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Abstract

In recent papers it has been argued by Montgomery and Shan that in calculating
resistive MHD instability thresholds, both resistivity and viscosity play an equally
important role and may significantly modify conventional views of resistive MHD. The
purpose of this paper is to discuss these arguments and put them in perspective in the
context of tokamak physics. The crucial point is the following: while it is indeed true
that for a given g-profile, the marginal stability thresholds of linear visco-resistive MHD
equations depend in principle upon both resistivity and viscosity jointly through the
Hartmann number, physical considerations of tokamak experiments suggest that this
is an insignificant modification of well-known results in tearing mode theory as far as
its applications to tokamaks are concerned. Furthermore, the uniform ¢ (equivalently
resistivity) model used by Montgomery and Shan to motivate many of their arguments
and to some extent their computational techniques is non generic in a sense to be
explained and is therefore not a helpful starting point for discussions of MHD stability
in tokamaks. Apart from this general observation, we find that the actual results
obtained by Montgomery and co-workers regarding linear instability are all contained in
the ‘standard’ approach used in the Fusion community: specific examples are provided
using the linear version of the CUTIE code developed at Culham to solve the relevant
MHD equations. The CUTIE results show explicitly that JET-like tokamaks operate
in a different parameter regime and involve qualitatively and quantitatively different
physics to those studied by Montgomery and Shan.



1. Introduction:

In a recent set of papers, Montgomery and Shan [1-3] (see also other works cited in
these papers) have considered the visco-resistive MHD equations in a periodic cylinder
geometry and have argued that the linear instability thresholds of these equations for a
given ¢(r) and aspect ratio a/ R, depend only on the Hartmann number, Ha = Lﬂ'{iLﬂ

Here, 74 = a/Vy, the Alfvén ‘transit time’, and 7,, 7, are the resistive ‘field diffu-
sion time’ (= 4wa?/c?n) and viscous ‘momentum diffusion time’ (= a?/v) respectively.
As usual, V4 = By(47p)~'/2, 7 is the resistivity (assumed scalar and possibly a function
of ) and v is the kinematic viscosity (assumed uniform in r).

In actual fact, Montgomery and Shan treat only the spatial profile of ¢ as fixed
and take the ‘pinch ratio’, Bg—:) (equivalent to g(a) since a/R is fixed) and Ha as the
variable parameters in their stability studies. Montgomery [1] shows directly from the
MHD equations by standard dimensional arguments that a given (m, n) Fourier mode
is marginally stable only along a definite ‘stability boundary’ (ie curve) in the J‘fa—B—_‘fB—l

a
0
plane, where the Hartmann number is evaluated at r = 0, say.

To reach this conclusion, it is necessary to assume (as Montgomery does) that
in the unperturbed state there is no mean flow, although there is a uniform electric
field in the ‘toroidal’ direction leading to a longitudinal current consistent with the
the profiles assumed for ¢(r) and n(r). Furthermore, By is taken uniform (no poloidal
current) and the system assumed incompressible with constant density p. Under these
circumstances, a result due to Furth et al [4] shows that the ‘principle of exchange of
stabilities’ applies: ie, the real and imaginary parts of the frequency vanish together at
marginality. Thus at marginal conditions, the equations reduce to a linear eigenvalue
problem for the critical Hartmann number. A solution of this problem yields a visco-
resistive ‘neighbouring equilibrium’ bifurcating from the symmetric unperturbed state
with the critical Hartmann number as the ‘eigenvalue’ for a specified pinch ratio (or,
equivalently, ¢,) and current profile.

Shan and Montgomery [2,3] also consider a more special case of uniform n which
results in a uniform g—profile and show how the marginal stability boundaries for
various Fourier modes can be analytically obtained. They use the spatial eigenfunctions
(the so—called ‘Chandrasekhar-Kendall functions’) of this special problem to construct
a spectral method for solving the general problem with variable ¢ and report linear
and non linear calculations for various cases.

The purpose of this paper is to consider the results and conclusions reached by
Shan and Montgomery and relate their work to the more traditional approaches to
resistive MHD. It is useful at this point to spell out the common ground between their
approach and the one adopted here.



The present analysis, based on conventional visco-resistive MHD is in agreement
with Montgomery’s [1] conclusion that the marginal stability thresholds for given q(r)
depend only upon the Hartmann number. It is also accepted generally that the non
ideal MHD modes should be studied taking account of both resistivity and possible vis-
cous effects. The actual numerical results of the calculations of Shan and Montgomery
[2,3] using the ‘exactly soluble’ uniform-q model and those deriving from subsequent
linear and non linear simulations are also accepted as correct within their stated terms
of reference.

The real difficulty with the results of Montgomery and Shan [1-3] is that they have
little or no relevance to present day tokamak physics. Thus, it is our purpose to show
that no new conclusions can be drawn from their results appropriate to linear or non
linear MHD instabilities in present-day experiments which are not already contained
in the vast literature on tearing modes. This claim of irrelevance is a strong one and
the rest of this paper is devoted to justifying it.

To this end, we re-examine Montgomery’s arguments and actual examples in the
light of the more conventional approaches. The results obtained by him and Shan are
shown to be recovered by a straightforward time-evolution of the visco-resistive MHD
equations. This has been done with a linear version of code developed at Culham called
CUTIE. This examination shows that the values of resistive and viscous diffusivities
pertinent to Montgomery’s papers are far from those typical of tokamak conditions.
Furthermore, the uniform-¢ model is non generic in a specific sense to be explained
and is in fact unsuitable as a starting point for more realistic tokamak simulations.
Linear CUTIE simulations show that under these conditions, the linear theory of the
equations is essentially that due to FKR [4] and is qualitatively and quantitatively
quite different to the situation prevailing near transitional values of the Hartmann
number. In particular, under these conditions, in contrast to the results obtained by
Montgomery and Shan [1-3], the standard stability condition determined by A’ is only
insignificantly modified by the Hartmann number. Furthermore, the importance or
otherwise of viscosity on linear tearing modes is examined. It will be seen that the pro-
posals made by Shan and Montgomery regarding the ‘correct’ form of viscosity must
be viewed with caution. The same caveat applies to the relevance or otherwise of their
non linear simulations to actual tokamak phenomena.

2. Hartmann number and standard tearing theory:

The standard MHD equations for an incompressible plasma with isotropic resis-
tivity and viscosity take the following well-known forms [4]:

Vv = 0 (1)



‘Z—? = vX(va)_Vxl(z—:)VxB (2)
V x (p%) = Vx|[(1/47)(V x B) x B]+ V x (prV?*v) (3)

In writing the above equations, we assume periodic cylinder tokamak ordering
and treat n(r) and v (fixed constant) as specified constitutive properties. Furthermore
we assume that the constant density p and the magnetic field in the z (ie ‘toroidal’)
direction are specified. The knowledge of 7 can be used together with v = 0 in the
equilibrium state to calculate the toroidal current and g profiles for a given uniform
toroidal field. Alternatively, given g(a) we can determine the value of E, and the ¢
profile using the equation, E, = n(r).j.(r). The Eqgs.(1-3) then determine the stability
of this equilibrium to small amplitude perturbations of B and v, subject to the usual
boundary conditions of regularity at the magnetic axis and conducting wall at 7 = a.

Since all equilibrium quantities are functions only of 7, we may assume solutions of
the Fourier form f,, »(r,w)exp [imf — inz/R — wt]. If the resulting linear eigenvalue
problem for w (in general a complex number) is solved and if it turns out that for
given (m,n) the imaginary part of w (we denote it by 7) is positive, the mode is said
to be unstable. If 7 is zero, we say that the mode is marginal. Negative 4 implies
linear stability of the profile to the Fourier mode in question. Nondimensionalising
the equations reveals the parameters upon which the growth rate ¥ can depend. If we
choose the minor radius a to scale all lengths, we arrive at the aspect ratio, a/ R, as one
of the relevant parameters. Since the Alfvén velocity, V4, provides a typical velocity,
the resistivity and the kinematic viscosity can be rescaled by introducing the ‘magnetic
Reynolds number’ S = 7, /74 and the analogous ratio for viscous effects, M = 7,/74
respectively.

It then follows that the non dimensional equations only involve a/R, S, M and
the spatial profile, g(r). The latter can be used to represent the radial profile of n(r),
assuming that S is evaluated at some definite reference point (which may be taken to
be r = 0 without loss of generality). In turn this implies that the non dimensional
growth rate y74 (for a given (m,n) mode), is a function of the above parameters and a
functional (in general non local) of ¢(r). If we fix ¢/ R and ¢(r), y74 must be a function
only of S and M. Provided there are no equilibrium flows/diamagnetic effects, it turns
out that 4 = 0 (ie the ‘marginally stable state’) corresponds to w = 0. In this case, we
can consider the non dimensional equations at marginality, ie when w = v = 0. The
linearized marginal equations then take the dimensionless forms:



V*v: = 0 (4)

V' x (v xb) = V*x [(W{J_g)v* X B"} (5)
V" x [(1/47)(V" x B*) x b] = —V* x [(1/47B)(V" x B) x B’
_ V" x (%)V*zv* (6)

In these equations, b represents the unit vector along the unperturbed magnetic
field B and the velocity is scaled relative to a/r4. Starred quantities are the dimen-
sionless perturbed fields whilst V* is the gradient with respect to the non dimensional
coordinate variables; the function A(r) = % is the prescribed spatial profile of the
resistivity.

We note that although these equations contain two distinct dimensionless pa-
rameters (ie §, M), we can rescale v* = (4£)/?w and obtain the same set of equa-
tions with v* replaced by w and S, M replaced by a single non dimensional number,
Ha = (SM)'/2. Note also that it is not in general possible to make such a reduction
in the case of the full (ie non marginal) time evolution equations, Eqs.(1-3). It is now
plain that for given B(r) (ie ¢(r), h(r)), boundary conditions, and Fourier mode (ie
m,n), these equations do not in general have non trivial solutions. Indeed, we must
solve them regarding the critical Hartmann number, Ha,,;; as an eigenvalue. Thus we
recover Montgomery’s [1] statement, starting from the standard approach.

It should be carefully noted however that growth or decay rates depend upon S
and M individually in general and not merely on the combination Ha. It therefore
makes physical sense to consider (for example) the limit when S is large but finite,
letting M — oo and calculate growth rates, as is done by Furth et al [4] in the main
part of their paper. The marginality condition in this asymptotic limit when M, Ha
have been taken to infinity is now a condition on the ¢ profile and has nothing to do
with the Hartmann number (and as a matter of fact does not involve S either).

Let us now consider the relevance or otherwise of the above result to tokamak
experiments. In most tokamaks, the conditions are usually such that S is of the order
10° — 108, The kinematic viscosity from classical theory is typically of the order of
resistive diffusivity. Thus, ¢*np/dry ~ (ﬁﬁ;)(n—/n). This ratio is of order unity
under standard, medium to large-scale tokamak conditions. This implies that the
Hartmann number is of the same order as S. Taking neoclassical effects into account
does not significantly change the ratio. If v is assumed anomalous and of the order of the
anomalous thermal diffusivity (ie ~ 1 —10m?/s) whilst treating n classical/neoclassical,
we get M to be somewhat smaller than S but the Hartmann number is still > O(108).
In all these cases we must take v to be the radial momentum diffusivity for reasons

which will be discussed in detail later.



As we shall show by explicit numerical examples and also from the results of
Montgomery and Shan, it follows that for most ‘reasonable’ g profiles, the critical
Hartmann number is many orders of magnitude smaller than the values appropriate to
experiment (typically, Ha.; =~ 10° for the profiles considered). The physical reason for
this is very simply explained: the magnetic free energy available to drive the mode is
far larger than the viscous stress available to damp the mode except with unrealistically
large viscosity (which of course corresponds to ‘small’ Hartmann numbers, for given
resistivity). To overcome the effects of the Lorentz couple in the vorticity diffusion
equation, the viscous forces must be large, and this can happen only at rather modest
values of the Hartmann number.

The relevant condition for visco-resistive stability of Fourier modes when S, M
are ‘large’ is actually related to the well-known A’ of the FKR theory [4]. This quantity
is uniquely determined (for given m,n and ¢ profile) by the solution of the ‘marginal’
equilibrium equation, Vx [(V x B) x B] = 0, and is independent of S, M for asymptot-
ically large values. It has been shown to be related to the free magnetic energy available
in the equilibrium configuration to drive the instability (see [5]). If M > S > 1, the
instability condition is the well-known A’ > 0 criterion, the mode being marginal if
Al =1,

Note that the emphasis here is decidedly different from that of the work of Mont-
gomery and Shan. The parameters S, M are in fact regarded as fized, determined by
the experimental conditions and we ask for the conditions to be satisfied by the ¢ profile
in order that a given m,n Fourier mode may be marginally stable. Under these cir-
cumstances, the effect of a small but non zero viscosity (ie a large but finite Hartmann
number) can be assessed physically by considering the equation of motion: the viscous
stress term is only a small perturbation on the Lorentz force term which leads to the
A’ = 0 criterion; thus, in this case, the marginal stability criterion will take the form,
A'— F(Ha) > 0 where F(Ha) is a function of the Hartmann number (it will in general
involve ¢ and a/R of course) which must vanish as Ha — oco.

This is very different from the structure of the stability condition [2,3] when
the Hartmann numbers are ‘small’ (ie O(1000)). It should not be forgotten that in
tokamak physics, one is not merely interested in marginal stability conditions (which
as we have seen, depend only on the Hartmann number for given q) but also in the
linear growth rates of the Fourier modes. These growth rates are functions not only
of S and M, but actually depend on local and global profile properties such as the
magnetic shear (ie ¢’ and A’). Indeed, it has been shown [6-9] that when the linear
growth rates are weak the modes quickly evolve into a ‘Rutherford’ regime and often
saturate to form quasi stationary (rotating) ‘islands’. Many active methods of profile
control have been suggested to weaken the growth rates to render the modes ‘benign’.
The Hartmann number is scarcely relevant to such studies except in so far as viscous
layers may dominate over resistive ones in some circumstances.



It is well-established since the work of Furth et al [4] that the spatial structure
of the modes involves viscoresistive critical layers at radii r, where g(rs) = m/n with
thicknesses determined by the combined effects of S and M. The theory of Shan and
Montgomery applies only when S, M and Hea are so small (relative to experimental
conditions) that there is no ‘singular’ layer structure at all. This fundamental fact will
also be illustrated by explicit calculations.

Shan and Montgomery consider a ‘uniform resistivity model’ to illustrate some
of their points. In their work, they have essentially rederived many earlier results by
several authors [10-13] This model was actually considered by Shafranov [13] within the
context of ideal MHD and turns out to be soluble exactly in terms of Bessel functions,
even with the inclusion of non ideal effects such as the Hall effect in Ohm’s law [12]
and viscosity in the equation of motion. In the context of tokamak physics, it must
be said that the model has little or no relevance, since experimental measurements
of g by Soltwisch [14] and many others show conclusively that the current density is
not spatially uniform as required by this model, in general. Very flat ¢ profiles over
a substantial portion of the tokamak would imply that the strongly stabilizing ‘line
bending’ term is absent suggesting ideal instability. Viscosity and resistivity (at high
S, M) would not normally be expected to significantly affect the stability in this case.
Of course the ‘layer’ would extend everywhere and the mode would not have the char-
acteristic ‘tearing’ structure. In short, this is a non generic profile which is atypical
of most tokamak discharges. For this reason, we believe that results relating to such
specialized profiles are of little (if any) relevance to tokamak applications. While Shan
and Montgomery do carry out calculations for more general sheared profiles, the eigen-
functions obtained from the uniform case are not an appropriate set to expand the
solutions in the general case at physically interesting values of S, M.

3. Numerical results:

In this section we present results from the linear CUTIE code developed at Cul-
ham. This code essentially solves the linearized equations of motion, Eqs.(1-3) given
m,n, the equilibrium ¢(r) profile and and the parameters S, M. Thus starting from
arbitrarily prescribed initial data, the time evolution of the linear mode is calculated
by solving two coupled partial differential equations satisfied by the magnetic flux func-
tion ¥ and the velocity stream function, ®. In the tokamak limit (which is the main
concern in this work), it is easily seen that (Hazeltine and Meiss [15]) the equations of
motion reduce to,

oV en(r) -,

StV = Vi o
deV2 &
Cdtl = —VIV|(VEU)+ »Vich (8)



where, V| = %.V and jj = —£ V32 V. The parallel component of the vorticity is given
by, O = §V1¢.

Setting ¥ = Z, (r,t) exp(i(mb —nz/R)), c® = 1V @ n(r,t) exp(i(mb —nz/R))
and introducing the radial Laplacian operator, Dm|n ~ 1d(pd) _ (m)2) the coupled
equations for a given Fourier mode (m,n) become,

e, - e o
aD2 .. (m—nq) ., Va 47 djo:
ot +Va qR DonnZmn = M-Zmn g ch Bog dr

4 0.2 (D, B) (10)

We do not describe the numerical methods used to solve these equations here. Suffices
to state that standard (radial and temporal) unconditionally stable schemes are em-
ployed to time advance the equations and solve the Poisson-type equations to calculate
the fields Zpn, ®mn

We start with simulations demonstrating that the stability of 2/1 and 3/2 modes
calculated by using the above scheme is the same as that obtained by Shan and
Montgomery. Thus, following these authors, we adopt the resistivity profile, n(r) =

2(0) [1 + (r/royA] "

profile, g(r) = ¢(0) [1 - (r/ro)z"‘lm. Fig. 1 shows the equilibrium profiles of ¢, and
j. used in the simulations (identical with those of Fig. 1 in Ref. [2]). We take the
minor radius, @ = 100 cms, whilst R = 2.5 x a = 250 cms. This leads to the same
value of R/a = 2.5 as that used in Ref. [2] . We set ¢(0) = 1.38 as in Ref. [2], leading
to g, = 3.85. Choosing B = 2 Tesla, we obtain the plasma current to be 1.03 MA, a
value typical of JET conditions. The Alfvén velocity is chosen to be 2.2 x 10® cm/sec,
corresponding to a nominal central ion density of 4.0 x 10" protons/cc. Runs 1-3 in
Ref. [2] are simulated by taking S = 2 x 10* and varying v so that the Hartmann
number Ha is varied through 707,2828 and 14142. These values correspond to the
following values of V/U—@ 800,50, 2, respectively.

with rg = 0.6e,A = 4. This can be shown to result in the ¢

In complete agreement with Shan and Montgomery, we find that for Ha = 707
(‘Run 1’ in Table 1 of Ref. [2]), both the 2/1 and 3/2 are stable. When Ha = 2828
(‘Run 2’ of Ref. [2]), the 2/1 mode is unstable with growth rate, v = 6.7 X 107°/74;
however, the 3/2 mode is stable. Finally, when Ha is increased to 14142 (‘Run 3’),
both the 2/1 and the 3/2 modes are unstable, with growth rates, 753 = 1.8 X 1072 /74
and v3; = 5 X 107%/74 respectively.

Several comments are in order. The values of S and Ha used in these simulations
correspond to (in the case of Run 1 with Ha = 707 for example) a resistive diffusivity of
1.1 x 108 cm?/sec and v = 8.7 x 10® cm?/sec respectively! This is far larger (by three to
four orders of magnitude) than the anomalous thermal diffusivity in tokamaks. If the
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plasma resistance at these levels of resistivity is estimated, a loop voltage of nearly 2000
volts would be needed to drive the 1 MA current. Thus these numbers show clearly
that Shan and Montgomery’s simulations have little relevance to JET-like tokamak
conditions.

Fig. 2 shows the typical 2/1 eigenfunctions for the ‘Run 3’ case (ie Ha = 14142).
The ®,, , plot (normalized) shows that there is no real ‘layer’ structure and the mode
is ‘global’ in character in these highly resistive and viscous conditions.

The purpose of the above results was to demonstrate that the present numerical
techniques are indeed capable of simulating the linear stability behaviour of profiles
considered by Shan and Montgomery. We next demonstrate that the code can also
recover the critical Hartmann number and (in principle) the stability thresholds calcu-
lated by these authors. For this purpose, we fix the ‘pinch ratio’, Bog(a)/B = 0.103 (it
corresponds to the profiles considered above) and study the growth rate of the 2/1 mode
as a function of the Hartmann number, keeping S fixed. We find that for Ha = 943, the
mode is weakly growing but for Ha = 894, it is weakly damped. By a straightforward
process of ‘interval bisection’ we find that the critical Hartmann number for this profile
and pinch ratio is 910, to adequate accuracy. This is in excellent agreement with Fig.
1 of Ref. [3], obtained for the identical conditions using their method based on spectral
expansion in terms of the eigenfunctions of the constant shear problem. It is also easy
to show by similar calculations that the marginal condition is unchanged when both
S and M are varied, keeping Ha fixed, in agreement with the general theory and the
arguments of Montgomery [1]. For reasons of space we do not show the explicit results
for this as well as grid refinement studies demonstrating convergence of the present
scheme.

We conclude this section presenting three runs representing more realistic cases.
The point is that under these conditions the physics is of the ‘singular layer’ type
and the methods of Shan and Montgomery would involve prohibitive spectral calcu-
lations. Our finite difference technique is able to resolve the layer physics properly
(with relatively few grid points within the layer, usually 10 are found to give adequate
accuracy on both growth rates and eigenfunctions) and obtain well-converged solutions
and growth rates. The results also show that the width of the layer depends upon the
values of S, M prevalent at the resonant radius, as expected from the standard analysis
of FKR [4].

Taking the same ¢ profile as above, we consider the case when S = 1.0 x 107. The
nominal loop voltage to drive the plasma current then turns out to be 4 Volts, showing
that this case is much closer to experimental conditions than the simulations of Shan
and Montgomery.

First consider v = ﬁﬁm = 2.2 x 10% cms?/sec, corresponding to S = M = Ha.
The radial grid resolution in this case is, Ar = a/1800, corresponding to about 10



mesh points within a ‘resistive layer width’, § =~ a/5%/°. Fig. 3 shows the normalized
eigenfunctions after 1 msec of ‘real time’ evolution of the mode.

The layer structure and the characteristic ‘kink’ in the ¥ function are brought out
clearly by the plots of ®,, ,(r) and Z,, »(r) respectively. The growth rate is calculated
to be, 1, = 8.2 x 107%/74 ~ 1.8 x 10%/sec. In this case, the resistive and viscous
diffusivities are equal.

Next consider what happens if we take the same S but decrease v such that
v = 0.01 x %Ql. The Hartmann number in this case is, Ha = 10 x § = 1.0 x 10%.
We expect the mode to be resistivity dominated and indeed, as Fig. 4 shows, the layer
width is lower and corresponds to the ‘traditional’ resistive tearing theory a la FKR.
The growth rate is, y2; = 1 X 107*/74, somewhat (ie 25 %) faster than in the previous
case. Finally, to demonstrate the effects of ‘viscosity dominance’ we show the results
in Fig. 5 of a run with Ha = S§/10 = 1.0 x 10°. In this case, the resistive diffusivity
is 2.2 x 10% cm?/sec whereas the kinematic viscosity is 100 times larger (indeed, much
larger than the typical tokamak perpendicular thermal diffusivity due to turbulence,
even in L-modes). The ®,; plot clearly shows the much ‘thickened’ (compare with the
II case above) viscous layer. The growth rate is reduced due to viscous damping and
is found to be, 21 = 4 x 107°/74.

It is now clear that the ‘critical’ Hartmann number calculated for the profile
is essentially irrelevant at high S since it corresponds to impossibly large kinematic
viscosity. The real marginal stability depends upon the magnetic free energy to drive
the mode contained in the equilibrium poloidal field and is measured by the A’ of the
mode in question. Under realistic conditions, linear visco-resistive modes can be made .
stable only by profile control or suitable ‘dynamic’ [16] or ‘feed-back’ stabilization.

Viscosity certainly affects layer properties and growth rates, but the essential
theory of this was already given by FKR in Ref. [4] and can in any given case be
calculated readily by codes such as CUTIE. Shan and Montgomery have argued that
the ‘effective’ viscosity could be much higher in tokamaks than implied in the standard
approaches. In particular they suggest that parallel ion viscosity be used in the sta-
bility analysis [2]. This is physically unlikely to be important in tearing stability for
two reasons: firstly, parallel viscosity essentially involves the parallel gradient operator,
b.V and as such is negligible within the resonant layer, at least in the cylinder. In a
torus, it can be as important as the perpendicular viscosity effects. In addition, it can
never be a crucial term in the momentum balance anyway, since the Lorentz force is
by far the dominant term in the parallel vorticity equation and leads directly to the
usual ‘outer solution’ of standard tearing theory. Furthermore, within the layer, it is
the radial derivatives of velocity which can be expected to play a role, and these are
controlled by the perpendicular viscosity [4], which may be classical (ie ~ %:?r, possibly
neoclassically ‘enhanced’ by geometric and trapped particle effects) or ‘anomalous’ like
the ion thermal diffusivity. None of these effects can produce a low Hartmann num-
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ber, although they can certainly affect growth rates and layer widths like many other
effects such as thermal diffusivity, Landau damping, Hall effect, electron inertia, etc.
Secondly, in the low collisionality regime typical of tokamaks, the parallel diffusivity
of momentum and energy are decidedly not given by classical expressions like &~ V;2.7;
but have to be ‘Knudsen-corrected’ for long mean-free-path [17,18]. The combined
effect of such corrections and the size of k”/kmd,-a; is to reduce the ‘effective’ kinematic
viscosity to values not much above those implied by anomalous perpendicular trans-
port. Thus although such ‘Knudsen-corrected’ diffusivities are available, as pointed
out above, they can have little direct effect on mode stability as apparently envisaged
by Montgomery.

4. Summary and conclusions:

In this paper, the recent work of Shan and Montgomery on viscoresistive insta-
bilities in tokamaks is considered. Analytical and numerical considerations indicate
that whilst their results can indeed be recovered by more standard approaches, they
are largely irrelevant to realistic present day tokamak conditions. Furthermore, the
numerical methods and the exact solutions found by these workers have little or no
application to Fusion plasma physics (except possibly in highly collisional edge condi-
tions or in small machines) although they may be more useful in other types of MHD
applications involving larger resistivity and viscosity. The relative roles of viscosity
and resistivity in allowing the equilibrium free-energy to drive low mode number in-
stabilities have been understood since the classic paper of Furth et al [4] and the more
recent studies of Montgomery and co-workers do not significantly change the situation.
It has also been shown that a numerical code developed at Culham (called CUTIE)
can reproduce both the results (in the linear regime) of Shan and Montgomery and the
well-known tearing theory under appropriate conditions.
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FIGURE CAPTIONS

Fig. la: Equilibrium ¢(r/a). Fig. 1b: Equilibrium j,(r/a). See text for func-
tional forms.

Fig. 2a: Typical 2/1 eigenfunction of the perturbed Z,, .(r/a) (ie normalized
radial magnetic field perturbation profile). ‘Run 3’ conditions with Ha = 14142; S =
2 x 10*. Fig. 2b: Plot of associated ®,,,(r/a) eigenfunction (ie normalized radial
velocity perturbation profile).

Fig. 3a: Typical 2/1 eigenfunction of the perturbed Z,, ,(r/a) (ie normalized
radial magnetic field perturbation profile). ‘Realistic’ conditions: S = 1.0 x 107; Ha =
St = 52—;’—1&91 = 2.2x 10 cms?/sec. 1800 radial mesh points. Eigenfunction after 1 msec
time-evolution of growing mode. Fig. 3b: Plot of associated ®,, ,(r/a) eigenfunction
(ie normalized radial velocity perturbation profile). Note strong localisation near the
resonant point.

Fig. 4a: Typical 2/1 eigenfunction of the perturbed Z,, ,(r/a) (ie normalized ra-
dial magnetic field perturbation profile). ‘Realistic’ conditions, ‘resistivity dominated’:
§=1.0x%x10";Ha =10 x S; ¥ = 0.01 x 5—2%9)- = 2.2 x 10" cms?/sec. 1800 radial mesh -
points. Eigenfunction after 1 msec time-evolution of growing mode. Fig. 4b: Plot of
associated ®,, »(r/a) eigenfunction (ie normalized radial velocity perturbation profile).
Note greater localisation near the resonant point as compared with Fig. 3b.

Fig. 5a: Typical 2/1 eigenfunction of the perturbed Z,, »(r/a) (ie normalized ra-
dial magnetic field perturbation profile). ‘Realistic’ conditions, ‘viscosity dominated’:
S5 =1.0x107°; Ha = S/10; v = 100 x i;’frgl = 2.2 x 10° cms?/sec. 1800 radial mesh
points. Eigenfunction after 1 msec time-evolution of growing mode. Fig. 5b: Plot of
associated ®,, »(r/a) eigenfunction (ie normalized radial velocity perturbation profile).
Note much broader ‘layer’ as compared with Figs. 3b, 4b.
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