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Abstract

A self contained model of the complete sawtooth cycle is developed and described. The model
incorporates a trigger condition related to m = 1 internal kink stability and a description of
the crash phase in which current relaxation in the plasma core is calculated to 0(e?) accuracy
(e = a/R < 1). The growth and subsequent healing of an m =1, n = 1 magnetic island is
simulated by a simultaneous relaxation event in an annular region encompassing the ¢ = 1
surface. The complete model contains no arbitrary parameters and when implemented in a
transport /stability code such as the LARS code will give definite predictions of eg sawtooth
period, island size at the instant of fast collapse, range of variation of axial safety factor g,,
behaviour of the radius of the ¢ = 1 surface.






1 Introduction

In an earlier note ) a simple model for the sawtooth crash was developed and investigated
numerically. In this model it was assumed that the initial growth of an m = 1 instability
triggered resistive-interchange instability in the plasma core where the average curvature, as
measured by Dr®, is unfavourable. In the ‘unstable’ zone, which typically stretches from
the magnetic axis to a radial position close to, but inside, the ¢ = 1 surface, it was assumed
that Taylor relaxation takes place, and the post-crash state was calculated in terms of the
pre-crash state by making use of four conditions (three conserved quantities: total energy,
core helicity and core toroidal flux, together with pressure balance at the mixing radius r,, ).

This model has several attractive features, and several weaknesses. On the one hand,

since the mixing radius r,, s defined by
DR(?‘m)=0 y (1.1)

the mixing radius lies just within r; (where ¢(r;) = 1) and hence the inversion radius r;
(defined by piniciai(T:) = Panal(7:)) also lies inside r;. This feature is in agreement with careful
observations on eg TEXTOR®). In addition, when steady sawtoothing is simulated with the
LARS code by initiating regular sawtooth events with a steady repetition period 7, (taken
from experimental observations) the value of axial ¢ (¢, = ¢(0)) was observed to oscillate
with small amplitude Ag ~ 0.07 around a mean value ¢, ~ 0.77, in broad agreement with
experimental measurements on TEXTOR),

On the other hand the model lacks a prescription for initiating a sawtooth event, and
therefore has no direct link with the m = 1 stability properties of the evolving equilibrium.
Since 1, 1s typically smaller than 7, no reconnection or pressure relaxation can occur at
and beyond the ¢ = 1 surface, so m = 1 island growth cannot be simulated. Finally, since
Dpg(r) > 0 (unstable) for 0 < r < r,, throughout most of the sawtooth ramp time it was
unclear why core relaxations should only take place at specific regular intervals.

In this note we address these weaknesses of the original model and describe a more
sophisticated, and completely self contained model of a sawtoothing Tokamak. This model

contains no free parameters.

2 Sawtooth Crash Model: A Qualitative Description

Since all sawtooth events involve the growth (sometimes very rapid growth) of an m = 1,
n = 1 internal mode, we start with the criterion for linear stahility of this mode in the
collisional diamagnetic regime!®), This can be expressed in the form of the following condition

for stability:-
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where wy = va/V3R, T, = dnri/nc?, s = s(r1) = r1¢'(r1), and A}, is the outer region
stability index for the m = 1, n = 1 mode, which can be calculated by the T3(6) or TT7
stability codes, or estimated analytically. A second stable zone exists for A}, < 0, but
this requires that the current profile be maintained as a shoulder profile throughout the
ramp phase, a condition which was impossible to satisfy in simulations of the TEXTOR
experiment.

When either inequality in equation (2.1) is violated we assume that an m =1, n =1
magnetic island begins to grow (the commencement of the m = 1 precursor oscillation), but
that this triggers a sawtooth collapse only when the steep pressure gradient which develops
at the separatrix reaches the unfavourable curvature (Dp > 0} in the core of the Tokamak.
During the ramp phase, although Dpg is positive in this zone it is not ol sufficient magnitude
to drive the resonant, tearing-parity g-modes unstable, since these modes are, of necessity.
of rather high mode number (m,n =~ 9, 10; 10, 11; etc). However, the sharp increase of
p'(r) just outside the island separatrix(®! (see Section 5 for an estimate of this) may drive
these rather short wavelength g-modes unstable in the region where D > 0. The equivalent
pressure front advancing outwards from the ¢ = 1 surface. as the m = 1 island grows, finds
itself in a Dg < 0 (stable) plasma and merely diffuses away (the heat pulse propagation). A
detailed discussion of the stability of tearing and twisting parity g-modes in the plasma core
is presented in Appendix A.

The sawtooth collapse is itself represented by:-

(i) Taylor relaxation in the plasma core, defined by 0 < » < 7y (or by 71 €17 <7z in
the case where Dg changes sign between r = 0 and 7,,: this latter circumstance occurs

for hollow pressure profiles and results in predictions of partial sawteeth).

(ii) Taylor relaxation across the annulus r,, < r < #, where the outer mixing radius, fn,
is now defined as the outer separatrix position of the m/n = 1/1 magnetic island at

the instant when the inner separatrix is located at r,,, ie

d)*(f‘m) :¢J*(rm)’ (22)

pr) = far rdr (37 - 1) . (2.3)

This outer mixing radius must, of course, be greater than ry but will always be less than the

Kadomtsev mixing radius (®). r,,x, which corresponds to the total reconnection condition
]

N



¥ (rmk) = ¥7(0). (2.4)
Consequently both the mixing radius and the inversion radius take smaller values than in
the Kadomtsev reconnection model. Reference 10 has an earlier discussion of Kadomtsev
reconnection and Taylor relaxation.

The two relaxation phenomena are separated because the annular relaxation in [Fins P )
is introduced as a device to simulate the partial Kadomtsev reconnection process and its
reversal, and it is not envisaged that the m = 1 magnetic island is invaded by the high-n
micro-turbulence associated with the n> 10 g-modes which are responsible for relaxation of
the core plasma [0,r,]. However, the constant pressure demanded in each of these relaxation
regions is assumed to have the same value, p, since no thermal barrier exists between them.

In the next sections we calculate the post-crash equilibrium and derive the equations

which relate the pre-crash to the post-crash equilibrium and enable the latter to be calculated

explicitly.
3 The Post-crash Equilibrium State

In the post-crash state the core plasma (0 < » < »,,) is assumed to be in a Taylor relaxed
state defined by J = uB,p(r) = p with p and x constant. Representing the magnetic field
in the form

B = R,B,lg(r)Vo + f(r)Vo x Vi), (3.1)
where »,8,¢ are field line straightened coordinates with Jacobian J = r’R/R, and r a
magnetic surface variable, it follows that

uf =—g". (3.2)

As in Ref 1 we consider a large aspect ratio equilibrium with 3 ~ 0(€?) [e = a/R,]. and
expand
f = eh+efst...,
g = 1+gp+...,
p = 62]32 P 5
E = €uteSust..., (3.3)

and utilise equilibrium relations derived in eg Connor & Hastie(1!),

Then following Ref 1 we obtain
1

hir) = 5#17',
1,
9a(r) = —qmr*+ 5. (3.4)



An expression for fa(r) can also be obtained. This involves the Shafranov shift A(r) of
the magnetic surfaces, as well as their shapes. Details are given in Appendix B.

To simulate the growth, saturation and decay of the m =1, n = 1 magnetic island it is
assumed that the annular region 7, < 1 < #, (with #, defined by equation (2.8)) is also in a
relaxed state defined by J = B, p = p. However, in this annular zone solution of equation

(3.2) along with the radial pressure balance equation

Bygy+ Bepy =o (3.5)
Bg 92 r rh - ¥ *
results in
N é
hi(r) = shr+ ?—}1 (3.6)
1A‘2 5 L, r ) _
ga(7) = -Z,ul?' — & ln (I—-> + g3, (3.7)

where the additional constant of integration ¢; is related to the total excess current flowing
within the core plasma '. An expression for f3(r) is obtained in Appendix B. Thus far the
solution for the post-crash state contains six undetermined constants (p. 1. G2 f1s C1s G2).
These constants can all be calculated in terms of properties of the pre-crash equilibrium and
this forms the content of Section 4 of this report. However. we first note that if this were done
using the six available conservation equations relating the pre-crash to the post-crash state,
the final configuration would not satisfy cylindrical pressure balance (ie continuity of p(r)+
2B?) at the surfaces 1, and 7. To adjust this non-equilibrium back to global equilibrium
we allow for small (0(¢?)) radial expansion or compression of the three zones [0, 7., [Fm, T
and [fm,a). These involve expansion/compression ol ideally conducting plasma and do not
modify the flux and helicity conservation properties. They are introduced by assuming that,

in the final state. the three plasma zones are defined by [0. 7ns]. [Pamg- Fons]. [Fmy, @] Where
Py = Tm + €2, (3.8)
Fmp = P + €262, (3.9)
4 Sawtooth Crash Model: Derivation of Equations

The full sawtooth crash model has defined the post-crash equilibrium in terms ol eight
constant parameters (fa, ft1. §2, f11- &1,§2.§2.£g). The suffices refer to the order (in €) of each

quantity, while a circumflex is used to denote quantities associated with the annular region.

1For simplicity of notation and to avoid confusion with y = J.B/B?* we take g = 1 in eqn.(3.5)
and subsequently.



These constants will now be determined in terms of the pre-crash

following conservation and equilibrium relations: -

(1) Conservation of core helicity

X =2 /rm f(r)dr fr rg(r')dr'.
0 0

(i1) Conservation of core toroidal flux

® = frm rgdr.
0

(i11) Conservation of helicity in the annulus W ]

- m r
i = 2/ f(h'/ g )'dr’.

(iv) Conservation of toroidal flux in the annulus

$ = / K rgdr.

(v) Conservation of poloidal flux in the annulus

\i‘ = /’"“' fdr

(vi) Conservation of global energy

a 3 1 B?R'Z
W =./o rdr [§p+ 3< 72 >J .

(vil) Cylindrical pressure balance at r,, + €2,

|
[Pz +5B; (jf + '29-;.)} = 0.
it 1'ru+(?E2

(viii) Cylindrical pressure balance at 7, + €2£,

[P'z < %Boz (ff + 292)} =0,

7-'m+C2£2
where we have used the notation (in (4.7) and (4.8))

[XJr, = lim {X (3, + 6) = X(r, - §)) .

equilibrium by using the

(4.1)

(4.4)

(4.6)

(4.8)



and < X >= -51; ¢ Xdo.

In applying global energy conservation, (vi), we have assumed, in effect, that the post-
crash equilibrium is being calculated after sufficient time has elapsed that any turbulent
motion associated with the growth and decay of the m = 1, n = 1 kink mode or the g-modes
has been damped by viscosity and appears as thermal plasma energy. The asymmetry in the
poloidal flux constraints (annular poloidal flux is conserved, while core poloidal flux is not)
arises because the annulus is bounded on both sides by perfect conductors (by assumption)
while the core plasma is contained by a conductor on its outermost boundary only. Thus an
annular relaxation does not reduce to a core relaxation in the limit 7, — 0 (ie inner radius
of the annulus becoming vanishingly small). In this limit a singular axial current is present
in the annular relaxation, but absent in a core relaxation. It may seem contradictory that
the core plasma is regarded as ideal when considering the relaxation of the annular region
[#m, 7m] and vice versa, but we stress that the use of a relaxation model for the annulus is
only a device to simulate the effect of growth and decay ol an m = 1, n = 1 island. Both
relaxation and island ‘healing’ should leave behind a plasma in which jj 2= constant and p ~
constant.

Returning to equations (4.1) - (4.8) we now obtain:-

I, = g,u.]'r:,, (4.10)
Looa 1

®; = rméa — T6H " I 5927 (4.11)
] B 1 “,2 2 1 o 5 1. 2 2(1 ,2” 1 4.12
V1 _1—)-( 'm — Tm } (1+E}"‘1( m+Tm) 21[ m n(vm/lm ) ( 2 '-')
i s 7 1 o[ L. L aossm 2
(I)2 = ?‘111‘52 ffiE? ( m Tm) g2 + 3!1 ICl - glu (1 m + rm)

- ‘LL;CI 2 lI'l m/7m ' (413)
p 1. 2
lljl = E 1‘1(7‘1!1 m) + Cl lﬂ( / ‘m)< (414)
- 3 P2 o 1 1 -4 4 Lo s am 2
W ZFOTm_,_EJU +3_~).“ ( _7m)+1#161(7m _7m)

L 5

+ §c?1 (Fo /T )5 (4.15)

e - 1, 5, e ['~ .
0 =2(g2 — g2) + L lpir — 0T, 2+ né 4+ (4.16)
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~ Pz fmé
P, = 2 ey P T
i (g”+iB%) (@ - %)
Lot g s rr s s nn g _
= Zﬂ]'f"m — 2161 In(F 7)) + 181 + R (4.17)

where the quantites A, ]:f], @z,tig, \'Ill, Wy and P, are defined as follows:-

By = /0 " eyt (4.18)

fo= [ i)~ i | (4.19)

¢, = fOTm gai(r)rdr, (4.20)

‘i’z = /T:n Gai(r)rdr, (4.21)

‘i’l = /r:n fri(r)dr, (4.22)

W, = ]D " dr Bpg(;) 't %f{";-(r)} , (4.23)

P, = [2%7;—’“) + 2g2i(T) + .ff,-('f'm)] .. (4.24)
o

and the subscript 7 in equations (4.18)-(4.24) indicates that the initial, or pre-crash,
equilibrium profiles are used to calculate these quantities.

Solution of the eight algebraic equations (4.10)-(4.17) now determines the parameters
defining the post-crash equilibrium state. However, at this level of approximation in the e
expansion ¢(r) = rg/Rof is only determined to leading order since we have not yet deter-
mined f3(r). Because stability of the m = 1,n = 1 resistive kink mode, which is responsible
for triggering the sawtooth event, is sensitively dependent on the radial profile of g(r) it
Is important to determine g¢(r) more accurately, and to evolve it accurately (to order ¢?)
throughout the subsequent ramp phase of the sawtooth cycle. To this end we calculate fa(r)
after the crash, by equating the third order helicities Ka, A5 to their post-crash values. This
requires some care because of the 0(¢?) displacement of the two mixing radii, r,, and 7,,.

This calculation is presented in appendix C.

B |



5 Summary and Discussion

The model described above is completely self contained, requiring no additional input or
intervention if it is implemented in a transport code linked to a calculation of A} ;.

To summarise:- The sawtooth event is assumed to be initiated by the destabilisation of the
resistive kink mode (determined in a regime where diamagnetic effects are important). At the
instant of m = 1,n = 1 destabilisation it is assumed that the m = 1,n = 1 precursor activity
commences. The rapid thermal collapse is assumed to occur when the m = 1,n = 1 island
separatrix, advancing inwards towards the axis reaches the region of unfavourable curvature
(Dg > 0). By this time a large pressure gradient will have developed in a narrow layer close
to the advancing separatrices. The magnitude of this pressure gradient has been estimated
in Ref 8. It depends on the magnitude of the thermal diffusivity . (which attempts to
smooth out the steep gradient) and the rate of growth of the island, dW/d?. responsible for
eroding the temperature profile and generating a pressure ‘clifl* at the separatrix. In Ref 8

we find an estimate of the width, &, of this layer to be of order

dw\ ™
b~y F 5.1
X1 ( dt) (5.1)
Taking x. ~ 1m?/sec, W =~ Wye" we estimate the pressure gradient magnification
factor,
W Wy
o g 1 (5.2)
6 X1

=1 ~ | msec or a 3cm island with v71 ~ 100 yu sec.

to be = 10 for a 10cm island width and ~

This enhanced pressure gradient is assumed to destabilise resistive g-modes in the Dg > 0
region, which are then progressively destabilised inwards towards the magnetic axis leading
to a current and pressure relaxation to a Taylor state (j;/B = p,p = p with u, p constant)
in this region. The mechanism for this propagating collapse should be similar to that which
initiates the first g-mode growth. via rapid island growth generating ever larger local pressure
gradients as the original pressure profile is eroded.

As this relaxation event takes place it is unclear how the original m = 1,n = 1 is-
land should evolve. However, since experimental observations indicate that continued island
growth and complete Kadomtsev reconnection does not occur, we assume that the m =1
island now heals leaving in its wake an annular region in which both pressure and j /B have
been flattened. To simulate this process the values of flattened current and pressure in this

region are calculated by representing this process also as a (separate) relaxation event to a

Taylor state.



All these events are treated as instantaneous on the time scale of the sawtooth ramp so
that this model of the sawtooth collapse can be implemented, as a single event, within a
1-1/2 D transport/stability code such as LARS.

An interesting prediction of the model concerns the magnitude of the m = 1 island at
the instant of thermal collapse. This is given by

|24
— = (r, —rm), (5.3)
where Dg(r,) = 0 defines rp .

For a circular cross section plasma r; — r,, is readily estimated by expanding Dgr(r)
around ry; thus from
R
(rm) =1 ¢ (o81) =0, (5.4)
with A, the Shafranov shift, and s = r¢'/¢, we obtain

(= rm) ~ 2 (54 8) (5.5)

P

where we have estimated Al(r) for the case of low shear, and

2 "Ldp e \? .
b =m0 /u ar (I) dr. (5.6)

Thus, at the end of the phase of island growth (the precursor oscillations) the island
width predicted for a circular cross-section Tokamalk is

W 1

— R =+ [, 5.7

i 4 ﬁP‘ ( )
in broad agreement with observations on eg TFR!?).

Extending this prediction to include Tokamaks of shaped cross-section we note that(13)

2rp'q? 1 R 3 E
Dpo~ ———= <1 - = 4+s—A — - (E' —) , 5.8
R 253 - + g + " (5.8)

where E/r = (k — 1)/(x 4+ 1) is a measure of the surface ellipticity, so that r,, is greater
than for a circular cross-section, and can even exceed r;. However, during the early phase of a
Tokamak discharge while the plasma current is increasing (the current ramp phase) the shape
of the magnetic surfaces in the plasma core is only weakly elliptical so that rm, & Tmeircutars
and sawteeth might be expected to display m = 1 precursor behaviour. Later, during
current flat top, when the magnetic surfaces within the ¢ = 1 region are quite strongly
elliptical, much shorter precursor trains are to be expected, or indeed none at all if 7, 2 7.
These qualitative predictions could account for the presence of precursor oscillations in JET

sawteeth early in the discharge history, and their disappearance in the current flat-top phase.
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Appendix A Tearing parity g-modes for ¢ < 1

The dispersion relation for tearing parity modes in the presence of unfavourable curvature
at the singular surface, was originally derived, in the absence of diamagnetic effects, by

Glasser, Greene and Johnson(®. It takes the form

3/4 N 2y 1/2
A%:%i(ﬁ) gom |1 - I288 (1) 7 (A.1)
§1/2 \n? 4 %32\ §
where s = r¢/q is the shear, n the toroidal mode number, S = (7,/74) is the magnetic

Reynold’s number with 74 = Rgy/T + 2¢?/va4 and 7, = r?/nc?.

The eigenvalue 4 = (y74) and the quantity Dg whose sign determines whether the layer

physics has a stabilizing or destabilizing influence on the tearing-parity mode resonant at

1 =1y, is given in the circular cross-section, 3 ~ O(€?). large aspect ratio approximation, by

2rp'q* 1 R
Dp = 1 — = +—Als|, A2
R= Bls? ¢ * ro | (A.2]

where A,(r) is the Shafranov shift of the equilibrium magnetic surfaces.

In the original paper!?) Glasser, Greene and Johnson were particularly interested in the
additional stabilization introduced by the favourable curvature (Dr < 0) for tearing modes
at surfaces with ¢ > 1 (as for the m = 2,n = 1 mode). For such modes. they demonstrated
that (A.1) generates a marginal stability condition only when A’ is positive and sufficiently
large, the critical value, AL, being given by

1,52 sis f S Y2
A= 22 past (2) (A3

¢ g1/2 n?

A similar situation arises for tearing modes which are resonant at surfaces where ¢(r)
lies in the range ¢ < ¢ < 1. In this case. however. m and n must, of necessity, be rather
large (m = 9,n = 10 is resonant at ¢ = 0.9, and similar mode numbers are required for
F= i—? = 0.01,¢ =
by

% = 0.917 etc.) so that A7/, is certainly negative. and well approximated

A —2m o —2n. (A.4)

m/n ™

Now, setting 7 = —iw and equating real and imaginary parts of (A.1) to zero, marginal

stability is found to occur when

(=A%) =

o

T4 5/(:' .S' 1/3
e |Dps] (n_?-) . (A.5)

o



Interpreted as a criterion for the mode number n, (A.5) states that modes with n > n,

(a critical value) are stable where n, is given by
n. = 1.2[Dg)"/*(s5)/°, (A.6)

which indicates that all possible modes resonant inside the ¢ = 1 surface should be stable
if go > 2 and dp/dr is not abnormally large at any resonant surface.
A more relevant form of the dispersion relation (A.1), incorporating electron and ion

diamagnetic drift effects, was obtained by Bussac et al*) and Ara et al™). This takes the

form
2.1 ¢854 . . . 174
AT = 72 (,72) [v(w + wr)(y + wr + zw.e)"*]
T n? 1 i ; —-1/2 -
x¢1— ZDRS ¥ [v(7 + twpr + tw..)] , (A.T)

where w,. is the electron diamagnetic frequency and wg is the plasma rotation frequency
e | J R | | Y

in the laboratory frame.

When a similar marginal stability analysis is performed on this dispersion relation the

marginal stability condition takes the form

(~20sn) = 5 [Drs]”

Wy

(A.8)

il

e
where we have dropped wp for simplicity. Again, translating this into a stability boundary
(n > n. stable) we find the critical value of n given by

L 1/2
. (A.9)

9

n. = 1.4s'2D¥* ‘

Wai

where w,; is the electron diamagnetic frequency with n = 1. This result again predicts
that all possible resonant modes within the ¢ = 1 surface should be stable when typical
equilibrium pressure profiles p(r) are used to evalue Dgr. The twisting parity g-mode(®) is

also stable (stabilized by compressible effects) when

DR—BRQ < 1. (A.10)
P
These calculations suggest that there is no difficulty in explaining the absence of local
g-mode activity in the core of a Tokamak under normal (sawtooth ramp) conditions.
However, the increased pressure gradient which forms in front of the advancing separatrix

of a growing m = 1,n = 1 island could, if it is large enough, precipitate the growth of either

13



twisting or tearing parity g-modes within the ¢ = 1 surface. This enhanced pressure gradient
effect has been invoked before by several authors®!?), but usually to argue for the instability
of ideal or resistive ballooning modes as the secondary, fine scale, mechanism of the sawtooth
collapse. Such modes would appear to be possible both on the outer (¢ > 1) separatrix and
the inner (g < 1) one. The attraction of the tearing parity g-mode as an explanation of the
sawtooth thermal collapse is that it is naturally one-sided and could cause Taylor relaxation
as well as rapid thermal transport only within the Dgr > 0 region.

Where large positive values of Dg are generated in the steep pressure gradients near
the inner separatrix the growth rate of unstable g-modes may be enhanced by electron
inertial effects in much the same way as Porcelli(*® has described for the linear phase of the
m = 1,n = 1 resistive kink. Consequently timescales of order 100us should be possible if
the m &~ n >~ 10 g-modes become unstable.

Finally, another predictive feature of this model of the sawtooth crash is that, where
the growth of the m = 1,n = 1 island remains small (for whatever reason) it is possible
that the pressure gradient generated in front of the advancing separatrix never exceeds the
critical value necessary to precipitate g-mode instability. In this case one might expect the
m = n = 1 reconnection to continue to completion as originally envisaged by Kadomtsev,

and as appears to happen in some ‘slow sawtooth collapses’” on TETRU),

14



Appendix B Third Order Equilibrium

The functional dependence of f3(r) in the post-crash state is calculated in this Appendix.

Making use of equation (3.2), we find in third order

prfa(r) + pafr = —gi(r), (B.1)
and
ﬁl.fs 4 .fisfl = —g’fi(?)» _ (B.?)

where equation (B.1) refers to the core [0,7,,], and (B.2) to the annulus [ry,#,). Con-

sidering first the core plasma, we have

1
filr) = 7 (B.3)
and we use the pressure balance equation in € order to relate fs to g}. This takes the
form(*®,
d 1
5(7‘_)[-3) = {}Lg,?‘ —+ ;tlgg?‘ — Z,U,]S?'S}
+ u Ei,& —A"r 4+ /_\.'i +A—r524 (n? —1)5,5. s =0, (B.4)
"z2r2™ Ry R % e ’ ’

where the shaping terms 5, are to be summed over n, with Sy(r) the elliptic distortion and
Ss(r) the triangularity of the surfaces. Making use of the analytic solutions for A(r), Sy(r)

and S3(7) as in Ref 1 we finally obtain,

1 1 AV 1 545 29 s
fa(r) = 5#37 - 5#17 (?0 - 92) - Eﬂ]?’ - ﬁ_ﬁ’g

() ) @)

where Ag is the value of the Shafranov shift on axis, and £ and T are the constants

Sy(r) = E(r) = E7—T—- , (B.6)

S3(r) =T(r)

T (i)2 | (B.7)

Tm
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The constant pz will be determined using conservation of core helicity in Appendix C.
Next we solve for fz(r) in the annular region [Pms Fm]. In this region the analogue of

equation (B.4) takes the form:-

d . y I e
= (rf3(r)) = {,uar = E,ulra + pg2¢rin (1‘/?‘m)}
2

3  2A A7 5P E .
_oado 2 2 4 Pn np?_ 1) — (n?—1)28
“ {2}23 * Rq ¥ Ry T r & r? (n 1) = (n )1‘ }

3 7"3 R 4 T A AIZ_l_A; r? 5..!2 +( 1)5 Sl (B 8)
L — fgr + —A —7 —q n* —
H 2 Ra 92 RU RD n n-n
However, the form of fi(r) = %,&17' + & /r in the annular zone r,, < r < #, does not

permit simple analytic solutions for A(r), S»(7) and S3(r) to be obtained so equation (B.8)
must be integrated numerically, and the constant of integration ¢; determined from poloidal
flux conservation in the annulus, where

rfilr) = Bt f "[R.H.S.0f B.8)dr. (B.9)

Tm

and

\i}S = / K _fSi(T) = é?fli('rm) - é?flr'("‘“‘m) + E:3 In (7’;711/7‘m)
+ / ™ dr / "RH.S.0f B8, (B.10)

Equation (B.10) can be regarded as determining the constant &, while fiz is finally de-
termined by helicity conservation in the annulus. The evaluations of ji3 and jiz are discussed
in Appendix C.

The shaping factors, and Shafranov shift A(r) are known analytically in the core region
in terms of three unknown constants Ag, £ and 7. They take their initial functional forms
Ai(r), Ei(r), Ti(r) in the outermost region [f,a], where only small, 0(c?), changes have
occurred in the pressure and poloidal field profile functions pa(r), fi(r). However, in the

annular zone [r,, 7] they are obtained by numerical solution of the equations

" Q(T'fl)’ 1 ' _]_
A "I"(r—fl—;)ﬁ =Ry (B.11)

2(rfr) ; : o)
S::+( ) —1) $2-(n = 1)
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with n = 2 for E(r) and n = 3 for T(r). These solutions are matched at #, to the
external solutions and at r,, to the analytic solutions in the core.

Integrating (B.12) across r,, and #,, one obtains
[ )im = 0, (B.13)
[Snfflrm =0, (B.14)

determining jump conditions for S’ at these surfaces, while

(A ), =0, (B.15)
and
[A f]]?-m = [Bg . R() (B16)

determine jump conditions for A’ at 7, and #,. The functions A(r) and S,(r) are
continuous at r,, and 7,,.

Thus the evaluation of the post-crash equilibrium involves, firstly, the calculation of
p2(7), f1(r) and go(r) in terms of the eight constants (p, i, Gz, fi1. &, §2, & and 52) The shift
and shape of the surfaces, A(r), Sy(r) can then be evaluated by numerical solution of the
equilibrium equations (B.11) and (B.12) in each of the three zones [0,7,,], [Fm, Fm]; [Fm, @]
with the appropriate boundary conditions (B.13) - (B.16). Finally f3(r) can be obtained in
terms of the three additional constants s, fiz and ¢, and integrals over the known A(r) and
Sn(r) functions. The constants 3. fi3 and é3 are finally determined by helicity conservation in
the core and in the annulus, together with poloidal flux conservation in the annulus [Pos i)
At this stage the safety factor

o) = AR (B17)
ol fr + €% f3)
is known to 0(€?) accuracy, and is evolved to this accuracy by the LARS 12D(20) trans-

port code during the subsequent sawtooth ramp phase.
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Appendix C The calculation of u3, fi3 and &3

The poloidal field function f3(r) in the post-crash state is calculated using helicity conser-

vation in the core [0,7,,] and in the annulus [r,,7,] together with poloidal flux conservation

in the annulus. From the definition
K=2 f " fdr f ro(r')dr,
0 0
we have, for the initial value in the core,
K; = e] m(fl + € f3)ridr + 263/ " _fl(r)dr/ ' ga(r')dr'.
0 0 0

In the final state

rm+(2§o rm+c"’E-_> i
Ky = ej ridr { par + € f3(00 )] + 63/ ;:lr‘rlr/ ' ga(r")dr'
0 0 0

1 1
= T o [Ma ey [T + gk - gendrt] + 0D

8 96

Thus,
1
Kp=—urd,
f 8“ m
and on making use of (B.5)
1 1 1 1 A
. B K A 0
f\f3:§ﬂ17m§—g,u17 +§,Ln’.3?m—g,u.]?m (E— )Jz)

29 #1? 1
— — M7

384 R2 4" ™

while

I\'li — / " f],'rgd?
0

Kg; = frm fairidr + 2 /Tm fui(r)dr fr ' goi(r")dr'.
0 0 0

(C1)

(C.3)

(C.5)

In the annular region the two constants &, fi3 are determined by third order helicity and

poloidal flux conservation. For poloidal flux ¥ the initial value is



b = e / " i+ € ), (C.8)

= eli'l + 63'&’3.

In the final state

4 fmt+e2é2 (1 ¢ _
lpj - Es/rm'i'C:EE (:'ulr + 7_‘1 + 62f3) dr’ (C-g)
1 A fnd 2 " ~
= € {Zm(v‘m —ry) +éln (1'm/rm)}
1 2
+ 53{51&1( mg - m€2) ("F_ = f_?) + fng} (CIO)
with
L. .o
n = gha(fy =1 2)+én(fn/ra), (C.11)
i
Vig = Sia(Fmbs — Tmba) + & (62 52) / Jadr. (C.12)

For the initial helicity we have

K = 2¢ / "+ Efs)[1 + galrdr, (C.13)
- ef""’ r? fidr + & {f 2 fadr +2 [ frdr f r'ggdr‘} ,
= ek + 631\’31', (C.14)

while in the final state the following expressions are obtained for &, after some algebraic

manipulation.
I:L’f = EI;’fl + 631’;’1'3, (015)
with
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SHA = 2 ) 23— v2) = &l (Ffrn), (C.16)

8

fm - 16 N .
[ =) fagdr + S (% = 1) (Fne = rno)

+é {(7:7271 - ,rfzn)_f_?_ —Tm€2 ln(Fm/TM)}

Tm

— 8% — L+ 2rh)
~Da
B8 (52 y2 )t~ 2(38, = ) Inli )

+_Ii1‘é¥ {('F;Zn - ri) - (74:7271 + 7':1)111(71711/711“)}

N L R ln(fm/rm)} : (C.17)



