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Abstract

The linear and nonlinear dynamics of zonal flows and their interactions with drift
wave turbulence is considered in the simple but illuminating generalized Charney-
Hasegawa-Mima model due to Smolyakov et. al.(A.I. Smolyakov, P.H. Diamond and
V.I. Shevcheﬁkq, Phys. Plasmads, 7, 1349 (2000)). Two positive definite, exact, in-
tegral invariants associated with the full generalized Cha,rﬁey,Hasegawa-Mima system
are derived. These invariants are the generalizations of the well-known energy and en-
strophy integrals of the original Charney-Hasegawa-Mima equation. Taking the initial
pump amplitude as fixed (but small), it is shown that the system experiences a classic
‘modulational instability’. This is characterized by the growth of a specified, infinites-
imal amplitude zonal flow and side-bands of the pump generated by it beating with
the zonal flow. The threshold for this growth is determined and found to be readily
satisfied under typical conditions on the pump amplitude and zonal flow perturbation
wave number. The pump-'is then allowed to evolve according to a simple ,‘four-wave’,
nonlinear model. Two positive definite invariants associated with the four-wave evo-
lution are identified. The generalized Charney-Hasegawa-Mima equations are solved
numerically. First, the predictions of the analytical ‘fxed pump’ four-wave model dur-
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ing the initial growth phase are verified. The numerical simulations are carried on into
the fully nonlinear regime of the system and show explicitly that the exact invariants
of the system are indeed conserved to high accuracy over the entire period of simu-
lation (many linear growth times and hundreds of drift wave periods). In contrast it
is found that the “four-wave invariants” only remain constant for about three growth
times; although this is still long compared to the drift period, thus establishing the
time-scale over which the four-wave model retains its validity. The investigation of the
long-time behaviour using the simulations demonstrates that the number of effective
degrees of freedom of the system as estimated analytically using the exact invariants
is in good agreement with that found by the code. Furthermore, the radial structure
of the zonal flow can be ‘jet-like’ or highly oscillatory in space depending upon the
values of the density length-scale relative to the system size and initial conditions. It
is found that zonal flows can be dramatice_hlly reduced if the most unstable zonal flow
wave number does not fit into the system. The properties of this relatively simple, two-
dimensional, electrostatic, dissipationless model bear a striking resemblance to many
features of much more elaborate fluid and kinetic plasma turbulence simulations. As
such, the model illﬁstrates‘the zonal flow/turbulence interaction phenomenon in its

most elementary form.

[a)



1 Introduction

There is a substantial body of evidence from a variety of magnetic confinement exper-
iments [1]-[3] which shows that sheared radial electric fields and the associated ‘zonal
E x B flows’ play an important role in influencing turbulent transport processes. Such
flows are thought to be implicated in the formation and evolution of transport barriers
in tokamaks and stellarators[2, 4]. On the theoretical side, a number of researchers[5]-
[7] have examined the possibility of suppressing turbulence by radial decorrelation due
to strongly sheared E x B flow shear and have contributed a variety of models which ex-
hibit this effect (some of this work is reviewed in [4]-[9]). Interestingly, ‘first-principles
based’ tokamak turbulence simulations of both gyrokinetic[10, 11] and two-fluid[12]-
[14] plasma equations of motion also suggest that profile-turbulence interactions are
important and lead to strongly sheared radial electric fields. The latter are capable of
being generated by the turbulence itself with significant radial fine structure (termed
‘corrugations’ in [12]), and can, in turn, suppress the turbulence in a complex cyclical
process. ‘ '

Recently, several authorS[G, 8] have introduced simplified models of the full plasma
equations in order to elucidate the mechanism by which the radial electric fields can
be created by turbulence. The simplest model which seems capable of yielding gen-
uine insight is due to Smolyakov et. al. [6], where a modified form of the well-known
Charney-Hasegawa-Mima equation, involving a nontrivial radial electric field is anal-
ysed. In their analysis, these authors used a wave kinetic approach and showed that the -
_‘zonal flow’ due to the radial electric field interacts with either a monochromatic ‘pump’
wave, which is a specified drift wave satisfying the equations of motion or with a turbu-
lent sea of such waves, and induces a modulational (or ‘side-band’) instability[15, 16].
The instability causes the radial electric field to grow at the expense of the pump wave.

- The mechanism is laid bare in its simplest form by considering the four-wave interac-
tion of a pump drift wave, a zonal flow and two side-bands of the drift wave generated
by the beating of the flow with the pump. In this form, the problem is exactly analo-
gous to the well-known Benjamin-Feir instability in fluid dynamics[15] and to various
modulational instabilities in plasmas[17]-[21]. '

The purpose of the present work is to describe the linear and nonlinear aspects of
the modulational instability mechanism for generating radial electric fields associated
with zonal flows in this simplest of settings and to point out the interesting and geﬁeric
features presented by it. We note that the linear instability has been considered in a



special form by Guzdar et. al.[8] and recently also in [22]. Our analysis is supported by-
extensive numerical computations which reveal new features and interesting insights
on the problem, not accessible to a wave kinetic approach or to purely linear models of
the initial phase. These features bear a striking resemblance to simulations [12] using
much more complicated sets of driven, dissipative, global, electromagnetic equations in
realistic tokamak conditions. However, the present, simple model appears to contain
the essential physics and may offer a more readily understood physical picture of the
role and dynamics of zonal flows and their interactions with drift wave turbulence.
The paper is organized as follows. In Section 2 we present a concise account of the
governing equations, the assumptions of the model and the exact integrals of motion.
The latter are generalizations of the well-known energy and enstrophy integrals of the
standard Charney-Hasegawa-Mima equation. We use the invariants to estimate the
number of effective degrees of freedom of the system[23, 24]. In Section 3 we derive the
simplest form of the modulational instability of a monochromatic pump drift wave due
to a zonal flow perturbation, directly modelled on the standard side-band instability
theory [15]-[22]. The pump wave amplitude is fixed in this linear description and the
dispersion relation leads to the amplitude threshold for the instability. Section 4 is
devoted to deriving the full, nonlinear four-wave model, including the evolution of the
pump wave and demonstrating the existence of two constants of motion for the four-
wave system. Section 5 presents the numerical scheme used to solve the full equations
of motion and results obtained from it. Discussion of the significance of the results and

conclusions are presented in Section 6.

2 Derivation of the equations of motion and their
integral invariants

We use a simple, fluid model to study the nonlinear interaction of drift waves [6, 8, 9.
A slab model of plasma is considered in which the ions are assumed to be cold and the
electrons have a uniform temperature, T,. The equilibrium magnetic field, B = Bz,
is assumed to be uniform and oriented along the z-axis. For simplicity we consider a
two-dimensional problem in which all quantities are independent of z. The z-direction
is analogous to the radial and the y-direction to the poloidal direction in toroidal
geometry. All quantities are taken to be periodic in these directions, except for the
equilibrium electron number density, 7, which is assumed to vary with  over a length-



scale, L,(L;! = n(z) |2]). It is convenient to write the full electrostatlc potential in
the form, ¢ = ¢ + gb, where ¢ is the y-averaged part (equivalently, it is the ky =0
Fourier component of the electrostatic potential #) and ¢ represents the ‘fluctuation’
(by definition, a fluctuation must have ky # 0). It must be specifically noted however,
that no averaging with respect to the time is required, nor used Furthermore, we do
not restrict the z variation of @¢(z,t) to be ‘slow’ in any sense. Thus, in principle,
¢(z,t) and q::(m y,t) can vary with z arbitrarily (subject only to the general limits of
validity of fluid models, discussed in the following).

With these conventions, Vi = cz x V¢/B is the y-averaged E X B drift (this will
be consistently referred to in this paper as the ‘zonal flow’), whilst Vg = cz x V{S/B
represents the fluctuating E x B drift, and V,; = Vay is the diamagnetic drift. The
nonlinear behaviour of the electrostatic potential is described by the following well-
known equation[6, 9): |
ed e¢

0
(at+vov+vdV):F-— §+VDV+VEV),OSV2T = (1)

where, p; = ¢;/Q, and ¢, = (2T, /m;)/?, Q. = eB /mic. We note that the fluid model
is nominally valid in the present ‘cold-ion’ approximation even for high perpendicular
wave numbers, k1 such that (k p, > 1). However, we consider initial conditions for
which all perturbations satisfy the ‘long wavelength ordering’, k1 p, < 1, noting that
typical experimental values of this parameter lie in the range, 0.1 — 0.5. The integral
invariants which we derive guarantee that the initial wavenumber ordering assumed is
preserved for all subsequent times. We shall also find that the modula.tlonal 1nstab1hty
is limited to relatively small wavenumbers in general.

We take the system dimensions in the z ;Y directions to be given respectively by a
and Ligye Usua.lly, these lengths are of the same order, and it is convenient in calculations
to set them equal. The averaged electrostatic potential, ¢, is related to the total
potential, @, as follows:

-l

Ll’
= (/L) [ ey
= <¢>,. (2)
The following standard normalizations are used: p = ps/a, & = ed/Te,z — z/a,y —

Y/Ly,t = (pscs/a®)t, vExg = beloz x V¢, Vi = apsc;/a, where o = a/L, is a nondi-
mensional measure of the equilibrium density gradient in the z-direction.



It is then easy to cast Eq.(1) into a pair of dlmensmnless nonlinear, coupled equa-
tions for ¢(z,t) and f = (1 - V3 )@

83;% <(zxV@).VVi4¢>, = 0. (3)
of :
5 +V.Vi+ 5 <(z2xV3).VVié >,

6‘\72 ) c")c,ﬁ Obze
oy (‘)y Oz

+p°

where, V = \75 + Vo + V4. Note that V.V = 0.

We now derive two important integral invariants associated with this system. They
generalize well-known results for the original Charney-Hasegawa-Mima equation, and
throw light on the nonlinear evolution properties of the solutions to the equations of
motion given above.

'The preceding equations can be rewritten as follows. We may multiply Eq (3) by
—p* and use the following simple relations:

(zx V§).VV2g = 2.(Véx VV3a).

_ 94, Vig)
) 8(z,y)
26,8 _ ,
d(z,y)
(5)
We introduce the ‘mean vorticity’, F:
F(z,t) = —p*¢ys. (6)
It then follows (from Eq.(3)) that F satisfies,
OF , _3(¢, /)
atBmy =Y
Le.,
oF 8, 86, 0 .99, B _
=< G_x(—@f) + %(ggf) >y = 0. (7)



Averaging over y, using the periodicity, the equation becomes (here, R is the ‘Reynolds
stress due to the fluctuations Wh1ch drive the zonal flows),

OF = OR
& e =% &
. _[19; |

"The expression for R can be usefully simpliﬁed by substituting for f:
19¢ [0%¢ 8%

872 oy?
_ 0 19¢ Bqﬁ
Oz [’0 8y bz J 1)

The last equation may be integrated with respect to z over the domain using periodic
boundary conditions (in z) and gives the exact relation of subsequent importance,

g A
[ Riz = 0. (11)
Next we transform Eq.(4) introducing the definitions introduced above for R, F as
follows:
ﬁf R 6 f 0é 8¢ oF
V.V — =
Bt T /- 8z 3y * aﬁy By 0z

Using the definitions of V, Vo, Vyand f , We may put this equation in the form:

g{-l‘VUVf-rVEVf— +aa¢ aqsaF

£ 8y Oy oz o (12)

Noting that, Vo.VF = 0, Eq.(8) and the relation, V5. VF = ~%E  the above
equation for the time evolution of f may be written in the remarkably simple form,

o(f + F : o o 4
__—(fat )+V0.v(f+F)+VE-V(f+F)¢05§ = B (13)

We now derive exact invariant integrals for the system. Integrating Eq. (12) over y,
we obtain the ‘trivial’ invariant,

gg / Fy = o, (14)

This follows from periodicity in ¥ and the definition of R. Fluctuations are defined by
the condition, [; fdy = 0. The invariant guarantees the consistency of this definition
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for all times, provided it is applied at ¢ = 0. It is easily verified that this also implies the
consistency of [} ¢dy = 0 for all time. Turning to Eq.(13), we multiply by the function
7 + F and integrate over the whole (periodic) z,y domain. The advective terms may
all be disposed off by suitable applications of the divergence theorem, leaving us with,

%ff(erF)zdzdw2af[(f+F)g§dzdy = 0,

%[[(f+F)2dxdy = —2a/ffg—fdrdy
= 0. (15)

by virtue of periodicity, independence of F' on y and Eq.(11). Since it follows from
Eq.(14) that [ f Ffdrdy = 0 for all time, we obtain the invariance of the positive
definite integral,

ff (f? + F*)dzdy, (16)

where J represents the total (ie, integrated) enstrophy of the system. It clearly depends
on the second-order derivatives of the potential. Furthermore, this invariant demon-
strates that no motion of this system can be unbounded (i.e., the system is Lagrange
stable in the sense of [23, 24]) even though linear stability may fail to hold; all linearly
unstable modes must be Iionlinearly saturated.

A second invariant, quadratic in the potentials, can be derived as follows: Eq.(12)
can be expanded out (using the definitions):

83 _ 20V’ 080f _ 8(6.f) oR _ 98 84oF
Bt P et Tozoy | d(zy) 8z by 3y oz

(17)

Multiplying this equation by ¢ and integrating over the whole z, y domain, we see that
the terms on the right vanish by virtue of the periodicity of 4 in y and Eq.(14). The
first two terms on the left hand side are readily transformed by the judicious use of the
divergence theorem, and take the form, £ ff1 [ng + PP + ,62655] dzdy. The third
term on the left is transformed as follows:

[[62 8 way = [P [ 2

= gé Rdz



= —f’2 / (,‘Ec;agmtdx .
= 2 [ [ 3Pdaay, (18)

where we have made use of Egs.(6,8) and (9).
These manipulations lead to the establishment of a second, positive definite quadratic

integral invariant,

[P+ FR@+ &+ @) dudy = o (19)

Thus, denoting this ‘energy integral’ by J, the second constant of motion for the system
is:

T = [ [[#+5@+8+ 8] dody. (20)

Unlike the enstrophy integral I, the energy integral J only involves the first order
partial derivatives of the potential. It is entirely reasonable to expect this system to
have .effectively a finite number of degrees of freedom|23, 24]. In order to estimate this
number, we consider the invariant, Q = (I — J)/p*J. Evidently, Q does not depend
on the normalization of the fluctuation level, ¢. The numerator can be simplified and
becomes, after suitable integrations by parts, -

I-J = B[ [[@+8 - &)+ (Vi) + P8, dedy. (21)

We note firstly that @ is driven by the fluctuations in this model, and is hence formally
O(#%). For this reason, I > J in all practical cases, since ¢ < 1. Utilizing our
wavenumber ordering, we find that (since the terms involving j are small compared
with the others in this ordei‘ing), I—-J=p*[f [qﬁﬁ -+ 55] dzdy, and by the same token,
J =~ [ [ #*dzdy. Tt follows that,

Q = (I-J)/J¢F

I 1[92+ 62 dudy )
J I ddzdy
According to [23, 24], the number of effective degrees of freedom, Nig is given by,
N = QY%f2r. (23)
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It is important to observe that these invariants are exact consequences of the nonlin-
ear equations of motion. They can also be readily derived for homogeneous boundary
conditions in z (periodic in y). The structure of the system suggests that there are no
other quadratic invariants, although this fact and the nonexistence of other, nontriv-
ial, independent invariant integrals has not been conclusively established. Note that
the existence of these positive definite integral invariants does not preclude Lyapunov
instability or ‘sensitive dependence’ of solutions to the initial value problem on the
initial data. Thus the motion, although bounded and hence Lagrange stable and re-
current, could be ‘chaotic’ (i.e., possess nontrivial frequency power spectra with both
‘coherent/quasi-periodic ’ and ‘broad-band/turbulent’ components). -

3 Modulational instability of drift waves in a slab

In this section we consider the relationship of the modulational instability of a monochro-
matic drift wave to the genération of a zonal flow. We have already identified the
y-averaged potential ¢(z,t) with a zonal flow V. Notice that the time evolution of the
zonal flow (Eq.(3)) is due entirely to the nonlinear coupling of drift wave fluctuations.
The nonlinear dynamics of the drift wave fluctuations in the presence of zonal flow is
described by Eq.(4). In general, a turbulent spectrum of drift wave fluctuations will
be present in a plasma. Here, we simplify the problem by assuming that there is just
a single, finite amplitude, monochromatic drift wave present initially, whose frequency
and wave number are given by, (wo, ko) where, ko = (s, &y, 0) and,

ak,
= — 2
LUO 1+’52k31 ( 4)
with,
ki = kZ+EK2 (25)

Now assume the presence of a zonal flow fluctuation (w,q) with wave number q =
(,0,0), which varies on a time-scale much longer than w; ! and is to be determined.
The zonal flow fluctuation can then beat with the finite amplitude pump wave to
generate drift wave sidebands with wave numbers, k. = ko & q = (k; + ¢, ky, 0). The
sidebands, in turn, can beat with the pump wave to reinforce the zonal flow fluctuation,
thus closing the feedback loop. This is the mechanism underlying modulational insta-
bilities which have been studied in the fields of laser plasma interactions, magnetized
plasmas and fluids ([15]-[21]).
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Let us now obtain the equations for the two sideband amplitudes from Eq.(4). The
pump wave is assumed to have the following form: '

o = Ao(t) exp(ikzz + tkyy — iwgt) + c.c., (26)
and the sidebands,
b = A (t) exp(i(ks £ q)z + 1kyy — iwst) + c.c. | (27)
In this expression, the unperturbed dfift wave frequencies, w., are given by,
ak,

= 2 — (28)

2T OTE R

where kZ = (k; £ ¢)* + k. The zonal flow perturbation is assumed to be of the form,
Vo = pesy [igB(t) exp(igz) +c.q], (29)

7where, g is the dimensionless ‘radial’ wave number, and B(t), the amplitude. The
equations-for the side band amplitudes A. can be obtained by substituting Egs.(26-
29) into Eq.(4) and keeping only the terms which satisfy perfect wave number matching.

The equations are:

E%ii QoA+ AgB exp(id,t), (30)
%: = ;-QOA_AGB* exp(i0-t), _ (31)

where,
be = wy-— Qo- (32)

The interaction coefficients, Q, A, are given by,

QO = qk‘ys . (33)

14 p*(k5 — ¢%)
Ay = 4
= 1+ 262 (34)

and we emphasize that wave numbers and amplitudes appearing in Egs.(31-32) are
normalized as defined below Eq.(2).
The equation for B can be obtained by substituting Egs.(26-29) into Eq.(3) and

again using perfect wave number matching. We thus obtain,

dB
— = 14 AL A5 exp(—i6,t) — p_ AT Ag exp(id_t)] , (35)

i



where,

(ki —k)

7z (36)

Mt

The set of equations (30), (31) and (35) allows us to obtain the conditions for modu-
lational instability of a finite amplitude drift wave, . If the nonlinear coupling terms
in Egs.(30-35), are neglected, then A. represent infinitesimal drift waves oscillating at
their natural frequencies, w.. It is helpful to introduce modified amplitude functions
by the relations, ' | '

A:(t) = a=x(t)exp(idst). (37)

The coupled equations, (30), (31) and (35) then take the form,

da.
71%1”6“'“”* = QA A,B, (38)
da_ . * |
_E+1,5_a_ = -—.QoA_AQB, (39)
dB * * !
= = Qo(usardl— p_a* Ag). (40)

The coupled equations (38-40) describe the nonlinear interaction of a finite amplitude
drift wave to two other, sideband drift waves through a zonal flow perturbation with
‘wave number q = (g,0,0). This coupling is less restrictive than the resonant decay
of a drift wave into two other drift waves and there is no constraint on g. Since the
‘pump amplitude’ Ay has been assumed large compared with the sideband amplitudes,
it can be assumed to remain constant during the initial phase of the interaction. Hence
Eqs.(38-40) are linearized, and since the coefficients are all independent of the time,
we may solve the systeni by assuming that a,a* and B all vary as exp(—iwt). Sub-
stituting this variation into Eqs.(38-40), we obtain the dispersion relation:

— — 02 2 p s -
w = QA L =3, + o J_J . (41)

Although formally this is a cubic, we can show easily that w = 0 is a roolt (a
marginal mode). To see this, we set w = 0 in both sides of Eq.(41). Consistency
demands that the terms on the right must also vanish. This holds if and only if the
following identity applies:

B e p-A_
ds T

(42)



Substituting Eqs.(32), (34) and (36) in Eq.(42), we see that,

fﬂ — (ki—k%)(l-{—f)z(kg—-qz))( 1 )
[ Q@ . 1+ p%k3 Wy — Wy
1+ (k5 = ¢°)
wof?q?
= —Fy(ko,q)
poA_

= ==

where, Fy(k, g) is the function defined by ,
1+ 0%k — %)

Fy(ko,q) = 4
0(]"0: Q) wopagqg ( 3)
These considerations reduce the dispersion relation to the quadratic:

w? +w(6- —84) — 6.8 — Q2| Ao Folko, ) (64 +6_) = 0, (44)

where we have made use of Eq.(42'). The solution of" this equation is,

1 1/2
w = 3 {5+ — 6 (84 +6.)% + 403|Ao[*Fo(ko, ) (51 + 6_)] } .
(45)
With the aid of Eqgs.(24) and (32) we find that,
Yo 1+ p?(k2 + ¢® — 3k2

BB o o 0h¢* [1 + (k2 + g )] )

1+ 2R3 (1+p2R2)
__ AwokspPq(1+ PK5) |
el = (1+ p?k2) (1 + p?k2) )

These expressions may be simplified in the long wavelength ordering: %k < 1, PR <
1, p%¢®> < 1. The solution to the dispersion relation can then be approximated by the
following form: S

i) (1)

w o~ —2uwokagp® £ wypg? |1 —
wokzqp” £ wop g R
Hence, the finite amplitude drift wave will be modulationally unstable if,

2 254
whg p

2k2
5
2 Vd
2e2

|[40]® >

> (psq) (49)
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where we revert to dimensional variables in the right hand side of the last inequality
for clarity. Clearly the threshold is very low since V? < ¢?, and (psq)? < 1. We note
that the threshold amplitude is proportional to the ‘drift Mach number’ defined by,
My = |V4|/cs and to |q|. Using Eq.(48), the growth rate can be written as:

2 e k2a2 2( 2‘4% < ~2) (-—0)
T = y q 012‘52 qgape). 9
Since v is parabolic in ¢?, it is straightforward to show that the maximum growth rate
occurs for P
Tmaz ~= Elﬁ_o‘?, (‘51)

The threshold condition also implies that for modulational instability, ¢ (the dimen-
sional radial wave number of the zonal flow) must be in the unstable band given by,

0 < psq < V2(cs/ V)| Aql. (52)

Furthermore, the wave number corresponding to maximum growth is,

(PsQ)max = (cs/Vd)IAOI- (53)

While the threshold amplitude is higher for larger ¢2, the growth rate is also larger.This
can be seen by the following expression for the growth-rate -y, well above the threshold:

YR kaV2] 4| (54)

The instability results in growing sideband drift waves with radial wave numbers k. +¢
and a growing zonal flow perturbation with a radial wavenumber q. The k; + ¢ and
k. — g sidebands (i.e., ¢.) oscillate at frequencies wg = w, respectively whilst the zonal
flow oscillates at w, where, w, ~ —2wok.gp?.

It is interesting to consider the ‘typical’ wave number ordering, ¢* < k2 < k2.
Evidently, Fy(ko,g) > 0, in all such cases. For this ordering, we may Taylor expand
w=(k, q) in powers of g:

.
wilk,q) = wo+-g—;’j~q+%—;";%+-- (55)
Denoting by V,; = g-‘x‘,’f-, the group velocity (in our dimensionless units) in the z—direction,
we see that,

6++5_. = W4 + w_. — 2&.’0
q2 52w0
Bk2
204z
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‘In consequence, the threshold condition can be rewritten (taking account of the wave

number orderings),

2 _qgavz 5
AP > {U a—}(;—) | 57)

It is clear that a necessary condition for instability is that %%ﬁ’f < 0. This is always
satisfied, as can be verified from Eq.(24). These results are in agreement with those of
Refs.[6, 8, 22| for the appropriate orderings.

4 Nonlinear evolution and invariants in the reduced

four-wave model

In the previous section we have described the modulational instability of a finite am-
plitude drift wave due to nonlinear coupling to a single pair of sideband drift waves
and a low frequency zonal flow perturbation. The properties of the instability were
obtained by assuming that the amplitude of the finite amplitude drift wave (the pump
wave) was much larger than the side band amplitudes so that the reaction of the other
waves on the pump wave was neglected and the pump itself was assumed to remain
constant. This enabled us to linearize the coupled equations and. the resulting mod-
ulational instability represents the initial phase of the development of this nonlinear
interaction. _ _
~ In this section we analyze the nonlinear evolution of this four-wave interaction in
which the pump wave is treated on the same footing as the sideband drift waves. In
order to do this we must obtain an equation for the pump wave. This can be derived
using Eqs.(4,26) in a manner similar to that used to obtain the equations for the side
bands. Thus retaining only terms which satisfy perfect wave number matching, we
obtain an equation for the pump wave amplitude Ay(t), introduced in Eq.(26). The

equation is,

dAp

p —Qy(vya:B* —v_a_B), (58)
where, v are defined as follows:

1+ (kL = ¢*)
1+ p2kE
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The nonlinear evolution of the modulational instability for a given perturbed wave num-
ber g (say that corresponding to the maximum growth rate) is described by Egs.(38)-
(40) and Eq.(58). It should be understood that these equations, together with their
conjugate complex ones, govern the dynamics of the four complez amplitudes, a+, Ag, B.
We note that all the parameters appearing in the above equations are real. It is not
evident from the existence of the exact integral invariants that the four-wave equations
must have any invariants of their own. However, we show now that two such invariants
do indeed exist, and give a derivation of them directly, without reference to I, J derived
earlier.

From the above equations and their complex conjugates, we readily obtain the

following equations governing the real wave ‘intensities’:

d| 4,2
% = —o(viAjas B —v_Aja_B)
' —Qo(vyAoa B — v_Aga’ BY), (60)
d|B|? i .
7 = QO(#"E'APG"FB —,U,_AOG_B
+Qo(p+Aga’ B — u_Aja_B), - (61)
2
dlz:-l = QQA.{_AU(I:_B + Q(]A.FASG.FB*, (62)
dla_|? . e . -
dt = —QoA._AQa_B = QQA_.AUG,_B. (63)

To find invariants, we multiply Egs.(61-63) by the ﬁndetermined, real, constant (in
time) multipliers, Ap, AL and A_, resﬁeetively and add the four equations to obtain:

1 . .
——d—(leF +As[BP +Arlas P+ Afa_) = AjaiB*[—vi +Appy + AL

 dt
+Apal B [y — Agp- — A_A_]
+c.c. (64)

Evidently we can make the right hand side of Eq.(64) vanish by choosing the mul-
tipliers to satisfy the relations,

vy = Apps +Arhy, - (65)
v = Apu_+A_A_. (66)

These relations can be solved for A. in terms of Ap and the other parameters of the
problem:

Az = (vz —Appa)/As. (67)
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This result implies that the following quadratic function W (Ao, B,a+) of the am-
plitudes, conta,ihing the parameters appearing in the equations of motion and the
‘free parameter’ ), is a constant -of the motion of the system of nonlinear equations,
Egs.(38-40), (58), for arbitrary values of Ag:

W= [[40f + /Aoy + (v-/A)|a- ]
25 1B ~ (ue/A)las? = (u-/A)|a-f?] (68)

It is clear that we have derived in this way, the only two Junctionally independent
constants of the motion of the system which are quadratic in the amplitudes. These
are respectively, the term independent of A5 and the coefficient of A in Eq.(68) above:

Iy = [4of + (vs/Ay)las ] + (vo/A)|a—]?, (69)
Is = |B|*— (us/Ay) s = (u-/A)|a . (70)

It is obvious that an arbitrary function of these invariants is also an invariant. Thus,
W itself is a linear function of Iy, Ip, and is therefore not independent of these. It is
conjectured but not proven that for generic values of the parameters Ay, U, V4 appear-
ing in the governing equations, the system possesses no other invariants functionally
independent of Iy, Iz. Observe that the four-wave system governed by Eqgs.(38-40) and
Eq.(58) is represented by four complex amplitudes (equivalent to eight real functions
of time). The existence of two real constants of the motion reduce thé number of in-
dependent real functions required to represent the system from eight to six. It is also
of interest to observe that Iy is an invariant solely involving the ‘pump’ wave and its
two side-bands, whilst Ip involves only the ‘zonal flow’ and the two side-bands. The
pump and the zonal flow are obviously coupled to each other via the side-bands.

5 Numerical simulation results

In order to develop a fuller understanding of the nonlinear behavior of this system,
we solve Egs. (3) and (4) using a two dimensional (2-D) finite difference code. This
code employs a second order accurate, explicit time stepping procedure. All spatial
derivatives are evaluated using a five point finite difference scheme that is accurate
to A%, where A is the grid spacing. The convective derivatives are stabilized with a
velocity dependent hyperviscosity [25]. This is similar to a typical upwind differencing
technique. However, the hyperviscosity is also evaluated using a five point differencing
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scheme, resulting in the overall method having a high degeee of accuracy and stability.
The time stepping procedure uses an explicit trapezoidal leapfrog scheme, which is
accurate to (At)?, where At is the time step. The details of these numerical algorithms
are discussed in Ref. [25]. The two variables evolved were f = (1 — 3*V2)4 and
$zz Which were then inverted using Fourier transforms to find ¢ and ¢ respectively.
We have checked the basic schemes used in the code by solving the equations of mo-
tion separately, when the nonlinear coupling terms are specified functions, effectively
linearizing the equations.

We write the equations Egs.(3,4) in the following form,

8'53:: = _ o
—a_t_l_ < 2(.’17, y) >y= 0, ((l)
of a¢ 4 70808 _
TR V- (Vof) = [E(z, 9)— < S(z,9) >, tag, By ke 0, (72)

where we have used, V.V = 0, the expressrion for Vg and the definition, i(m,y) =
2% V¢-VV3 . In Eq.(71) we prescribe the function < S(z,y) >, and show that the
numerical solution a,grées with the analytic result. Similarly, in Eq.(72), we neglect the
¥ terms and verify that the linearized Eq. (72) simply propagates the solution in the
Y direction at a velocity given by

w r Q&+ ﬁgéxrx

The next important test was to make sure that at early-times, the code results
agreed with the ‘four-wave’ linear theory when the pump wave amplitude was kept
fixed. We did this by plotting the logarithm of the amplitude of the averaged potential
(¢) against time and evaluating the slope. Since we were testing for aécuracy, it was
important that we compare the growth rates obtained from the code to the exact
expression for the growth rate as given by Eq. (45). Rewriting the imaginary part of
Eq. (45) in terms of the dimensionless parameters, we have the expression

1/2
-1 , (79

A ) (1+ (k2 — ¢?)2)(1 + k2p?)

= k,aq’pG(k, g 2( .

where
14 p*(k2 + ¢* — 3k2)

(14 22k3) (1 + *k2) (1 + p°k3) |
We can simplify this relation by taking the usual zonal flow condition that the sidebands

Gk, q) =

have a radial wave vector just slightly shifted from the pump wave i.e. ¢ < kg, ky. This
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 allows us to write G(k, q) ~ (1 + PP(k2 — 3k2))/(1 + k2p*)®. Therefore in the limit of

small g, Eq. (74) reduces to

(75)

1+ (k2 - 3k§)ﬁ2) v

v = V2[kyq|| 40| ( (1 + k247)

In order to compare our results with earlier work[6, 22], it is important to compare the
reduced growth rate -y/wg. This quantity is independent of the normalization conven- .
- tions involving ¢, ps etc. Upon evaluation, we find that our expressions agree exactly
with the earlier results. Shown in Figure 1 are plots of the growth rates from the code
(denoted by the line marked with circles) plotted with the growth rates from Eq. (74)
(unmarked line) and Eq. (75) (line marked with squares) as a function of g, Ag, my,
my where mgy = k;,/2m. The agreement between the numerical results and Eq. (74)
is excellent (within a few percent for all cases), but more importantlﬁr, the simplified
dispersion relation from Eq. (75) shows good qualitative agreement, and only minor
quantitative differences. '

In the nonlinear evolution problem, a key test is to verify the conservation prop-
erties. We first consider the behaviour of the ‘four-wave’ invariants, I, I (cf. Egs.
(69,70)). It is clear that since the exact equations involve many interactions neglected -
in the four-wave theory, these quantities are not expected to be true invariants (unlike
I,J derived in Section 2). Rather, their invariance over a certain epoch denotes the
time interval over which the four-wave theory can be expected to provide a reasonable
description of the system dynamics. On the other hand, a very senmsitive check on
the ‘faithfulness’ of the numerics is provided by the degree of accuracy and length of
time over which the exact invariants, I, J are demonstrably maintained constant in the
numerical solution of the nonlinear equations of motion. |

Shown in Figure 2 is the time evolution of the amplitudes |A4g|? (line with the
circles), |a|* (denoted by the squares), |a_|? (denoted by the triangles), and the four-
wave invariant Iy (denoted by the bold solid line) for the parameters o = 1, j = 0.01,
Ag = 0.001, m; = my = 4, and m, = ¢g/27 = 2. Also plotted on this graph is the
enstrophy integral I which is denoted by the line with the solid cicles. Note that I
quite clearly remains constant over the entire period of the simulation. The growth
time for this case is about t = 3.3 in our normalized units. In contrast to I, the
quantity f; remains constant for about 3 growth times, while the mode intensities
(‘energies’) depart markedly from their initial values. It follows that beyond this time,
many other modes become significant so that the four wave description of the system
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loses its validity. The important point, however, is that the quantity Ip keeps its value
even after the pump wave has transferred about half of its energy to the sidebands. So
clearly, Iy can be considered to be a constant of the system so long as the four-wave
model remains valid. It should be noted that a,lthbugh Iy only remains constant over
about 3 growth times, the more important time scale here is drift period of the pump
wave, g ~ 1/wg. If we compare the drift frequency wg ~ kyVp to the growth rate,
which from Eq. (75) scales as v ~ kygpscsAg, we find that wy/y ~ 1/(gLAg), which for
a small pump wave amplitude is much greater than unity. Therefore, the quantity I
remains a constant for hundreds of drift times. We find a similar behavior for the second
four-wave invariant, Iz. Shown in Figure 3 is the time evolution of | B|? (denoted by the
circles), |a+{? (denoted by the squares), |a_|*> (denoted by the triangles), Ip (denoted
by the bold solid line), and the energy integral J (line with solid circles) for the same
parameters as for Figure 2. As was the case for I, the quantity Iz remains constant
while the other quantities show significant growth for about three growth times when
the four-wave model ceases to be valid due to generation of other modes. As expected,
the integral invariant J remains constant for as long as the simulation was continued,
showing that our numerical scheme ‘faithfully’ conserves the exact integrals of motion
of the:system over many linear growth times, thereby providing an excellent check on
the numerical scheme employed. ‘

We next address the issue of how this system behaves nonlinearly. For the runs,
we choose parameters typical of a tokamak edge plasma; Ly ~2—5cm, p, ~ 0.5 —1
cm, which, for a box size (a = L,) of 10 cm gives us p = 0.005 — 0.01 and @ = 2 — 5.
Therefore, unless otherwise stated, the basic values of the parameters that we shall use
will be p = 0.0075, a = 3, my; = my =4, and Ay = 0.01. As a starting point, we shall
discuss the nonlinear evolution of this case.

Shown in Figure 4 is a plot of ¢ vs. 7 at a late nonlinear time. Clearly the averaged
potential has a pronounced m, = 10 structure, and since Vg ~ mqé, this suggests that
the averaged flow will be dominated by the m, = 10 mode. It is of interest to note that
using the formula, Eq.(23), we find that the estimated value of the number of effective
degrees of freedom of the system for the chosen conditions to be, Neg =~ 10 — 15. Thus
the numerical evidence is in agreement with the theoretical estimate based on the exact
invariants. The simulations show that this is a case of a zonal flow varying on ‘radial’
spatial scales comparable to or more rapidly than the pump wave. In order to get

a better feel for the actual evolution of the mode structure, Figure 5 (a) shows the
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time dependence of the my = 1 — 5 Fourier components of ¢, and Figure 5 (b) the
time dependence of the my = 6 — 10 modes. It is clear from these plots that since the
mg =1 and my = 2 modes (denoted by the two boldest lines respectively) saturate at
an amplitude comparable to the m, = 10 mode (denoted by the line with circles), the
zonal flow (Vj =~ m,@) will be dominated by the mg = 10 mode, confirming the above
conjecture. ' _

The reason for this can be understood if we examine the dependence of the growth
rate given by Eq. (75) upon m,. Plotted in Figure 6 is as a function of m, for
@ =1,3,5,7,9. For @ = 3 (the value corresponding to Figs.4 and 5a,b), the growth
rate peaks at about m, ~ 10, while for increasing a (which corresponds physically to a
shorter L), the peak of the growth rate shifts to lower m,. This can be seen from the
approximate dispersion relation which is given in Eq.(48), which also demonstrates that
the shorter Wavelengths stabilize for large c.. The question then arises as to whether a
zonal flow does form for larger a. ‘

Shown in Figure 7(a) is a plot similar to Figure 4, except that we now have, a =
. 7. 'The averaged potential for this case has a decided sawtooth-like structure, which
indicates that the averaged E x B flow will be a highly localized, jet-like structure (cf.
[12],[26]) with a weaker reverse zonal flow away from this region. Recalling that the
Fourier series of a sawtooth wave is given by

Mmaz

g5(3:) ~ Z sin (2rmaz)/m

m=1
we can gain understanding as to why such a structure will form if we refer back to Eq.
(72). In steady state, we can neglect the time derivative, and also neglect the term
%, as it is nonlinear in gE, and can be neglected for small pump wave amplitude. The
equation now reads,

3¢ 3@ 3¢ ..9 aﬁb adzz
i = "~
aya ( -rk )+ a ay G 0, ((6)
which if we take 8/0z ~ 1g, leaves us with the algebraic relation,
- o 1
G~ (77)

¢ (1+ (k1 —g?p2)
This qualitative argument suggests that the averaged potential tends to saturate so

that the amplitude of each harmonic depends upon the reciprocal of the harmonic

number, resulting in a ‘sawtooth’ wave form.
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Another interesting feature of the saturation amplitudes that we observed from the
simulations is that if & gets too large, then the amplitude of the saturated averaged
potential drops dramatically. Shown in Figure 7(b) is a plot of ¢(z) for @ = 9. The
potential is still sawtooth-like (although not as dramatic as for a = 7), however, the
saturated amplitude of the averaged potential is nearly an order of magnitude smaller.
This may be due to the fact that for such a’s, the longest wavelength mode which can
be ‘fitted’ into the box falls outside the unstable fange of wave lengths.

As a final example of how the modes vary in time, shown in Figure 8 are plots of
the Fourier spectrum of ¢ at early [Fig. 8(a)] and late [Fig. 8(b)] times and a surface
plot of the Fourier spectrum of ¢ in k, and k, space at early [Fig. 8(c)] and late [Fig.
8(d)] times. The parameters used for this run were @ = 5, § = 0.002, 4, = 0.001,
m; = 4 and m, = 3. At early times, the four wave description is quite apparent, with
only the m, = 1 mode in the spectrum of ¢, and ¢ is quite obviously dominated by
the pump wave. The two side bands are visible in the graph as well. At later time, the
averaged potential has developed the ¢(k;) ~ 1/k; behaviour indicative of a sawtooth.
From Fig. 8(d), it is quite obvious that the energy has been spread to many other
radial modes in the system which shows why the higher order modes in the zonal flow
are driven. .

We have also varied the value of p and found results similar to those obtained when
« was varied. Thus, for small 5 (< 0.01), the averaged potential was dominated by the
fastest growing short wavelength modes. As j increased, however, the jet-like zonal
flow occurred for lower values of ¢, for example, when jp = 0.015, a jet formed for
o = 4. This observation is consistent with the argument that in order for a zonal
flow to form, the maximum growth rate must occur for low radial mode numbers, and |
as we showed earlier, gmaz = Ag/(ap?). Likewise, when we varied the pump wave
amplitude, we found a similar behaviour: thus, for Ay very small (< 0.005), the jet
formed for experimentally typical values of o and p, while for larger 4, (> 0.02), the
averaged potential was dominated by the shorter wavelengths, and the jet only formed
for unrealistically large values of a and §.

6 Discussion and conclusions

The generalized Charney-Hasegawa-Mima model introduced by Smolyakov et. ol and
others is clearly the simplest one which explicitly exhibits the modulational instability
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mechanism of ‘self-generated’ zonal flows by drift waves. This mechanism itself has
long been implicated in many problems in fluid mechanics and plasma physics. The
discussion in Section 2 shows that through the medium of the ‘side-bands’, a zonal flow
(ie a purely ‘radial’ electric field perturbation with zero linear frequency) is able to
extract energy from a typical drift wave (‘pump’), provided some rather mild threshold
conditions are met. What is interesting about this dissipationless system is that, at
least for a few initial growth times, the pump is ‘drained’ of energy by the growing
zonal flow and the drift wave side-bands. This is the start of a typical ‘inverse cascade’ 7
process which is known to play a fundamental role in much more elaborate tokamak
simulations[12]. In effect, ‘pump draining’ by the growing zonal flow and the side-
bands provides a nonlinear saturation mechanism for drift modes driven unstable by
some unspecified source. The energy of the pump drift wave is thereby distributed
over a much wider spectrum of drift wave fréquencies through the mediation of the
zonal flow. Although this is a typical ‘profile-turbulence interaction’, it is distinct from
more usual ‘quasi-linear’ saturation mechanisms which rely on the turbulence-generated
transport modifying the equilibrium gradients which drive the linear modes, and those
in which the sheared zonal flow directly ‘decorrelates’ the turbulent fluctuations radially
by breaking up turbulent eddies.

During the nonlinear phase of the four-wave interaction between a specific ‘pump
wave’, its side-bands and an associated zonal flow, it is remarkable that two ‘invariants’,
Iy, Ip exist for many drift periods. However, due to the eventual nonlinear generation of
other modes permitted by the threshold conditions (but not initially present), the four-
wave model loses its validity. This happens because the system is not well-described by
four coupled modes since other four-wave groups can also occur. These can all interact
with each other in the fully nonlinear stage. The full system however was shown to
have two positive definite invariants which permit the following deductions: the linear
growth of the zonal flow must be saturated eventually; the total number of new ‘modes’
generated nonlinearly cannot increase indefinitely, but is in fact determined by the ini-
tial conditions (via the values of I, J at ¢t = 0). In the long run, the system motion
must be ‘recurrent’[23, 24]. The last statement implies that the pump must eventually
reconstruct itself, although under practically relevant conditions, the recurrence times
may be too long to be of interest. This type of ‘cyclic’ relaxation behaviour of zonal
flows and turbulence, is, in the present simple model, a consequenée of enefgy and en-
strophy conservation. However, it is remarkable that in driven, dissipative systems such
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as those considered in more elaborate simulations of tokamak turbulence (eg. Ref.[12])
very similar behaviour is found, suggesting that the conservative model captures in
some sense the essence of the phenomenon of continual cyclical relaxational exchange
of energy and enstrophy between zonal flows and plasma turbulence(the losses being
compensated by the external drives) in more realistic systems.

The numerical simulations presented in Section 5 demonstrate the following note-
worthy features. The linear phase of the four-wave model accurately represents the
initial system behaviour. The four-wave nonlinear model, while not valid over more
than a few linear growth times, nevertheless gives a good qualitative account of the
‘stabilization’ of the turbulence by the inverse cascading of energy into the zonal flow
~ (of course the side-bands are also involved in this process). The four-wave ‘invariants’
(Io, Ip) are good indicators of how long the reduced model remains valid. Unlike the
‘wave kinetic’ formalism [6] which does not represent the full nonlinearities inherent in
the system, the exact invariants are clearly conserved in the present simulations over
much longer time-scales. Furthermore, the estimated number of effective modes[23] is
substantially in agreement with the predictions of the code. The full numerical simu-
lations also show that not only can zonal flows develop ‘corrugations’ and/or ‘jet-like’
structures(cf. [12]), they can also be dramatically reduced in some conditions. These
different structural forms appear to be controlled by the a parameter, the dimensionless
Larmor radius parameter p, and the initial data: i.e., the initial pump wave amplitude.
In particular, the dramatic reduction of zonal flows (and consequent loss of a damping
mechanism for the turbulence) when o exceeds a certain threshold, is suggestive of

a possible route from H to L modes, although one must be cautious about drawing
 definitive conclusions from such a simplified two-dimensional model. What is clear is
that the radial electric field structures obtained in [12] exhibit many of the features
presented here. It is of interest to note that the present model exemplifies systems
where the zonal flows are entirely generated by the turbulence without any assistance
from neoclassical effects, and/or externally driven flows. In power plant conditions, it
is probable that most of the zonal flows in the plasma could be of this type.

The dynamics of zonal flow-turbulence interactions studied here suggest the possible
existence of much more general mechanisms which remain to be explored. Is there
a corresponding ‘inverse cascade’ via modulational instabilities of short wave-length
modes to the entire long wave-length (ie small &, k,) spectrum? The existence of such

a mechanism would serve to illuminate many features of the turbulence calculated by
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“first-principles’ codes, and may also explain why experimentally there never has been
any conclusive observation of significant turbulence in the really ‘high’(k, p; > 0.3, o
1MHz) part of the spectrum. The questions of relationship between purely electrostatie,
fluid-based, two-dimensional models like the present one and more realistic models have
yet to be elucidated. The present investigation forms a basic starting point from which
we hope to pursue these matters more systematically in the future.
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Figure Captions

A plot of the normalized growth rate as a function of a) ,6, b) Ay, c) m,, and d)
my. The unmarked line denotes the theoretical growth rate as given by Eq. (71),
the line marked with squares shows the approximate growth rate as gi.ven by Eq.
(72), and the line marked with circles is the code result. The basic parameters
for each run were g = 0.01, 4 = 0.01, m, = My = 4, and a = 1.0.

A plot of the first four-wave invariant J,, the pump wave amplitude squared, the
sideband amplitudes squared, and the enstrophy integral I as a function of time.
All quantities have been divided by the initial value of |Ag|? so as to normalize the
initial invariant to unity, and the enstrophy integral has been normalized so as
to give it an initial value of 0.5. The dark solid line is Iy, the line with the circles
is |Ao[*, the line with the triangles is |a_|?, the line with the squares is |a|?,
and the line with solid circles is I. The parameters were p = 0.01, 4, = 0.001,

My =My =4, my =2, and o = 1.0.

- A plot of the second four-wave invariant J B, the averaged potential amplitude

squared, the sideband amplitudes squared, and the energy integral J as a function
of time. All quantities have been divided by the initial value of |46]%, and the
energy integral has been normalized so as to give it an initial value of 0.15. The
dark solid line is /5, the line with the circles is | B|2, the line with the triangles is
la- [, the line with the squares is |a.|?, and the line with solid circles is J. The
parameters used are the same as those used for Figure 2.

The averaged potential (@) as a function of z at a late nonlinear time. The
parameters for this run were o = 3, p = 0.0075, m, = my = 4, and 4y = 0.01.
The my = 10 structure is apparent.

The time evolution of the Fourier amplitudes of ¢ as a function of time for the
same system as in Figure 4. 5 (a) shows the m, = 1 — 5 modes, which are
denoted by the unmarked line, the line with inverted triangles, the line with
triangles, the line with squares, and the line with circles respectively. 5(b) shows
the my = 6 — 10 modes, which are denoted in the same way as the modes in 5(a).

The my = 10 mode, dominates the zonal flow.

A plot of the growth rate as given by Eq. (71) as a function of m, for o =
1,3,5,7,9. The lines corresponding to each value of o are labeled in the figure.
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7. A similar plot to Figure 4, except o has a value of 7 in (a) and & = 9 in (b).
The sawtooth structure is evident, and note the dramatic drop in the saturated

amplitudes.

8. Fourier spectrum of ¢ at (a) early and (b) late times, and the Fourier spectrum
of ¢ at (c) early and (d) late times. Figs. (a) and (c) show clearly the four wave
structure of the system at early times, and Figs. (b) and (d) show the sawtooth-
like spectrum of the averaged potential and the excitation of higher modes by

wave-wave coupling of the potential.
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