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Abstract
A model for the sawtooth collapse, based on Taylor relaxation of the plasma

core in a Tokamak, is described. The relaxation is assumed to take place
within a central zone determined by the instability of localised resistive in-
terchange modes, and is accompanied by an ideal MHD adjustment of the
external region so as to maintain force balance across the interface. Using an
aspect ratio expansion, equations determining the post-crash equilibrium are
derived and solved in terms of equilibrium quantities prior to collapse. The
crash model contains no arbitrary parameters. This model has been installed
in the ‘1-1/2 D’ resistive evolution code LARS, and in the paper we carry out
a quantitative comparison of the simulation results with experimental data,
in particular with the TEXTOR tokamak where detailed measurements are

readily available.



1 Introduction

‘Many aspects of sawtooth phenomena in Tokamaks remain mysterious. It is
important to be able to model the sawtooth instability as it has effects on ig-
nition criteria in reactors, as well as on the confinement of fusion products. It
is not known what controls the triggering of the rapid temperature collapse,
and hence what determines the sawtooth period. The physical processes
that take place during the abrupt (~ 100ps in JET) crash phase are also
unknown. The earliest suggestions of Kadomtsev [1], [2] that the observed
temperature collapse may simply be a consequence of a global m = 1,n =1
flux reconnection in the plasma. core were vitiated when detailed analysis of
soft X-ray signals [3], [4] suggested that a sudden interruption of the rela-
tively slow m=1 reconnection occurs when the magnetic island is of modest
size (W ~ /3 where W is the island width and r; the radius of the ¢ = 1
magnetic surface). More evidence conflicting with the Kadomtsev reconnec-
tion model appeared when careful Faraday rotation measurements [5], [6]
revealed that the value of the safety factor ¢ remained below unity after the
thermal crash of the sawtooth cycle. Further, the Kadomtsev model is asso-
ciated with a time scale that is too slow to explain the crash phase in modern
large tokamaks such as JET [7].

In this note we present results from an alternative model, based on fine
scale reconnection in the plasma core. (We do not address here the problem
of the interruption of the reconnection (‘partial sawteeth’) or the question of
the triggering mechanism [8]).

A particularly well diagnosed experiment for this purpose is the TEXTOR
tokamak [9], [10].

1.1 Description of the crash model.

The concept of Taylor relaxation [11] (minimisation of magnetic energy sub-
ject to a single topological constraint) has been successfully applied in the
past to the Reversed Field Pinch [12]. In these devices the average curva-
ture is always destabilising and because of the high magnetic shear there are
many low-order mode rational surfaces within the plasma. Accordingly the
Pinch has many degrees of freedom available to access the Taylor state. In
the Tokamak there are typically only a few active mode rational surfaces and
local resistive interchanges are generally stable. However, as the axial value
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of the safety factor go drops below one, the average curvature as described by
the quantity Dg [13],[14], [15] becomes unfavourable in an inner core and it is
this region we might expect to Taylor relax. Accordingly we take the radius
T within which Taylor relaxation occurs to be determined from Dg(r,,) = 0.
We then seek solutions for the Taylor state (VA B = uB, i constant) in this
region (see [16] for an earlier investigation). In general this will now give
rise to a force imbalance across r,,, and the plasma is allowed an ideal adia-
batic displacement to restore equilibrium. In fact in the Tokamak ordering
the imbalance is O(€?) and the toroidal field in the external region changes
to accommodate it. We further assume that viscous forces are sufficient to
convert (via dissipation of plasma kinetic energy) all the energy lost dur-
ing the relaxation into thermal plasma energy. So the model concerns four
constraints; core helicity and toroidal flux, total energy, and force balance
at r,. Analytic expressions for these quantities in the relaxed state can be
obtained using the aspect ratio expansion limit employed by the ‘1-1/2 D’
resistive evolution code LARS [17]. Computing these quantities numerically
for the pre-crash state then allows the post-crash state to be completely de-
fined simply by equating pre- and post-crash values. In Section 2 we derive
the equations describing the post-crash equilibrium, and the constraint equa-
tions which determine the relevant constants. In Section 3 we obtain explicit
solutions for these equations and examine the energetics of the process. It
is well known experimentally [18] that the sawtooth oscillation is invariably
associated with m = 1 (m is the poloidal mode number) activity and in Sec-
tion 4 we outline the role that this mode plays in our model, together with
a discussion of the Dp criterion in more detail. Section 5 briefly describes
the installation of the crash model in the LARS evolution code, and finally
in Section 6 we give results obtained by the code when applied to simulating
sawteeth in the TEXTOR tokamak.

2 The Post-crash Equilibrium

Following [19] we transform from the usual cylindrical co-ordinate system
(R, ¢, Z) based on the axis of toroidal symmetry to a system (r, 8, ¢) where
magnetic surfaces have constant r and 6§ is a poloidal angle, and consider
a large aspect ratio, # ~ O(¢?) model of a Tokamak equilibrium, with the



magnetic field given by
B = RoBolg(r) v ¢+ f() V6 A vl (1)

The relaxation process is subject to the dual constraints of helicity conser-
vation

K = A .Bdr = constant, (2)

core

and toroidal flux conservation
o = fm rg(r)dr = constant. (3)
0

In the final post-crash state the equilibrium has two distinct zones. Within
the core (r < r,) the plasma is in a Taylor relaxed state defined by J =
uB,p = p with p and p (the plasma pressure) constant. It follows that the
poloidal and toroidal field functions f(r), g(») are related by

I

uf = —g. (4)

Hence following reference [20] and expanding the inverse Grad-Shafranov
equation [19] in powers of inverse aspect ratio €, so that

fo= ch()+Ehr)+ . (5)
g = 1+Eg(r)+- . (6)
p = Eplr)+-- (1)

and writing j = ey + €6 pz + -+ - we obtain

. 1

b = 5.”1"- (8)
1 ..

g2 = —Z;tfr‘z + G2, (9)

P? = 13‘29 (10)

with p, and g, constants. We seek a solution for the equilibrium flux surfaces
in the form

R = Ry—ercos(0) — A(r) + 2(E(r)cos(8) + T(r)cos(20)) + - -
Z ")sin(:
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where A is the equilibrium (Shafranov) shift of the surfaces and E, T repre-
sent the externally imposed ellipticity and triangularity. Inserting (11) into
the inverse Grad-Shafranov we find that these shaping functions satisfy

( fl) 1 ] 1 27‘})'2
A" oA —— P
o Y mtegm =
1" Z\Tr ] 1 1
a0 L 3By
rh r 72
" ..,('I'fl)‘ 1 ' T
—_— - = — 2
T +( T ; T 812 0 (12)
Using eqns.(8) and (10) in (12) we easily find that in the core region
172
A(?) = £k +§R—O,
E(r) = ET-"_
T(r) = T(—), (13)
T??l

where Ag, £ and T are constants, to be determined by matching to outer
solutions at r = rp,.

The latter expressions are only required if we choose to obtain a solution
for fz(r). We will, however, determine f3 because f3 and g, both contribute
to the departure of the ¢(r) profile from constancy, and this departure may be
of considerable importance for the subsequent evolution and m = 1 stability
of the equilibrium.

Employing eqns.(8 - 13) we obtain f3(r) from the higher order pressure
balance equation (see [20]) as

falr) = FHaT = :'H:"‘(F - §2) — E#S?

‘79;111 ST g or T
E? +3T 14
o A S ) (14)

Turning now to the plasma in the outer region [r,,,a|, we require that
this plasma behaves in an ideal (flux-conserving) manner under compres-
sion/expansion as the initial mixing radius, which we denote by 7,,;, is dis-
placed to r,, with

Tm = Tmz"i‘g(rmi)- (15)



Throughout this ideal region we write
ro= ri+£(r), (16)

and require local flux conservation

‘(jf?‘([?‘ = g?'gd?',‘, (17)
fdr = fdr, (18)

and constancy of entropy
[ﬁ(")]%"d?' [p(ri ]"'1 vy (19)

where §(r), f(r) and p(r) are the equilibrium fields and pressure in the outer
region in the final post-crash state. From eqns.(16 - 19) it follows that

p = P[1~— (T Erid i (20)
. 1 d

g = gl ‘T—T( rdlrall; (21)
F df(?z)

f= rm-=="1 (22)

dr;
Inserting these expressions into the pressure balance relation in the outer

region

o dpy | dio fid, -
o gt =0 23
BD (h £ dr r dr(?.fl) ; ( )

and noting that the dominant role played by the toroidal magnetic field
requires £(r;)/ri ~ O(€?) we obtain,

o dp, d 1 d f1 d

HBolpy G, 1 @G N ,
B2 dr, + dr,{[.‘l? re dr: (ri€)] + - dh( if) 0, (24)
and hence
d . 1 d
L _ R
dr; ['.r dr; ri(ri))} 0, (25)



with solution
() = 2D (26)

In deriving eqn.(26) we have assumed a conducting wall at the plasma bound-
ary r = a.

Equation (26) completes the solution for the pressure and magnetic fields
p2(r),§2(r), f1(r) in the outer region. However, the post-crash equilibrium
contains the four undetermined constants (ji1, fiz, G2, and €(r)) in the lead-
ing order quantities (p2(7), g2(r), fi(r)), and contains further undetermined
constants (Ag, £, T and p3) if we extend the equilibrium description to in-
clude f53(r) which, as discussed above, we wish to do.

To determine these constants we return to the four constraints discussed
in the introduction. These are conservation of (i) Core helicity A, (ii) Core
toroidal flux @, and (iii) Total energy 1 together with pressure balance

across the mixing radius 7,,.

2.1 Conservation of Core Helicity K

Taking the magnetic field in the form (1) the normalised core helicity may
be written

K = /Orm f(r)dr /OT rg(r)dr — ]Orm 7‘g(r)dr/r _f(r')dr'

= 2/”“ f(r)dr /’T r gl )dr'. (27)
0 0

(The integration limits in (27) are chosen to eliminate contributions to K
from fields exterior to the core [21]). Hence writing K = eR; + K5+ -+ -,
and denoting quantities in the initial state (prior to collapse) by a subscript
2, and those in the final (post-crash) state by a subscript f, we obtain

Ry = '/(]er.fli(7‘)"2dT'- (28)

The value of Ky in the post-collapse state is easily calculated using eqn.(8).
Thus employing helicity conservation we obtain
1

Ly, = —uprt . 29
1 8;1 mi ( )
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We will return to the O(€®) contributions to this constraint relation later,
but it is convenient to derive the other constraint equations in leading order
before returning to the discussion of N3y and ;.

2.2 Toroidal Flux Conservation

Making use of the definitions

®;, = /0 " rg:(r)dr, (30)
Tm ]_

o, = ] r[1 — T,u:f?'g + G2 4+ O(e*)]dr,and (31)
0 £

T'm = Tmi+ f(rmi) (32)

we find flux conservation in zero order provided &(rym;)/Tmi ~ O(€®). Then
in € order we obtain

d; = /n“ rgai(1)dr,
0
1

1 ;
= Tui€(rmi] = Eﬂfﬁni + T;g?"rzni' (33)

where the distinction between r,, and r,,; can be neglected on the right hand
side, since it is an O(e?) correction.

2.3 Global Energy Conservation

Writing this correct to O(e?) we obtain

W /?[ 712+—(1+f]+7q2)]“'1+0( €, (34)

T , B ;
H”f X / T‘[_—}_Jz + '_U‘(l + 2_{]2]' + T}Ifl‘zj]d?‘

1+ iu 25+ JD)dr (35)

Tm =

As in the case of toroidal flux conservation, energy conservation in lead-
ing order, O(€°), is automatic. Toroidal flux conservation ensures that the
toroidal field energy is also conserved in O(€?). Finally, anticipating the fact
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that £(r) will be O(€?) in the outer region, and therefore that the adiabatic
compression of p and compression of the poloidal flux will have a negligible
effect on po and f;, we use the results

ho~ ful), (36)
P2~ palr) (37)

to write energy conservation in the form

W 53 B} . 3, B}
L U [5172 + ﬂf] ](h = =Phr, + 32'”0

2.4
3 i 38
4 1T ( )

where, once again, the distinction between r,, and r,,; need not be retained.

2.4 Pressure Balance at the Mixing Radius r,,

Equilibrium at the mixing radius demands continuity of the total pressure
2 .
(p+ 5’%5) Thus we require

~ Bg ~ 72 — Bé - 1 2.2
P?(Tm)"‘f—_(l +292 +f1) = P2+ ; (1 +2‘g2 - _#']Tm)' (39)
2 2110 4

Although the small O(e?) displacement of the mixing radius has a negligible
effect on pressure and poloidal magnetic field, it must be taken into account
when calculating the toroidal magnetic field §. Thus using eqns.(21) and
(26) we find

- 21‘111 {(1'711 )
g2 = g2+ (ag—_T?“—)' (40)

Introducing this into (39) we obtain

pop2 1 2rmé(rm) pop2(Tm)
k=i - = 5t
BO 8 (Ct', - Tm) BO

-

= b (41)

flz(r'm) &+ 92 (rm)a

B =

The four eqns.(29), (33), (38) and (41) can now be solved for the parame-
ters pg, pt1, g2 and £(7,,) in terms of which the post-collapse equilibrium is
specified in leading order. Before solving these equations we return to the
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determination of fs, and hence of the parameters g3, Ag, £, and T which
remain to be calculated. The three quantities E,T and Ay which describe
the shape and toroidal shift of the magnetic surfaces in the plasma core
are simply obtained by matching at the mixing radius to the corresponding
quantities in the outer region.

Since in the outer region py(r) = pa(r) and fi = fu(r) it follows that
A(r), E(r) and T(r) satisfy the same differential equations (12) as in the
initial equilibrium. However, because a new boundary condition (matching
to solutions at r,) must now be applied, the solutions differ from those in
the initial state. Thus surface shapes and the toroidal shift in the outer
region are modified by the relaxation event in the core. The appropriate
boundary condition at r = r,, is obtained by integrating the equilibrium
shaping and Shafranov shift equations across the mixing radius to obtain the
jump conditions

(E'f7) = [T/ =0,
21

' 12 = L 79 — :( 71 9
[A f]] HDHOBS(])Z P:(Tm))a (4.«)

where
(4] = lﬂiilg[-‘l(?‘m +6) — A(r — 6)]- (43)

The above relations ensure that the Grad-Shafranov equilibrium equation is
satisfied at 7 = r,, in first order. Then, matching E. T" and A at r =r,,,, we
find the boundary conditions appropriate to the outer region solutions are

~

E’ 1 ,Uf""m

E ( ) 4 flzi(rm)

i 1 win

—\Tm + 6 - = Ll s

T ( ) 2 flzi(rm) '

~ il sz"?, 27

A (?‘m + (5) = ity (P2 — Pi(Tm))- (44)

16 Rof2(rm) + Ropo B3 I}

and that the constants £, T and A, are then given by

E = E(rn), (45)

T = T(rm), (46)

By = A(?‘m)“‘l'i (47)
8 2’



where £, T and A represent the ouler region solutions in the post-crash
equilibrium.
To determine u3 we require helicity conservation in € order. Thus

I3 = / " 7‘2f3(h' -+ 2-/.“”. fadr /] 71'92(1-')(173-’ (48)
] 0 o

must be equated to K3;. Making use of eqns.(8), (9) and (14) and recalling
that in evaluating K

1

Ky = E‘“]T;’l' (49)
1 A& (ry
= 'é'n”lr;ln.i(l + f_’(_r ))1 (50)

we retained only the leading contribution in writing eqn.(29), we obtain the
following expression for Ny

. 1 P Ag gz 4E(rm)
A = —uri[2§ — — + = + =
af gfi w202 R 25 m - ]

1,
- Eﬂ] T'm

(2 29 1‘21]
e
1 1 b RS

1 _ -
—3;111‘3,[[‘:'24-'2712]. (51)

Now making use of eqns.(45)-(47) and helicity conservation in € order

K3 = Kgy, (52)
tt3 1s determined and a complete solution for f3 in the plasma core can be
obtained.
3 Solution of the Constraint Equations

In this Section we complete the calculation of the post-crash equilibrium by
solving eqns.(29), (33), (38), (41) and (52) for the constants uy, P2, G2, &(rm)
and p3.
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It is convenient to first define the following dimensionless quantities which
can be calculated from a knowledge of the equilibrium immediately prior to
the sawtooth crash

4/ _ = T
W, = r?-fo SR

~ 2 T

K = — / r2 fy(r)dr,
?‘7?1!

A rnll

¢, = - / rga(r)dr,

171 i

3pop
toPe 1) | 2 fatelar,

mt

- H‘UPZ(?.HIE) 2
P2 = T+§.f1(f'rv1i)+_€/2(?'m;}1
];'3 = —;_1\'3,'.

v
1 me

(53)

(54)

Having evaluated these five initial quantities the relevant constraint equations

take the form

41,

4K,

HiTms

flrm) 1, 2
2 — =iy
g2+ 2 e 81[ 1Tm
3 ,[10]3-2 1 2
b= — {0
2 B T 16t
ﬂoﬁg - 1 23 2 m’s( m)
+ gz - _ﬁlr T.]]l %
Bs 3 T (@ = r2)
4 Alr
."-fl?m[)JZ + — = =+ 6(77??) — (7m)]
15 T -R['J
2 Dk 2E*r, 4T%(r,
_H]?‘rri[“lr.m _"_n;"i" ( 1) + ( n)
6 48 Rj 72 2

m m

Hence, solving, we find

H1Tm

FoP2
Bj

£(rm)

Tm

4k,
24 !
5[112 — ]\1],

2

1 T'm z I 2 17 )
5[1 = a_g][q)Q - P+ 5(”2 — k7)),

12

]

(58)
(59)

(60)

(61)



2 A rfn i P 2% .
G = S, +2RT-1 = B0 — P+ 5 (Wa = K7, (66)

AN EA(re) T*ra)  289v2 -
HaTm = I\1[4 Rg + 8 TTZ"- + 16 7‘127] Eﬁg = bq)g]
n 80 -

3.1 An Analytic Example

As an example we calculate the value of the safety factor on axis, go, in the
post-crash equilibrium as a function of the initial state parameters.

For this we consider an initial current profile of the form used by Kadomt-
sev [2]

22
J = J'o(l'-:;)a (68)
corresponding to a ¢(») profile of the form
2
o= =) (69)
Now writing A'y; in the form
Ky = /O % (70)
we find
pls 2 Vi
Ky = ?}‘;[l - 5(1 — o) :i,;’], (71)

where ¢(r1) = 1. Equating this to the value of the helicity (in the cylindrical
limit) in the post-crash equilibrium
-y
Ky, = -2 72
Vif ay (72)

determines the value of ¢; in the core after relaxation

4 = fm[l—g(l—fm)%l“- (73)
1



Clearly this remains below unity if

Tm

™

SN V]
—_—
b |
=N
~—

and in particular, if rp/ry >~ 1 we find

(1 - go)l1 - 50— @)™ (73)

| —

(I-g5) =

So, for example, an initial value of axial ¢, gg = 0.75 results in a final value
g; = 0.9. Figure 1 gives a plot of ¢(0) after the crash against that before it
for various values of r,, /7.

3.2 Energy Accounting

We now consider how energy is distributed after the sawtooth crash. The
relaxation process reduces the magnetic energy in the plasma core. Inspection
of eqn.(38) shows that the loss of poloidal field energy in the core,

AWy = —/ "[flf - Jiildr (76)
2 Jo
is exactly compensated by the gain in core thermal energy AW, = —AW)
with
. 3 frm i
AW, = —] rlpy — pildr. (77)
3 .Jo

The energy in the toroidal magnetic field in the core decreases if the displace-
ment £ is positive (expansion of the core plasma), but is exactly compensated
(up to O(€?)) by the increase in toroidal field energy in the outer (compressed)
region.

4 The Dp criterion and the role of the m =1
mode

As alluded to in Section 1.1, there are two primary difficulties that arise
when seeking to base a sawtooth model on the Dp condition. The first is

14



that (as is the case for the simulations described in Section 6), the average
curvature is unfavourable in the core during the ramp and the crash does not
occur when Dpg changes sign. The second is that the sawtooth oscillation is
invariably associated with m = 1 activity, hitherto not mentioned. In this
Section we briefly show how these observations can be accommodated within
the model (full details will be given in a future paper).

4.1 The Dp stability criterion revisited

The criterion for localised resistive ‘g’ modes of tearing parity was first given
in Ref. [13]. The dispersion relation found was

j 9.1 #§y3H .5/4 TsDp (n? 12 ~
& =;m(§) TR \T) | (78)

where s = r¢'/q is the magnetic shear, n the toroidal mode number, S =
(7,/74) is the Lundquist number with 74,7, being the Alfvén and resistive
timescales respectively.

The original motivation behind deriving eqn.(78) was to investigate the
toroidal stabilising effect of favourable curvature (Dg < 0) on the global
tearing mode. In fact the authors found, using (78), that the conventional
cylindrical instability criterion A" > 0 was replaced by

. , 1.52 s 5 1A -
$os - Bl (S o

s1/2 n-

We now wish to investigate the opposite case and consider the effect of a
stable tearing mode index (A’ < 0) in the presence of unfavourable average
curvature. In our region of interest ¢y < ¢ < 1 the relevant resonant surfaces
(¢ = m/n) have high (m,n) e.g. (9,10), (10,11) efc. and hence the associated
tearing mode indices are stable with A’ well approximated by —2m ~ —2n.
For this case eqn.(78) now gives

5 1/3
(&) < ZREoa () (30)

s1/2 n?

as the instability criterion. If we estimate the numbers in eqn.(80) for typical
smooth current and pressure profiles we find that the stabilising effect of the

15



outer region (A" < 0) outweighs the destabilising eflect of adverse curvature
(Dr > 0) for n ~ 0.15'/® and greater. For present day devices this gives
n ~ 5, and so we find that the relevant, tearing parity ‘g’ modes are indeed
stable. Although twisting parity ‘g’ modes do not experience the stabilising
effect of negative A’ they may be stabilised by compressible effects during
the ramp phase. In the next sub-section we describe how the m = 1 mode
can initiate the collapse of this stabilising ellect.

4.2 The role of the m =1 mode

We assume that at some stage in the ramp, the resistive m/n = 1/1 mode
starts to grow at r = ry. The (rotating) magnetic island produced by the
mode is responsible for the pre-cursor oscillations often observed [18]. Now
the island generates a sharp increase in the pressure gradient p'(r) just out-
side the island separatrix [22]. In the first instance these localised pressure
gradients are both in regions of stable Dp as Dp < 0 for r,, < r <nr
(see Section 6 below), and a period of ‘benign’ m =1 island growth occurs.
Eventually the separatrix reaches r, (an event that could be hastened by
the bringing into co-rotation of the m/n = 1/1 and 2/1 surfaces [23]). Large
destabilising values of Dp are now generated by the locally steep pressure
gradient close to the separatrix and the m/n ~ 10/11 tearing modes can
grow rapidly; this propagates the pressure front inwards towards the axis,
but not outwards of course because Dpg is stabilising beyond ¢ ~ 1. Thus
the collapse process is intimately controlled by unfavourable curvature. The
result is Taylor relaxation of the core 0 < r < 1y, exactly of the sort mod-
elled in Sections 2 and 3 above. \We note that the m =1 island structure is
now free of the driving due to pressure and current gradients in the core and
may undergo inverse reconnection, but we do not address this feature in the
present model.

5 Implementation of the model in LARS

The LARS code is a ‘1-1/2 D’ resistive evolution code for toroidal plasmas
that employs flux-surface averaged equations evaluated as an expansion in
inverse aspect ratio [17]. In implementing the crash model of this paper into
LARS we must first dictate the criteria which have to be met for executing the
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crash. As explored in [23], a possible trigger mechanism for the crash is the
bringing into co-rotation of the ¢ =1 and 2 surfaces by the electromagnetic
torque due to the sideband of a dominant m = 1 mode. Simulation of
this behaviour would require us to monitor the plasma momentum equation
during a sawtooth ramp and, further, have a full knowledge of the plasma
rotation profiles in the absence of instability. This facility is not available at
present and we must have recourse to a heuristic model of the ramp time.
An example would be the use of the ramp time scaling law of Park et. al.
[24]. For illustrative purposes in the examples that follow we simply dictate
a ramp time; the criterion for implementing a crash after a ramp time is then
that Dy be below zero.

Once these criteria are met the quantities K7 — K3 of eqns.(53) - (57)
are computed and used to solve for the associated quantities yq, p, efc. of
eqns.(63) - (67) that determine the new Taylor relaxed core and mixing radius
displacement. The new field and pressure profiles within this radius are then
calculated (note that g;(r) has also to be calculated in the exterior region,
see eqn.(40)). The next step is to solve over the whole radius for new shaping
(ellipticity E(r) and triangularity T'(»)) and Shafranov shift A(») profiles. As
discussed in Sec. 2.4 this is achieved by first solving the relevant equations
in r,, <1 < asubject to the boundary conditions of eqn.(44) at r,, (E(a)
and T'(a) are fixed given values while A(«) = 0). These solutions then
determine the constants £, T and Ay which give the inner relaxed solutions
of eqns.(13). In practice, the Gaussian tri-diagonal solver employed in LARS
can automatically accommodate the jump conditions and shaping and shift
are solved for in one sweep. The plasma is now allowed to continue resistive
evolution until the criteria for the next crash are met.

6 Simulation of sawteeth in the TEXTOR
tokamak

The observation that ¢(0) was below one and remained so throughout a
sawtooth crash was first made on the TEXTOR Tokamak [9]. This finding
cast some doubt on the reconnection model proposed by Kadomtsev [2] which
predicted a return of ¢(0) to one after the crash. Further, the TEXTOR
team recently reported that the inversion radius 7, (the radius at which the
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emissivity remained unperturbed) was significantly smaller than the radius
of the ¢ = 1 surface as inferred from polarimetric measurements (7, = 13
cm., r; = 15.5 cm., ap = minor radius = 42.5 cm. We can expect our model
to produce r,,, < r; (and hence ry, < r1) for TEXTOR equilibria as can be
seen by writing the expression for Dg [14] in the case of no externally applied
shaping fields (for circular cross-section)

2]?"3 1 I
E el ) &Y, (81)

Dp = ——t(=
& rq' B§ " Rq q

So at r; we have

2Rp A’
Dr = daadl (82)

¢ B}

Orthodox cases at ¢ = 1 produce p < 0,¢ > 0,A" > 0 and therefore
Dg(r1) > 0. So if the criterion for instability Di < 0 is met at r, we will
find that r,,, < r;. Indeed we have from [25] that

Al(n) ~ == (B(r) +1(n)/2) (83)
; 1
~ 5B+ ) (84)

where A3, and [; are the plasma poloidal beta and internal inductance ( = 1/2
assuming a flat current profile inside ry). So expanding eqn.(81) about ¢ =1
gives

m — 1 1 1

o~ —S(fBJJ(F‘l) + :1') (85)

™ oL

The TEXTOR simulation that is described in the remainder of this Section
gives
rmja—ri/fa _0.33-0.39
ri/a B 0.39

= —0.154 (86)
implying B,(r1) ~ 0.05. The main TEXTOR parameters chosen for the
simulations were those reported in [9], [10] ao/Ry = 42.5./176.0cm., By =

2.2T.,n.(0) = 5.8cm®10"3, 1, = 380 kA, and the thermal diffusivity chosen

1
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to give < T'(0) >~ 0.9 Kev. The sawtooth repetition time was taken from
experiment to be 20 ms. Initial ¢ and T profiles were then evolved using
LARS (with the sawtooth model incorporated) until a quasi-steady state
was achieved. The final state was in fact independent of the initial profiles
chosen (provided g(a) and hence I, was held fixed). The resulting evolution
of the axial ¢ is shown in Fig. 2. In the quasi-steady state the simulation
gave < ¢(0) >= 0.76 and é¢(0) = 0.08 in excellent agreement with the ex-
perimentally observed < ¢(0) >= 0.76 and 8¢(0) = 0.07. The radial ¢ profile
at equally spaced times in the ramp period is shown in Fig. 3. Note that
the effect of the sawtooth activity is to produce a mean electromotive force
in the plasma core. Without sawtooth activity the axial ¢ would evolve neo-
classically down to ~ 0.45 for this simulation. The sawtooth activity in fact
has the average effect of ‘hacking off” the externally applied voltage, reduc-
ing the axial current and increasing the ¢ above it’s neo-classical value. The
sawtooth acts as an ‘anti-dynamo’. To further demonstrate this a run was
performed with the sawteeth suppressed until ¢ = 0.3 sec. into the simulation
at which point they were switched on. The resulting re-establishment of the
quasi-steady state is shown in Fig. 4.

In Fig. 5 we reproduce the experimental observation of T(0)— < T(0) >
during a sawtooth ramp reported in [10]. TFig. 6 shows the result of the
LARS simulation with (inset) the radial profiles of T'(r) at equally spaced
times in the ramp. The position of the ¢ = 1 surface is marked, and accords
well with the observation in [10] that the ¢ = 1 surface “appears to be close
to the location with maximum inverted sawtooth amplitude and does not
coincide with r,,”. Table 1 gives a briel comparison of the LARS simulation
with the TEXTOR observations.

Table 1 < q(0) > | 6q(0) | ri/a | rinu/a | < T(0) >(Kev.) | §T(0)(Kev.)
TEXTOR [9][10] | 0.77 | 0.07 | 0.36 | 0.30 0.9 0.09
LARS 0.76 0.08 1039 | 0.22 0.85 0.13

Table 1. A comparison of TEXTOR data with the LARS simulation.

The simulation appears to give good general agreement, the largest discrep-
ancy being the radial location of the inversion radius. This could be due to
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the fact that the model does not adequately describe the island region (see
Section 4.2).

7 Summary and Discussion

In this paper we have outlined a model for the crash phase of the sawtooth
cycle, and derived the set of equations which permits the construction of the
unique equilibrium which succeeds the crash. The model has been installed
in the *1-1/2 I’ resistive evolution code LARS. Unlike the Kadomtsev model,
where the mixing radius is determined by reconnection of helical flux, the
radius r,, is not specified by the model and could be regarded as a free param-
eter. However a plausible unique choice for 7, was introduced by requiring
relaxation to be restricted to the region in which resistive interchange modes
are unstable (Dr < 0 as in an RFP). The post-crash core plasma is in a
Tavlor relaxed state and the entire plasma was allowed to adjust adiabati-
cally so as to provide force balance across the boundary of the relaxed and
unrelaxed regions. We generally find r,, < 1y, the radius of the ¢ = 1 sur-
face. The phenomenon of ‘partial’ reconnections could be accommodated by
a generalisation of the model that permits relaxation only within an annular
region surrounding ¢ = 1.

The relaxation process is thought ol as being initiated by the arrival of
the separatrix ol an m/n = 1/1 island at 1, the radius where Dp = 0.
The inboard pressure gradient associated with the separatrix then triggers a
collapse of the core pressure and current gradient.

The comparison of the results ol this simulation model with the well-
diagnosed TEXTOR experimental data shows good quantitative agreement
(axial ¢ value, modulation ol the axial ¢ etc.). Further details such as the
relative positions of the ¢ = 1 surface and the inversion radius are also in
good agreement.

8 Acknowledgement

The authors thank Dr. J W Connor for discussions. This work was funded
jointlv by the UK Department of Trade and Industry and Euratom.

20



9 Figure Captions

Fig. 1. Plot of ¢(0) after a crash against that before it, for various values of
'm/71, based on a cylindrical calculation (see 3.1).

Fig. 2. Resistive evolution of axial ¢ with crash model operative.
Fig. 3. Radial ¢ profile at equally spaced times during an individual ramp.

Fig. 4. Demonstration that the sawtooth acts as an "antidynamo’. Sawtooth-
free resistive evolution is followed until 7 = 0.3s., and then the crash model

is switched on.

Fig. 5. TEXTOR experimental observations of T(0)— < T(0) > during
a ramp [10].

Fig. 6. LARS simulation of 7'(0)— < 7(0) > during a ramp with (inset)
radial profiles of T'(r) at equally spaced times during an individual ramp.
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