7800. | Steel density
$END | End of input block FWBLSH
|
$COSTINP | Start of input block COSTINP (costs)
IREACTOR = 1, | Calculate cost of elctricity
IFUELTYP = 0 | Treat blanket, first wall etc as capital cost
$END | End of input block COSTINP
|
$UCSTINP | Start of input block UCSTINP (unit costs)
UCHRS = 87.9, [}
UCCPCL1 = 250, | } Unit costs
UCCPCLB = 150 | ¥
$END | End of input block UCSTINP
I
$SWEP | Start of input block SWEP (scans)
ISWEEP=0 | No scans (non-optimisation mode)
$END | End of input block SWEP
|
$BCOM | Start of input block BCOM (buildings)
FNDT = 2. | Foundation thickness
$END | End of input block BCOM
I
$BLDINP | Start of input block BLDINP (buildings)
EFLOOR=1.d5 | Effective total floor space
$END | End of input block BLDINP
|
$HTPWR | Start of input block HTPWR (heat transport)
ETATH=0.35 | Thermal to electric conversion efficiency
$END | End of input block HTPWR
|
$HTTINP | Start of input block HTTINP (heat transport)
FMGDMW = 0. | Power to MGF units
$END | End of input block HTTINP
|
$HTRINP | Start of input block HTRINP (heat transport)



Appendix A Non-optimisation Input File 76

BASEEL=5.e6

$END

$EST
ISCENR=
$END

$vaccy
NTYPE =
$END

$0SECTS
SECTO1
SECTO02
SECT03
SECT04
SECTO5
SECTO6
SECTO7
SECTOS8
SECTO09
SECT10
SECT11
SECT12
SECT13
SECT14
SECT15
SECT16
SECT17
SECT18
SECT19
SECT20
$END

2

- e e o e W e W ow

. e e M W e o=

O G g T I S e
-

Base plant electric load
End of input block HTRINP

Start of input block EST (energy storage)
Energy store option

End of input block EST

Start of input block VACCY (vacuum system)
Use cryopump

End of input block VACCY

Start of input block OSECTS (output sections)

Turn on all output sections

W o L b e b L b L L L L N e b o o o L

End of input block OSECTS



Appendix B

Optimisation Input File

The following is a typical input file used to run PROCESS in optimisation mode.
Comments have been added to the right of each line.

$inpti | Start of input block INPT1 (numerics)

boundl(1) = 2.5, |

BOUNDU(10) = 3. I
|

S

}
, } bounds on iteration variables
BOUNDU(60) = 4.d4, }

NEQNS = 15, | Number of active constraint equations
NVAR = 25 | Number of active iteration variables
Icc= 1, 2,10, 11, 7, 16, 8, 24, 31, 32, 33, 34, 35, 36, 14, | Constraint eqns
ixc = 5, 10, 12, 3, 7T, 36, 48, 49, 50, 51, 53, 54, 19, | Corresponding
i, 2, 4, 6, 13, 16, 29, 56, 57, 58, 59, 60, | iteration variables
IOPTIMZ = 1, | Turn on optimisation
MINMAX = 6, | Minimise cost of electricity
$end | End of input bleock INPT1
|
$INEQDAT | Start of input block INEQDAT (f-values etc)
FBETATRY = 1.0 | N.B. active iteration variable 36
$end | End of input block INEQDAT
|
$PHYDAT | Start of input block PHYDAT (physics)
ASPECT = 3.5, | N.B. active iteration variable 1
BETA = 0.042, | N.B. active iteration variable 5
BT = 6., | N.B. active iteration variable 2
DENE = 1.5e20, | N.B. active iteration variable 6
FVSBRNNI = 1.0, | Non-inductive volt seconds fraction
DNBETA = 3.5, | Troyon g coefficient
HFACT = 2., | N.B. active iteration variable 10
ICURR = 4, | Use ITER current scaling
ISC = 6, | Use ITER 89-P confinement time scaling law

77



Appendix B Optimisation Input File

ISTOK = 2,
IINVQD = 1,
IITER = 1,
ISHAPE = 0,
KAPPA = 2.218,
Q = 3.0,
RMAJOR = 7.0,
RNBEAM = 0.0002,
TE = 15.,
TRIANG = 0.6
$END

$CDDAT
IRFCD = 1,
IEFRF = &5
FEFFCD = 3.,
$END

$TIME
TBURN = 227.9
$END

$DIVT
ANGINC=0.262,
PRN1=0.285
$END

$BLD

BORE = 0.12,
OHCTH = 0.1,
GAPOH = 0.08,
TFCTH = 0.9,
DDWI = 0.07,
SHLDITH = 0.69,
BLNKITH = 0.115,
FWITH = 0.035,
SCRAPLI = 0.14,
SCRAPLO = 0.15,
FWOTH = 0.035,
BLNKOTH = 0.235,
SHLDOTH = 1.05,
GAPOMIN = 0.21,
VGAPTF = O,
IOHCIE = 2
$END

$TFC

OACDCP = 1.4e7,
ITFSUP = 1,

Use conventional tokamak divertor model
Use inverse quadrature

Use ITER fusion power calculations
Use input values for KAPPA and TRIANG
Plasma elongation

Edge safety factor

N.B. active iteration variable 3

N.B. active iteration variable 7

N.B. active iteration variable 4
Plasma triangularity

End of input block PHYDAT

Start of input block CDDAT (current drive)
Use current drive

Use ITER neutral beam current drive
Artificially enhance efficiency

End of input block CDDAT

Start of input block TIME (times)
Burn time
End of input block TIME

Start of input block DIVT (divertor)

Angle of incidence of field lines on plate
Density ratio

End of input block DIVT

Start of input block BLD (machine build)
N.B. active iteration variable 29
N.B. active iteration variable 16
Inboard gap

N.B. active iteration variable 13
Internal dewar thickness

Inboard shield thickness

Inboard blanket thickness

Inboard first wall thickness
Inboard scrape-off layer thickness
Outboard scrape-off layer thickmness
Outboard first wall thickness
Outboard blanket thickness

Outboard shield thickness

Outboard gap

Vertical gap

Use conventional machine layout

End of input block BLD

Start of input block TFC (TF coils)
N.B. active iteration variable 12
Use superconducting TF coils



Appendix B Optimisation Input File 79

RIPMAX = 5., | Maximum TF ripple
$END | End of input block TFC
I
$PFC | Start of input block PFC (PF coils)
ISTOKPF = 2, | Use conventional PF coil current scaling
NGRP = 3, | Three groups of PF coils
IPFLOC = 1,2,3, | Locations for each group
NCLS = 2,2,2,1, | Number of coils in each group
COHEOF = 1.85e7, | OH coil current at End Of Flat-top
FCOHBOP = 0.9, | OH coil current at Begin. Of Pulse / COHEOF
ROUTR = 1.5, | Radial position for group 3
ZREF(3) = 2.5, | Z position for group 3
OHHGHF = .71 | Height ratio OH coil / TF coil
$END | End of input block PFC
I
$VOLTS | Start of input block VOLTS (empty)
$END | End of input block VOLTS
|
$FWBLSH | Start of input block FWBLSH (1st wall etc.)
DENSTL=7800. | Steel density
$END | End of input block FWBLSH
I
$COSTINP | Start of input block COSTINP (costs)
IREACTOR = 1, | Calculate cost of elctricity
IFUELTYP = 0 | Treat blanket, first wall etc as capital cost
$END | End of input block COSTINP
|
$UCSTINP | Start of input block UCSTINP (unit costs)
UCHRS = 87.9, |}
UCCPCL1 = 250, | } Unit costs
UCCPCLB = 150 I}
$END | End of input block UCSTINP
|
$SWEP | Start of input block SWEP (scans)
ISWEEP=7, | Seven point scan
NSWEEP=6, | Use WALALW as scanning variable
SWEEP= 6.0,5.5,4.5,4.0,3.5,3.0,2.5 | Values of WALALW for each scan point
$END | End of input block SWEP
|
$BCOM | Start of input block BCOM (buildings)
FNDT = 2. | Foundation thickness
$END | End of input block BCOM
I
$BLDINP | Start of input block BLDINP (buildings)
EFLOOR=1.d5 | Effective total floor space
$END | End of input block BLDINP
|
$HTPWR | Start of input block HTPWR (heat transport)
I

ETATH=0.35 Thermal to electric conversion efficiency



Appendix B Optimisation Input File 80

$END

$HTTINP

FMGDMW = 0.

$END

$HTRINP

BASEEL=5.e6

$END

$EST
ISCENR=
$END

g$vaccy
NTYPE =
$END

$0SECTS
SECTO1
SECTO2
SECTO03
SECT04
SECTO5
SECTO6
SECTO7
SECT08
SECTOS
SECT10
SECT11
SECT12
SECT13
SECT14
SECT15
SECT16
SECT17
SECT18
SECT19
SECT20
$END

2

v e e o e w e oW

- w e e w oW w ow

T T T e T T e o i C o

End of input block HTPWR

Start of input block HTTINP (heat transport)
Power to MGF units
End of input block HTTINP

Start of input block HTRINP (heat tramsport)
Base plant electric load
End of input block HTRINP

Start of input block EST (energy storage)
Energy store option

End of input block EST

Start of input block VACCY (vacuum system)
Use cryopump

End of input block VACCY

Start of input block OSECTS (output sections)
Turn on all output sections

}
}
}
}
}
}
3
by
by
}
}
}
}
}
1
}
}
¥
}
b
E

nd of input block OSECTS



Appendix C

Source Code Documentation

The development of the PROCESS code since its shipment from Oak Ridge National
Laboratory in April 1992 has been fully documented in the Project Work File [15].
Presented here is a list of Project Work File Notes as of July 23, 1993 that address
various issues related to the source code.

e Documentation of each individual source routine is an ongoing task. A Work File
Note will be produced as each routine is processed, with the eventual aim of bringing
all these together into a single document, i.e. a second volume of this manual.

e Summary of work performed since April 1992 : Note 0160

e Code status (routine SCCS version numbers) : Note 0165

e SCCS (Source Code Control System) implementation for PROCESS : Note 0003
e Present code standard : Note 0160

e Future code standard (to be adhered to) : Note 0167

e Directory structure and location of all relevant files : Note 0168

e Proposed future work : Note 0160

81






