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ABSTRACT

The theory of the magnetoacoustic cyclotron instability, which has been proposed as a
mechanism for suprathermal ion cyclotron harmonic emission observed in large tokamaks,
1s generalized to include finite parallel wavenumber k. This extension introduces sig-
nificant new physics: the obliquely propagating fast Alfvén wave can undergo cyclotron
resonant interactions with thermal and fusion ions, which affects the instability driving
and damping mechanisms. The velocity-space distribution of the fusion ions is modelled
by a drifting ring, which approximates the distribution calculated for the emitting region
in tritium experiments on the Joint European Torus (JET) [Cottrell et al., Nucl. Fusion,
in press (1993)]. Linear instability can occur simultaneously at the fusion ion cyclotron
frequency and all its harmonics when the fusion ion concentration is extremely low, be-
cause the finite k| gives rise to a Doppler shift which decouples cyclotron damping due to
thermal ions from wave growth associated with fusion ions. Doppler shifts associated with

finite k; may also be related to the observed splitting of harmonic emission lines.

PACS numbers: 52.255w, 52.35Qz, 52.35Hr, 52.55Pi



I. INTRODUCTION

There are strong observational links between ion cyclotron emission (ICE) and fusion
reactivity in tokamak plasmas. These links originally emerged from ohmic deuterium
discharges in the Joint European Torus (JET)'~% and the Tokamak Fusion Test Reactor
(TFTR),* and were demonstrated most recently in the Preliminary Tritium Experiment on
JET.5=7. They include: the proportionality of ICE intensity to measured fusion reactivity
over a range of six decades in signal intensity; correlations in the time-evolution of the ICE
signal and neutron flux during discharges; the matching of ICE spectral peak frequencies
to successive local ion cyclotron harmonics at the outer mid-plane edge; and correlations
between ICE and the observed impact of MHD activity, such as sawteeth and ELMs, on
energetic ions. A detailed review of many of the observational features of ICE is given in
Ref. 8. The potential of ICE as a diagnostic of fusion product populations in tokamak
plasmas is, accordingly, widely recognized. However, its exploitation will require a full
understanding of the physics of the underlying emission mechanism.

The magnetoacoustic cyclotron instability? 1! is a strong candidate emission mech-
anism for ICE: it belongs to a family of high frequency energetic ion-driven collective
instabilities which have been studied over the past three decades.!?=1® The theory of the
magnetoacoustic cyclotron instability was first developed in detail in Ref. 9, where the ex-
citation of perpendicular—propagating waves on the fast Alfvén and ion Bernstein branches
was shown to be possible at frequencies close to the cyclotron harmonics £, of an ener-
getic ion species « displaying some form of population inversion in velocity—space. In Ref.
9, the crucial role of cyclotron harmonic (Bernstein) waves supported by the majority ther-
mal ion population ¢ was also recognized: the most nearly resonant such wave (882 =)
provides positive-energy loading which determines the threshold of the instability. The
analysis presented in Ref. 9, which was restricted to frequencies w > 2, was extended
in Refs. 10 and 11 to the frequency range w ~ §); required for application to early JET

ICE results. It was shown that the perpendicular magnetoacoustic cyclotron instability
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had properties broadly consistent with those required for an ICE emission mechanism, in
the appropriate parameter range. We note that this instability appears also to provide a
viable emission mechanism for signals detected near the Earth’s plasmapause!” and bow
shock.!® For an early review of the potential role of this class of instability in tokamak
reactors, see Ref. 19.

In the present paper we generalize the theory of the magnetoacoustic cyclotron:in-
stability to include oblique propagation. This means that we must consider wave—particle
resonant cyclotron damping, in addition to the wave-wave resonant positive—energy load-
ing mentioned above. We will show that, except for quasi-perpendicular propagation,
cyclotron damping is in fact the dominant stabilization mechanism. Part of the motiva-
tion for extending the theory in this way lies in the fact that there remain several distinctive
features of the ICE data which the strictly perpendicular magnetoacoustic cyclotron insta-
bility cannot easily account for. These include: the simultaneous excitation of all cyclotron
harmonics from ¢ = 1 upwards; the splitting of spectral peaks, noted in Refs. 5-7; and the
excitation of proton half-harmonics in pure deuterium ohmic discharges.

In Sec. II we propose, on the basis of orbit calculations presented in Ref. 7, that the
fusion ion distribution in the edge plasma of JET can be modelled as a drifting ring with a
Maxwellian spread of velocities parallel to the magnetic field. The appropriate dispersion
relation is derived in Sec. III, and a perturbative analysis of this dispersion relation is
presented in Sec. IV. In Sec. V we present the results of a full numerical study of the
magnetoacoustic cyclotron instability for oblique propagation. In Sec. V. we also discuss
the significance of our results in relation to ICE data from JET, and in Sec. VI we briefly

consider the problem of wave propagation. Our conclusions are presented in Sec. VIL.

II. DISTRIBUTION OF FUSION IONS

The magnetoacoustic cyclotron instability is driven by the free energy associated with

non-Maxwellian features in the velocity-space distribution of the energetic ion population.
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Model distributions are typically chosen according to criteria that include applicability to
specific physical scenarios and analytical tractability: for the case of perpendicular propa-
gation, models have included shells,®!® extended shells,'"*° and rings.®'” The underlying
character of the instability, in terms of excitation of waves on the fast Alfvén-ion Bern-
stein branch at ion cyclotron harmonics, has remained broadly independent of the details
of velocity—space structure.

In the present paper, where the primary emphasis is on the new physics introduced
by the inclusion of finite parallel wavenumber, our choice for the model velocity—space
distribution of the energetic ions is guided by the considerations outlined in Ref. 7. There,
it was pointed out that the observed localization of the ICE emitting region to the outer
mid-plane edge may be due primarily to the uniquely unstable character of the energetic
ion velocity—space distribution within that region. It has been shown™?! that a certain
subgroup of centrally born fusion ions, restricted to a specific narrow range of pitch—angles
just inside the trapped-passing boundary, make large drift orbit excursions which carry
them to the outer mid—plane edge. These particles are much more numerous than fusion
ions born locally, and consequently dominate the fusion ion velocity distribution in the ICE

/3, where py is the poloidal

emitting region. The maximum radial excursion varies as pg
Larmor radius. In the case of pure deuterium discharges, there are three charged products
of primary fusion reactions: protons, tritons, and helium-3 nuclei. Of these, only protons
and tritons have sufficiently large poloidal Larmor radii to undergo large excursion orbits
from the centre of JET to the outer mid-plane edge. Centrally-born helium-3 nuclei
cannot do so, and are therefore not expected to play any significant role in the generation
of ICE in JET.? In this paper we are primarily concerned with the interpretation of data
from the JET tritium experiment, in which the most abundant charged fusion products
were alpha-particles.” For this reason, the numerical results presented in Sec. V were

obtained for the case of an alpha-particle fusion ion population.

For reasons of analytical tractability, and following the spirit of Ref. 7, we adopt a
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model for the velocity-space distribution of fusion ions in the emitting region which has a
drifting Maxwellian distribution of velocities parallel to the magnetic field, and a unique

velocity perpendicular to the field. Normalized to unity, the fusion ion distribution is thus

given by
2
Fo = __ exp (_(v"_;vi)_) 8(vy —u), (1)

2m3/ 2y, ¢

where v, v) denote velocity components parallel and perpendicular to the magnetic field,
and u, vg, vr are parameters which define respectively the unique perpendicular-speed,
average parallel drift speed, and parallel velocity spread of the fusion ions. Typically
u? > v3, and fusion ions with energies significantly less than the birth energy do not reach
the edge plasma.” The value of u is thus determined essentially by the birth energy.

As in previous papers,'®~1117-18 we shall establish certain features of the magne-
toacoustic cyclotron instability that are generic, and are not restricted by the particular

choice of distribution function parameters.

III. DISPERSION RELATION FOR OBLIQUE PROPAGATION

We assume that the wave electric field is approximately polarized in the plane per-
pendicular to the magnetic field direction, z, so that electron Landau damping can.be
neglected. In such cases we only require the (z,z), (z,y) and (y,y) components of the
dielectric tensor €;;. For a wave propagating in the (z, z) plane, the appropriate dispersion

relation is

(- 22 (- £2) -, @

w2
where w is the complex wave frequency, k = (k;,0,k.) is the wave vector and ¢ is the
speed of light. €., €;y and €, contain contributions from both electrons and ions, but
when w is of the order of the ion cyclotron frequencies the electron contribution to €., is

negligibly small.? In this frequency régime we can write

€xrs = 5:;;.; + E:;,;a (3)
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e 1 o

E-'Cy = Ery T E:l:y + E:1::.,” (4)
__ e 1 o

€yy = €y + €y T €4y (5)

In the above expressions the superscripts e, ¢ and a refer to electrons, bulk ions, and fusion
ions respectively. If w < ., and 22 = k202/2Q? < 1, where v, is the electron thermal

speed, we can write

2 2
e . Wpe - Wpi
= — =— 6
e T T (6)
e w;‘:e 2
Eyy =2 wg zeCCZ(Ce)‘ (7)

In Egs. (6) and (7) plasma frequencies are denoted by w, and cyclotron frequencies by £2.
The second equality in Eq. (6) is approximately valid if the concentration of fusion ions is
very low,'® which is invariably the case for present experiments. In Eq. (7)., o = wksve
and Z is the plasma dispersion function. It is useful to retain €}, in the calculation, since it
describes the effects of transit time damping,?? which is one of the dissipation mechanisms
for the fast Alfvén wave. The appropriate expressions for the bulk ion dielectric tensor

elements are the following:?*

0 —22
w?; se” I,

EiI = —L:’—; TCDZ(Cs)a (8)
5 .wﬁi = —2? !
dy =il 3 s (I - 1) G2, (©)

wg,' = Sze_z?f_, 9 .2 ;
——— +2zje™% (L, - 1) | GZ({e)- (10)

24
The corresponding expressions for the fusion ions can be obtained by substituting Eq. (1)

into the general expressions for the dielectric tensor elements given, for example, in Ref.

23:
wg oo 22 d.]2 9?.1'.2
a _ Fpa G | & 2
€2z = "7 3—2_00:2 [[—1 + (10 — 1) Z(ne)) 2o . + o2 [1+neZ(ne)) J¢ | (11)



- d 2u?

& = ZL;t; = [[—1 + (n0 — 1¢)Z(ne)] T (zaJedy) + o2 (1 + neZ(ne)) JfJ;] : )
o w_?m' T 7 1 d 2 J 2 2u? 142

€yy = 7£§m [=1+ (n0 — me)Z(ne))] PN (za( ¢) ) + 2 (L +n:Z(ne)) (Je)" | -

(13)
Here, I, is the modified Bessel function of the first kind of order s, and J; is the Bessel
function of the first kind of order £. The argument of I, is z? = k2v?/20Q?, where v; is the

bulk ion thermal speed, and the argument of J; is z4 = k,;u/Q4. The argument of Z is

w — 8§);
C‘g = k:vt‘ bl (14)
in Egs. (8) — (10), and
w—kyvg — €0,
nt - kz'vr b} (14)

in Egs. (11) - (13). Finally, 6 is the propagation angle of the wave, i.e. cosf = k,/k. We
have implicitly assumed that § < 90°: when 6 > 90°, Z((,) and Z(7¢) must be replaced
with —Z(—(,) and —Z(—n,) respectively in Eqs. (8) - (13).22

It should be noted that the expressions for € ; include a description of #-dependent
wave-particle cyclotron damping by the bulk ions. In the case of k, = 0, considered
in Refs. 9 and 10, cyclotron damping is absent, and its role in reducing the degree of
possible instability is taken over in this limit by the positive-energy loading associated
with resonant cyclotron harmonic waves supported by the bulk ions. Our calculations
of the maximally unstable propagation angle reflect the fact that the stabilizing effect of

positive-energy loading, represented by the modified Bessel function terms in Egs. (8) -

(10), is also §-dependent.

IV. PERTURBATIVE ANALYSIS

Following the approach used in Ref. 10, we consider the resonant excitation of a

fast Alfvén wave at frequencies lying close to the energetic ion cyclotron frequency and

7



its harmonics. Since the concentration of fusion ions is very low, the fast Alfvén wave
is supported by the bulk ions and electrons. Under these conditions, we can carry out a
perturbation analysis. In order to obtain the appropriate dispersion relation it is helpful
to separate the terms in Eq. (2) which depend only on e::j and €f; from those which depend
on efj. Placing the latter on the right hand side, and writing n| = k;¢/w, n1 = k.c/w we

obtain
(Ei:: - nﬁ)n?l. - E;y - nﬁ)(E;:a: - n|2|) - (e::y + tE:l:_l,r)2 - GZy(E.lrz: - nﬁ)

; . _ ’
= —e2,n] + (e, — nf)ess + (€h — njeyy + 25y + €7,y +eza(eyy + €65y) + €2y (16)

i and €. can each be approximated by two terms:

: i
As in Ref. 10, we assume that €., €, i

a cold part, corresponding to s = £1; and a resonant part, corresponding to s such that
s9; is the bulk ion cyclotron harmonic lying closest to w. We assume for the time being

that s # 1. If 22 < 1, we can then write

: w2_ w2 52
i p1 p1 42(s-1)
€z = _wg — 9!2 + w2 294! 2 C Z(CS) (17)
. w2- Q 2 32 2
i . 1 1 (s—1)
e:cy:—zuﬂ jﬂz_u:+z p; 99 51 Zi . C Z(Cs) (18)
. wz- 2- ,52 2
(s—1)
w=—TT gt ‘;’—93 22TV Z(C). (19)
i

In order to proceed analytically it is necessary to make two further assumptions. First,
we assume that only those terms corresponding to £ such that 0, = s§; contribute
significantly to the summations in Eqs. (11) - (13). Second, we assume that the ratio of
fusion ion number density to bulk ion number density, denoted here by £, is sufficiently
small that the last two terms on the right hand side of Eq. (16), which are quadratic in
can be neglected. Substituting Eqs. (6), (11) — (13) and (17) - (19) in Eq. (16), and

neglecting terms proportional to w} o @nd 42(3 =1 fm, we obtain the dispersion relation

2
Woas



w? — a?kic} =
z“”_ﬂﬂ(@”+ﬂd(§Ni+Aﬂ)_Q) s’ (1) Whe 3 2
- (Qi + (w— Q;‘)le) ( — (w+ £ )N ) 29-15! '2 K 2(6) - ZQ?w_EiGQZECEZ(CE)
2 04
_|_ por i
(Q B s = 02, )N”) (Q,— = (w+Qi)N|T)
(=14 (0 — m)2 00 2 - (ne)) Ne] , (20)

where c4 is the Alfvén speed, N| = k;cs/w, N1 = krcs/w, and the quantities a®, M, and
N are defined as follows:

Q2 + (? - Q)N

o = : - (21)
(9 + (@~ Q,-)N“) (5 - (w+2:))

1 — Q2 J,J 27,J

M, = 202 [J,f’ +72-(ﬂ2—z§).ff] Favy [EZNL+ —za)N”J A2 gy,
Q. 2z o Za

(22)

w Jedb  w?—Q 0272 e en .
N__%Qz:+ 92[M( :+% + 2% +za+f. (23)

The second -derivative of Jy, which appears in €z, and €y, has been eliminated from the
expression for M, using Bessel’s equation.

The terms on the right hand side of Eq. (20) arise from the finite temperature of
the bulk ions and electrons, and from the presence of fusion products. Setting these terms
equal to zero yields the dispersion relation for obliquely propagating electromagnetic waves

in a cold plasma:

w? = a®k3cL. (24)

Equation (24) is a quadratic equation for w? with solution

w2

2
1o]p2 g2 2,2C4 5 130 4 30p8A | apene
R LR IR R S I (25)
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The plus sign in Eq. (25) corresponds to the fast (compressional) Alfvén wave, while the
minus sign corresponds to the shear Alfvén wave. This can be easily verified by considering
the MHD limit, w < £2;.

We now seek perturbative solutions of the dispersion relation Eq. (20) by writing
w =Wy + 6&), (26)

where wy is the real frequency given by the plus sign in Eq. (25), éw is complex, and we
assume that |6w| < wp. This is valid if £ is sufficiently small. Under these circumstances
we can replace w with wp on the right hand side of Eq. (20). We assume that, in Eq.
(1), vg > v; and v, > v;, which means that any waves with k, # 0 are significantly
Doppler-shifted between the guiding centre rest frame of the fusion ions and that of the
bulk ions. Thus, when the fusion ions are in cyclotron resonance with the fast wave, the
bulk ions will be out of resonance, and bulk ion cyclotron damping can be neglected.~In
this case |(s| > 1, so that

Wo

COZ(C.&) = - (27)

wo — 88’
whereas |n¢| can be of order unity or less, and so it is necessary to take into account the

imaginary part of Z(n¢). Since, in our perturbation analysis, 7 is real, it follows that
Im (Z(ne)) = Ve ™. (28)

Finally, we assume for the time being that transit time damping (which arises from the
electron term on the right hand side of Eq. (20)) can be neglected. Under these circum-
stances, it follows immediately that the perturbative solution for the imaginary part of éw

is the following:

v = Im(bw) ~

2 4
Woa Qs

w?;i (Qi ez — Qi)Nﬁ) (Q,— — (wo + Qi)Nﬁ)

9, 2u? 2
[ M, — :szg ﬁe"’“. (29)

k.o, 2wy
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For completeness, we also give the solution for the real part of éw, although the relevant

parameters are such that it is often sufficiently accurate to set Re(w) = wy:

(0 -0) (0ot 9) (V124 M) -0) 1 @ L
(9 + (w = 20)NF) (9 — (w+Q0)NF) wo =R 2al™

Re(bw) =~ (30)

In deriving this expression we have assumed that ¢ is sufficiently small that the dominant
real contribution to the right hand side of Eq. (20) comes from the bulk ion term. In Egs.
(29) and (30) ne, M, Ny, N\ and N, are evaluated for w = wq. In the special case s = 1,
the imaginary part of éw is still given by Eq. (29), while Re(éw) ~ 0. Positive (negative)
values of Im(éw) indicate wave growth (damping). In the case of fusion alpha particles in
a deuterium plasma, Q, = ; and so { = s.

Equations (25), (29) and (30) give w as a function of k, #, and the distribution function
parameters. The exponential factor in Eq. (29) indicates that a strong wave—particle
interaction will only occur if |7¢| is of order unity or less. It is clear that both growth and
damping are possible, depending on the sign of the quantity in square brackets in Eq. (29).
N¢ is generally positive, and so the term containing this quantity is only destabilizing if
n¢ < 0, in which case the wave frequency, Doppler—shifted into a frame moving with speed
vq along the magnetic field direction, lies below £Q,. On the other hand, M, can be
positive or negative, depending on z, and {. We note that the growth or damping rate has
a simple linear dependence on &: in the absence of electron Landau damping and transit
time damping, instability can occur for all values of €. In the case of k. = 0, the growth
rate is proportional to £1/2 if the plasma is cold, but positive—energy loading in a warm
plasma leads to the suppression of instability when the concentration of fusion products is

sufficiently low.%10

The perturbative analysis described above can also be used to derive the transit time

damping rate, 7.. Again setting w = wy on the right hand side of Eq. (20), and using Eq.
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(28), it is straightforward to show that

N M ne V2, 2
T e g G (31)

where particle masses are denoted by m and densities by n. An important point to note is
that ~. is independent of £, and so transit time damping will suppress the magnetoacoustic
cyclotron instability if the concentration of fusion ions is sufficiently low. When the 2
component of the wave electric field E is finite, one must also take into account electron
Landau damping and an effect arising from the phase difference between E, and E..??
The overall effect of electron dissipation on the fast wave can be quantified by computing
the power absorbed by the electrons, and dividing this by the wave energy density. When
w lies in the ion cyclotron range and wg,- > c?k?, the result is that the total electron
damping rate is one half of the transit time damping rate.?? Equation (31) thus gives the
correct order of magnitude of the electron dissipation, and can be used to estimate -the
threshold value of £ required for instability. We have assumed that E, = 0, which means
that our analysis does not incorporate Landau damping. Since transit time damping and
electron Landau damping are of comparable magnitude and are non-negligible in the same
parameter régime, namely |C.| < 1, it is inconsistent to describe the effects of the former
while neglecting the latter. For this reason, all the numerical results presented in the next

section were obtained with €}, set equal to zero.

V. APPLICATION TO ICE IN JET

The full dispersion relation Eq. (16) can readily be solved numerically for w = w/Q4
as a function of z, and 6. If w and k are normalized in this way, and the masses and
charges of the ion species are specified, solutions of Eq. (16) depend on six dimensionless
parameters, which may conveniently be chosen to be the following: the local concentration
of fusion ions, &; the local bulk ion plasma beta, 8; = (1 — £)v}/c%; the ratio of the fusion

ion ring speed to the Alfvén speed, u/cy4; the ratio of the fusion ion parallel drift speed to
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the ring speed, va/u; the ratio of the fusion ion parallel velocity spread to the ring speed,
vr/u; and the electron-ion temperature ratio, T, /7;. This last parameter appears only in
the transit time damping term, which we neglect for the reason stated at the end of the
last section. For the case of the preliminary tritium experiments on JET, we can make
realistic estimates of all the remaining parameters using the results presented in Ref. 7.
We assume a magnetic field of 2.07 T, a bulk ion density of 1.7 x 10'® m=3 (cf. Fig. 6
of Ref. 7), and a bulk ion temperature of 1 keV. Given that the energy of alpha-particles
reaching the edge plasma is close to the birth energy of 3.5 MeV (cf. Fig. 15 of Ref..7), it
follows that 8; ~ 1.6 x 10~® and u ~ 1.67c4. From Fig. 16 of Ref. 7 we infer, furthermore,
that vy ~ 0.25u and v, =~ 0.05u, while Fig. 6 of Ref. 7 indicates that £ < 10~¢ in
the edge plasma. It turns out that the transit time damping rate given by Eq. (31) is
generally negligible for propagation angles lying in the range 60° < < 120°, whenever
¢ > 10~°. For this reason, numerical results were obtained for 8 lying within $30° of-the
perpendicular, and for £ lying in the range 10=6-10—4.

We begin by testing the accuracy of Eqs. (29) and (30). In Fig. 1, v is plotted as
a function of w' = w — k,vy for § = 85°. Numerical results are indicated by solid curves,
and analytical results by dashed curves. The distribution function parameters are those
given above. Two values of { are used: 10™* (upper frame) and 10~¢ (lower frame)- In
the latter case there is excellent agreement between the analytical and exact solutions,
except in the vicinity of w = Q, = ;. At this frequency there is significant cyclotron
damping due to the bulk ions. This effect was neglected in Eq. (29), but would have been
straightforward to incorporate by allowing Z(({,) in Eq. (20) to be complex rather than
real. The point we wish to emphasize here is that the damping which occurs at w' ~
in Fig. 1 can be attributed solely to the fusion ions, and has nothing to do with the bulk
ions. The quantity M, is negative, and so waves with w' > Q, are damped, as expected.
The agreement between the analytical and numerical solutions becomes less good when

the concentration of fusion ions is increased from 1076 to 10~*. The corresponding results
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for w' ~ 4Q, are shown in Fig. 2. M, is now positive, and so instability can occur at
w' > 4Q,. As in Fig. 1, the analytical solution becomes less accurate as £ is increased.
We now proceed to compute the growth rates of all cyclotron harmonics up to £ =10
at various propagation angles ranging from 80° to 100°. The results are shown in Fig. 3,
plotted as a function of w rather than w'. We are thus able to highlight the Doppler effect
introduced by vg # 0. The fusion ion concentration is 107%, and the other distribution
function parameters are identical to those used to generate Figs. 1 and 2. In the case
of perpendicular propagation the line profiles are extremely narrow, and not all cyclotron
harmonics are unstable at a given locus (cf. upper frame of Fig. 18 in Ref. 7). The
narrow bandwidths arise from the fact that f, o §(vy — u) (the distribution of parallel
speeds is irrelevant when k. = 0). Cyclotron resonance of the perpendicular—propagating
fast Alfvén wave with the fusion ions can imply stability or instability,”'® depending on
the value of z,. The stability of the second cyclotron harmonic can be attributed to the
positive—energy loading associated with bulk ion-supported ion Bernstein waves (see Fig.
2 in Ref. 17). In the oblique case, we find that every cyclotron harmonic is linearly
unstable at all propagation angles, except 6 ~ 90°. Computing the maximum growth rate
corresponding to particular cyclotron harmonics, we find in most cases that there are two
local maxima in the function y(k, ), one on either side of § = 90°. Because of Doppler
shifts, these local maxima correspond to frequencies lying above and below {Q, (compare,
for example, Fig. 3(b) with Fig. 3(d)). The difference between the two frequencies 1s given
by
Aw = Ak;vs = A(zq cot G)U—dﬂa‘ (32)

u
The maximally unstable propagation angles range from 67° and 102° in the case of £ =1 to
84° and 95° in the case of £ = 10. The corresponding values of Aw are 0.26), and 0.64(2,
respectively. These figures are consistent with the magnitude of line splitting observed
in ICE spectra from both pure deuterium and mixed deuterium-tritium discharges.” Line

splitting in our model arises from the fact that vq # 0, and so the fine structure of ICE
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spectra may arise from the drifting of fusion ions along the magnetic field. We note,
however, that line splitting may also occur as a result of the diamagnetic drift associated
with a pressure gradient.

The most important new result to emerge from the above analysis is that all harmonics
of the fusion ion cyclotron frequency, including the fundamental, can be simultaneously
excited. This is only true for obliquely propagating waves: when k, = 0, only a few
cyclotron harmonics are simultaneously unstable, and the effects of positive-energy loading
mean that instability cannot occur unless ¢ lies above an /-dependent threshold.?'!7 In-the
k. # 0 case, Eq. (29) suggests that wave excitation is possible for arbitrarily low values of
{. In practice, because of electron Landau damping and transit time damping, there will
be a threshold concentration for instability, but Eq. (31) indicates that this threshold will
be extremely low whenever |(.| < 1.

This last result raises the possibility that small numbers of secondary alpha-particles,
born from the reaction of deuterons with primary tritons or helium-3 nuclei, could excite
the magnetoacoustic cyclotron instability, thus giving rise to wave emission at frequencies
lying close to harmonics of the deuteron cyclotron frequency. In the case of pure deuterium
ohmic discharges, the only primary fusion products which appear to be capable of driving
the magnetoacoustic cyclotron instability are protons.!® Fusion protons cannot, however,
account for the observed excitation of odd deuteron harmonics,? since the proton cyclotron
frequency is twice that of the deuteron. Our analysis shows that odd deuteron harmonics
can be driven unstable in a pure deuterium discharge by a very low concentration of
secondary alpha-particles. Since vy varies linearly with £, it is likely that the instability is
very weak, but it may nevertheless be possible to account for the presence of odd deuteron
harmonics using this mechanism. It is worth noting in this context that odd deuteron
harmonics are often observed to be less intense than even ones, both in pure deuterium
ohmic discharges,®” and in the JET tritium experiments.” In the latter case, the presence

of primary protons, in addition to primary alpha particles, could account for the higher
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intensity of the even harmonics. However, given the present lack of knowledge of the

nonlinear saturation mechanism, it is difficult to draw firm conclusions.

VI. PROPAGATION AND ABSORPTION

Figs. 1 and 2 exemplify two qualitatively different situations: in Fig. 1, instability
only occurs on the low frequency side of cyclotron resonance, and is accompanied by much
stronger damping on the high frequency side; in Fig. 2, wave growth occurs on both sides
of cyclotron resonance, and damping is relatively weak. In order to reach the plasma edge,
a wave generated inside a tokamak must traverse a diminishing magnetic field, and so it is
likely that, before being detected, a wave which initially satisfies w' < {2, will encounter
a region in which the opposite inequality applies. If M; is sufficiently large and positive,
as in Fig. 2, the wave will continue to grow as it propagates. If, however, M, is negative,
as in Fig. 1, a wave which is unstable in one region of the plasma may be strongly damped
before it reaches the antenna. Thus, the wave is more likely to be detectable if Ay > 0. It is
therefore important to establish the parameter régime in which this inequality is satisfied.
Fig. 4 shows M; as a function of z, for two different propagation angles and, as before,
u = 1.6Tc4. M, has been evaluated using w = wy. The bold lines indicate the range of
values of z, such that the obliquely propagating fast Alfvén wave is in cyclotron resonance

with a significant number of fusion ions. Specifically, we have set
W= dkyeq = Da+ Bsvijs (33)

where

vg — 2v, < v < vg+ 2v,, (34)

so that exp(—n?) > 1072, As before, v4 = 0.25u and v, = 0.05u. The important point is
that M; < 0 for all resonant values of z,, and in fact this result holds for all propagation
angles lying within +20° of the perpendicular direction. When 6 ~ 125° we find that

M; > 0 for resonant values of z,, but in this case M; is so small that the line profile
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is dominated by the N1 term in Eq. (29). At such large values of [90° — 6|, Eq. (31)
indicates that the instability will, in any case, be suppressed by transit time damping.
It thus appears that fundamental cyclotron waves generated by fusion ions in the edge
plasma may undergo attenuation before reaching the detector, although this will depend
on how steeply the fusion ion density falls off with radius in the edge plasma. Similar
remarks apply to the case of second harmonic cyclotron waves.

Fig. 5 shows the corresponding results for £ = 4. In this case the value of M, in the
resonant region of z, space is rather sensitive to 8: it is strongly positive when 8 = 85°,
and approximately zero when 6 = 80°. We find generally that M, < 0 at resonance for all

£ > 3, except when 6 lies within a few degrees of the perpendicular direction.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have studied the excitation of obliquely propagating fast Alfvén waves
by the magnetoacoustic cyclotron instability, driven by a drifting ring-like distribution of
fusion ions. Restricting our analysis to cases in which electron Landau damping can be
neglected, we have obtained a perturbative solution of the appropriate dispersion relation,
which, in the relevant parameter régime, reproduces many of the essential features of the
exact numerical solutions presented in Sec. V. By extending the previously existing theory
of the magnetoacoustic cyclotron instability from perpendicular to oblique propagation,
we have shown that linear instability can occur at the fusion ion cyclotron frequency and
all its harmonics. Using a model velocity—space distribution for the fusion ions appropriate
to the ion cyclotron emitting region in JET tritium experiments,” we have shown that the
finite parallel wave number effectively decouples the magnetoacoustic cyclotron instability
from bulk ion cyclotron damping. The parallel drift of the fusion ions provides a simple
(although not necessarily unique) possible explanation of the observed splitting of harmonic
emission lines. Finally, the predicted persistance of the instability when the concentration

of fusion ions is extremely low suggests that secondary alpha-particles may be capable
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of exciting the hitherto unexplained wave emission at odd deuteron harmonics in pure
deuterium ohmic discharges.

Our analysis has been restricted to linear Vlasov theory in the locally uniform ap-
proximation: we have not addressed at all the question of wave saturation, and we have
only touched briefly on the problem of wave propagation from the source region to-the
detector. In Sec. VI we argued that a cyclotron harmonic wave may undergo significant
attenuation if the function M, defined in Eq. (22) is negative. At the maximally unstable
propagation angle, M, < 0 for £ = 1 and £ = 2. In order to ascertain whether or not
our model can account for the appearance of those harmonics in ICE spectra, it would
be necessary to specify the magnetic geometry and spatial distribution of alpha particles
in the edge plasma, and to carry out a full wave calculation. When the concentration of
fusion ions is very low, electron dissipation may be significant in the case of the lowest
cyclotron harmonics: when £ = 1079, the transit time damping rate of the fundamental
¢ = 1 mode given by Eq. (31) is comparable to the magnetoacoustic cyclotron growth rate
at the smaller of the two maximally unstable propagation angles. In such cases it might
be desirable to solve the full dispersion relation, allowing the z component of the electric

field to be finite.
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Figure Captions

FIG. 1. Growth/damping rate as a function of w’ = w — k,v, for the case of energetic
alpha particles in a deuterium plasma. Numerical results are indicated by solid curves,
and analytical results by dashed curves. The distribution function parameters other than
¢ are the following: f#; = 1.6 x 107°, u/c4 = 1.67, vg/u = 0.25, and v, /u = 0.05. The

wave propagation angle is 85°.
FIG 2. As Fig. 1 except that w' ~ 40,

FIG. 3. Growth rate as a function of w for propagation angles ranging from 80° to 100°.
The concentration of fusion ions is 10™*, and the other distribution function parameters

are identical to those used to generate Figs. 1 and 2.

FIG 4. M, as a function of z, for two values of § and u = 1.67¢c4. The bold lines indicate
the range of values of z, such that the fast Alfvén wave resonance condition is satisfied,

assuming vg = 0.25u and v, = 0.05u.

FIG. 5. As Fig. 4 except that £ = 4.
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