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1.  Introduction

The efficient production of fusion power requires large pres­
sure at the plasma core while retaining low pressure at the 
plasma edge, such that plasma facing components (PFCs) 
operate in an acceptable environment. Such pressure profiles 
are observed in high confinement mode (H-mode) plasmas. 
However, the establishment of a steep pressure gradient at 
the edge, the so called pedestal region, together with large 
bootstrap driven edge current density destabilises peeling–
ballooning (PB) instabilities [1]. Those instabilities are mani­
fested as edge localised modes (ELMs) which correspond to 
rapid bursts of particles and heat to PFCs, especially to the 
divertor of the reactor. For large tokamaks like ITER, unmiti­
gated ELMs will be sufficiently large to deliver heat fluxes 
that exceed the melting point of tungsten [2], the main mat­
erial of the divertor tiles. Therefore, ELM control methods 
are required to avoid damage of the reactor PFCs and exhaust 
region [3].

One method of ELM control that is widely applied to 
tokamaks around the world, and will be installed in ITER, 
uses non-axisymmetric magnetic perturbations (MPs) pro­
duced by magnetic coils placed around the plasma, typically 
inside the tokamak vessel. Experimental observations indi­
cate two main operational states with these coils. One, ELM 
mitigation, where there is a decrease in energy loss per ELM 
∆WELM and an increase of ELM frequency fELM. The other, 
ELM suppression, i.e. no ELMs. For ITER-like shape low 
density n/nGW ∼ 0.3, where nGW = Ip/πa2  is the Greenwald 
density limit, Ip the plasma current and a the minor radius, 
and low collisionality ν∗ ∼ 0.01, complete suppression has 
been observed at DIII-D [4] and ASDEX Upgrade [5], while 
for higher collisionality ν∗ ∼ 1 KSTAR [6] has also achieved 
ELM suppression—collisionality is the ratio between col­
lision frequency and the characteristic bounce frequency of 
trapped particles. The exact physics mechanism that allows 
this ELM free regime is still to be understood. ITER will 
operate in a high Greenwald fraction n/nGW ∼ 0.7, low 
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collisionality ν∗ ∼ 0.01 regime which makes extrapolation 
from current machines challenging in the absence of a rig­
orous physics basis.

External 3D fields affect transport and magnetohydro­
dynamic (MHD) properties of the plasma. The resonant comp­
onent of the field drives current structures at flux surfaces 
where the safety factor q is rational. Under certain conditions 
these can lead to magnetic islands, which greatly increase 
cross-field transport [7–9]. As a result, the pressure gradient 
in the pedestal is relaxed below global stability boundaries. 
However, plasma flow in the pedestal region can be strong 
enough for island structures to heal [10–13]. In addition, equi­
librium geometry can influence MHD stability boundaries, 
and so affect the onset of ELMs. An infinite toroidal mode 
numbner n or local ballooning analysis reveals that the domi­
nant effect of the applied 3D field is to alter the local magnetic 
shear, which has significant consequences for ideal MHD 
stability [14–16]. However, for the intermediate n modes, 
responsible for the occurrence of ELMs, a global 3D analysis 
is needed. Global 3D stability codes exist [17–20] but simula­
tions of ideal MHD stability of medium to high n modes under 
the application of MPs are extremely challenging. Simulations 
performed with non-linear fluid codes demonstrate that 
toroidal mode coupling is one of the key mechanisms to influ­
ence the growth rate of unstable PB modes [21, 22].

The work presented here focuses on the impact of toroidal 
symmetry breaking on the ideal MHD stability of the plasma. 
In a toroidally axisymmetric system, the linear response is 
described by decoupled toroidal modes, i.e. toroidal mode 
number n, is a ‘good quantum number’ and only poloidal 
mode number coupling occurs. We consider an additional 

non-axisymmetric part of the equilibrium B(1)
N , where N is the 

(assumed single) toroidal mode number of the imposed 3D 

field, that is much smaller than the axisymmetric part B(0)
0 ; 

typically B(1)
N /B(0)

0 ∼ 10−4, so linear perturbation theory can 
be employed to provide the required geometrical coupling of 
the axisymmetric modes. This coupling will result in energy 
transfer between neighbouring toroidal Fourier modes that 
can directly affect the evolution of instabilities. In this paper, 
we will explore this coupling mechanism.

2.  Perturbative MHD stability framework

2.1.  Features of perturbative MHD

A perturbative stability analysis has been performed to first 
order in [23] to approximate changes in axisymmetric stability 
due to the presence of narrow island structures. However, 
second order corrections, as in [24], are required to capture 
perturbative non-axisymmetric effects. First, consider the 
momentum equation, which for simplicity in the formalism is 
normalised to the mass density ρ ,

F�ξn =
∂2

∂t2
�ξn ⇒ (F(0) + εF(1) + ε2F(2) + ...)�ξn = −ω2

n
�ξn

� (1)

produced from a plasma displacement �ξn, where F(0) is a force 
operator due to the axisymmetric equilibrium, F(k) is a force 
operator due to axisymmetric and non-axisymmetric equilib­
rium changes of order k and ε represents a small parameter 

proportional to B(1)
N /B(0)

0 � 1. Equation  (1) represents an 
eigenvalue equation, where the set of −ω2

n and �ξn represent 
the eigenvalues (frequency or growth rate) and eigenfunctions 
(perpendicular displacement) respectively. Due to the pertur­
bative nature of the higher order contributions the eigenvalues 
and eigenvectors can be expanded in the small parameter ε:

ω2
n = ω(0)2

n + εω(1)2
n + ε2ω(2)2

n + ...� (2)

�ξn = �ξ (0)
n + ε�ξ (1)

n + ε2�ξ (2)
n + ...� (3)

Solving order by order, we derive to k � 2,

0th Order : F(0)�ξ (0)
n = −ω(0)2

n
�ξ (0)

n� (4)

1st Order : F(1)�ξ (0)
n + F(0)�ξ (1)

n = −ω(1)2
n

�ξ (0)
n − ω(0)2

n
�ξ (1)

n
� (5)

2nd Order : F(2)�ξ (0)
n + F(1)�ξ (1)

n + F(0)�ξ (2)
n = −ω(2)2

n
�ξ (0)

n − ω(1)2
n

�ξ (1)
n

− ω(0)2
n

�ξ (2)
n .

� (6)

The unperturbed system

F(0)�ξ (0)
n = −ω(0)2

n
�ξ (0)

n� (7)

is considered to be unstable and non-degenerate, i.e. ω(0)
n �= ω

(0)
m  

for n �= m. Thus, the eigenvalues −ω
(0)2
n  and eigenfunctions 

�ξ
(0)

n  are fully determined for a range of n and can be used 
as basis functions for the solution of higher order equations. 
These basis functions are orthogonal, and considered to be nor­

malised such that 〈�ξ (0)
m |�ξ (0)

n 〉 =
∫
�ξ

†(0)
m · �ξ (0)

n J d3x = δnm , 
where J  is a weight function representing the Jacobian of the 
coordinate system.

To obtain first order corrections for the eigenvalues and 

eigenfunctions, the inner product of equation  (5) with �ξ
(0)

n  
is considered,

〈�ξ (0)
n |F(0)|�ξ (1)

n 〉+ 〈�ξ (0)
n |F(1)|�ξ (0)

n 〉 = −ω(0)2
n 〈�ξ (0)

n |�ξ (1)
n 〉

−ω(1)2
n 〈�ξ (0)

n |�ξ (0)
n 〉.

� (8)
The first terms on the left and right hand sides of equation (8) 
cancel, due to the fact that F(0) is Hermitian. This leads to a 
simple relation for the first order correction of the eigenvalue,

ω(1)2
n = −〈�ξ (0)

n |F(1)|�ξ (0)
n 〉.� (9)

Taking the inner product of equation  (5) with �ξ
(0)

m  (m �= n) 
leads to

(ω(0)2
m − ω(0)2

n )〈�ξ (0)
m |�ξ (1)

n 〉 = 〈�ξ (0)
m |F(1)|�ξ (0)

n 〉.� (10)

One can use the freedom in the solution to equation  (5) for 
�ξ

(1)
n  to satisfy an orthogonality relation 〈�ξ (0)

n |�ξ (1)
n 〉 = 0. This 

allows the representation of the perturbed state as a superposi­
tion of the unperturbed states,

Nucl. Fusion 59 (2019) 126028
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�ξ (1)
n =

∑
m�=n

〈�ξ (0)
m |�ξ (1)

n 〉�ξ (0)
m .

� (11)

Substituting equation (11) into equation (10) provides the first 
order correction of the eigenfunction that depends on known 
quantities,

�ξ (1)
n =

∑
m�=n

〈�ξ (0)
m |F(1)|�ξ (0)

n 〉
(ω

(0)2
m − ω

(0)2
n )

�ξ (0)
m .� (12)

At this stage it can be noted that if the first order correction 
of the force operator F(1) is non-axisymmetric, then the cor­

rection to the eigenfunction is non-zero �ξ
(1)

n �= 0, but there 
is no change to the eigenvalue, i.e. ω(1)2

n = 0. On the other 
hand, if the first order correction of the force operator F(1) 
is axisymmetric, the opposite is expected. In addition, for a 
non-axisymmetric magnetic perturbation with a toroidal mode 
number N, a triplet mode emerges: {n − N, n, n + N}. This 
leads to a poloidal localisation of the 3D mode, provided the 
coupling is strong enough.

In order to calculate corrections to either the mode struc­
ture or the growth rate of peeling–ballooning modes due to 
the presence of 3D fields, second order corrections need to be 
considered. Repeating the above procedure for equation (6), 
we derive:

ω(2)2
n = −〈�ξ (0)

n |F(2)|�ξ (0)
n 〉 − 〈�ξ (0)

n |F(1)|�ξ (1)
n 〉.� (13)

The second order force operator F(2) can be dropped from 
the analysis as it provides corrections due to axisymmetric 
changes, and substituting equation  (12) into equation  (13), 
the second order correction of the eigenvalue is explicitly 
expressed as

ω(2)2
n =−

∑
m�=n

〈�ξ (0)
n |F(1)|�ξ (0)

m 〉〈�ξ (0)
m |F(1)|�ξ (0)

n 〉
(ω

(0)2
m − ω

(0)2
n )

= −
∑
m�=n

||F(1)
nm ||2

(ω
(0)2
m − ω

(0)2
n )

.

�

(14)

For a single toroidal mode number N, equation (12) and (14) 
result in solely in first neighbour coupling m = n ± N, leading 
to the triplet mode {n − N, n, n + N}. Note that since the 
numerator of equation (14) is always positive, for ω(0)2

m > ω
(0)2
n  

the contribution is stabilising, while for ω(0)2
m < ω

(0)2
n  the 

contribution is destabilising. Most importantly, if the spec­
trum contains extrema, the most unstable mode will become 
more unstable and the most stable mode becomes more stable.

The above method provides corrections to the mode struc­
ture and growth rate of unstable peeling–ballooning modes 
provided the total 3D equilibrium configuration and axisym­
metric peeling–ballooning eigenfunctions are known. The 
total 3D equilibrium can be obtained from any linear or non-
linear 3D equilibrium code, for example VMEC [25], or con­
sidering the linear plasma response as can be provided by 
axisymmetric stability codes like MARS [26], IPEC [27], etc. 
In this work, the low n version of the stability code ELITE 

[28, 29] is used. ELITE is an axisymmetric eigenvalue ideal 
MHD stability code that can efficiently calculate the PB insta­
bility from low to high n toroidal modes. In addition, because 
the code solves for a displacement functional that minimises 
the perturbed potential energy, it can also provide the linear 
plasma response in marginal stability, i.e. assuming negli­
gible inertial, provided an appropriate boundary condition is 
imposed at the plasma-vacuum interface. ELMs are a medium 
to high n ideal MHD phenomenon and no global ideal 3D 
MHD stability code has been used to resolve the effect of MPs 
on the stability of these modes, since the resolution required 
in the poloidal and toroidal direction is significant. The pertur­
bative approach allows the examination of individual triplets 
that simplify the numerical complexity of the problem. The 
aim of this work is to be able to routinely produce stability 
diagrams for shots with applied MPs as is done currently with 
ELITE for axisymmetric shots. This is the first stage of a pro­
ject to develop a tool which can optimise plasma response and 
ELM stability together.

2.2.  Linear perturbed equilibrium

We adopt an axisymmetric orthogonal flux coordinate system 
(ψ0, θ0,φ0), where the poloidal flux ψ0 serves as the normal to 
the axisymmetric flux surface coordinate and (θ0,φ0) define 
the axisymmetric orthogonal poloidal and toroidal angles. For 
this analysis only the perpendicular component �ξ⊥ of the dis­

placement is retained. The parallel displacement �ξ|| produces 
no force for an incompressible plasma and in general is found 
to be significantly smaller than the perpendicular displacement 
such that it does not contribute in the inertia of the system. For 
those reasons, the parallel displacement is not required and 
the displacement under consideration takes the form,

�ξ (0)
n = X(0)

n
∇ψ

(0)
0

|∇ψ
(0)
0 |2

+ U(0)
n

∇ψ
(0)
0 × �B(0)

0

B(0)2
0

.� (15)

The binormal component of the displacement, U, can be 
expressed in terms of the normal component X:

[
B(0)
φ0

B(0)2
0

(�B(0)
0 · ∇)− in]U(0)

n =[∂ψ0 + ∂ψ0 ln(J
(0)

0 B(0)2
0 )

+ 2µ0
∂ψ0 P(0)

0

B(0)
0

]X(0)
n .

�

(16)

For a given toroidal mode number n, ELITE solves an 
eigenvalue equation for the set of poloidal Fourier harmonics, 
Xnl(θ

∗
0 ), of the normal displacement. From these one can 

reconstruct the component of the displacement normal to flux 
surfaces:

X(0)
n =

∑
l

X(0)
nl exp [−i(lθ∗0 − nφ0)].� (17)

The straight field line angle θ∗0  can be computed form the local 

magnetic pitch ν(0)
0 , such that

Nucl. Fusion 59 (2019) 126028



M.S. Anastopoulos-Tzanis et al

4

θ∗0 =
1

q(0)

∫ θ0

0
ν
(0)
0 dθ0 =

1
q(0)

∫ θ0

0

�B(0)
0 · ∇φ

(0)
0

�B(0)
0 · ∇θ

(0)
0

dθ0.� (18)

The perturbation is inserted into ELITE as a fixed boundary 
condition at the plasma–vacuum interface. As long as the 
plasma surface is not a rational surface of the applied field, 
magnetic induction is used to link the covariant normal field 

B(1)
ψ0N  at the plasma boundary to the normal displacement X(1)

N  

as given by

X(1)
Nl = − iq(0)J (0)

ν(0)g(0)
ψψ

B(1)
ψ0 Nl

(l − Nq(0))
� (19)

where J (0) is the Jacobian, g(0)
ψψ = 1/|∇ψ

(0)
0 |2 is the covariant 

metric of the normal coordinate and (l, N) are the poloidal 
and toroidal mode numbers of the MP field. This method is 
an approximate as the correct boundary condition should be 
specified in terms of currents in the MP coils rather than a 
perturbed flux at the plasma boundary. Nevertheless, this 
approximation is sufficient to investigate the impact of the 3D 
fields on the plasma stability as discussed here. In order to cal­
culate the 3D equilibrium fields, the total perpendicular dis­

placement �ξ (1)
⊥N  is required. Since ELITE provides the radial 

profiles of the poloidal harmonics of the normal displace­
ment, the binormal displacement can be obtained considering 
equation (16).

Once the total perpendicular displacement �ξ (1)
⊥N  is computed, 

the magnetic induction �B(1)
N = ∇× (�ξ

(1)
⊥N × �B(0)

0 ) can be used 
to obtain the 3D components of the equilibrium magnetic 
field. Using a similar representation for the coordinate system 

in terms of the axisymmetric (∇ψ
(0)
0 ,∇ψ

(0)
0 × �B(0)

0 ,�B(0)
0 ), the 

3D components of the magnetic field become

�B(1)
N = B(1)

ψ0N
∇ψ

(0)
0

|∇ψ
(0)
0 |2

+ B(1)
s0N

∇ψ
(0)
0 × �B(0)

0

B(0)2
0

+ B(1)
b0N

�B(0)
0

B(0)2
0

� (20)

B(1)
ψ0N = (�B(0)

0 · ∇)X(1)
N� (21)

B(1)
s0N = (�B(0)

0 · ∇)U(1)
N − S(0)X(1)

N� (22)

B(1)
b0N = −B(0)2

0 (∇ · �ξ (1)
⊥N + 2�ξ (1)

⊥N · �κ(0)
0 ) + �ξ

(1)
⊥N · ∇P(0)

0� (23)

where S(0) = −(∇ψ
(0)
0 × �B(0)

0 /|∇ψ
(0)
0 |2) · ∇ × (∇ψ

(0)
0 × �B(0)

0 /

|∇ψ
(0)
0 |2) is the local magnetic shear and �κ(0)

0 = b̂(0)
0 · ∇b̂(0)

0  
is the magnetic curvature, with b̂(0)

0 = �B(0)
0 /B(0)

0 .

2.3.  Perturbative coupling coefficients

The calculation of the correction terms requires a knowledge 
of the perturbed force as resulting from the 3D equilibrium. 
Considering an ideal and incompressible plasma, a displace­
ment �ξn of the plasma will result in a force,

�F = �J × �δBn + �δJn × �B +∇(�ξn · ∇P)� (24)

where the quantities without index represent equilibrium 
quantities and (�ξn, �δBn, �δJn) represent the mode displace­
ment, magnetic field and current density respectively. In 
order to express �F  in an ordered way, the equilibrium can 
be split into an axisymmetric and non-axisymmetric part, 

i.e. �B = �B(0)
0 + �B(1)

N . As such, ordering of the force operator 
results in

�F(0) = �J (0)
0 × �δB

(0)
n + �δJ

(0)
n × �B(0)

0 +∇(�ξ (0)
n · ∇P(0)

0 )� (25)

�F(1) = �J (0)
0 × �δB

(1)
n±N +�J (1)

N × �δB
(0)
n + �δJ

(0)
n × �B(1)

N + �δJ
(1)
n±N

× �B(0)
0 +∇(�ξ (0)

n · ∇P(1)
N )

� (26)

�F(2) = �J (1)
N × �δB

(1)
n±N + �δJ

(1)
n±N × �B(1)

N� (27)

where �δB
(0)
n = ∇× (�ξ

(0)
n × �B(0)

0 ) and �δB
(1)
n±N = ∇×  

(�ξ
(0)

n × �B(1)
N ). The zeroth order force is due to the original 

axisymmetric equilibrium and the first order arises due to 
the non-axisymmetric equilibrium that provides first neigh­
bour coupling between the toroidal axisymmetric modes. 
The second order force leads to changes in the axisym­
metric growth rate but is dropped from the calculation, as it is 
assumed that �F(1) � �F(2).

The coupling coefficients F(1)
nm  can be calculated using 

the above 3D equilibrium quantities (�B(1)
N ,�J (1)

N ,∇P(1)
N ) and 

axisymmetric toroidal modes {�ξ (0)
n } obtained using ELITE. 

Considering equation (26) and taking the inner product with 
�ξ

(0)
n , after some algebraic manipulation the coupling coeffi­

cients F(1)
nm  are split into a volume and surface contribution, 

such as

F(1)
nm volume = −

∫
[�ξ (0)†

n · (�J (1)
N × �δB

(0)
m + �δJ

(0)
m × �B(1)

N )]

+ [∇× (�ξ (0)†
n ×�J (0)

0 )] · (�ξ (0)
m × �B(1)

N )

− �δJ
(0)†
n · (�ξ (0)

m × �B(1)
N ) dV

�
(28)

F(1)
nm surface =−

∫
(�ξ (0)†

n · n̂(0)
0 )[(�ξ (0)

m × �B(1)
N ) ·�J (0)

0

− �δB
(1)
m±N · �B(0)

0 + �ξ (0)
m · ∇P(1)

N ]

+ �δB
(0)†

n · [�B(1)
N (�ξ (0)

m · n̂(0)
0 )− �ξ (0)

m (�B(1)
N · n̂(0)

0 )] dS.
� (29)
In order to retain accurate numerics even for high toroidal and 
poloidal mode numbers a Fourier representation is retained as 
described in the above section.

Finally, screening currents that arise due to electron flow at 
rational surfaces block the corresponding resonant harmonics 
of the applied magnetic perturbation, and in the absence of 
resistivity lead to δ-function current layers. The calculation 
of those layers is subtle within a single fluid MHD model due 
to large Pfirsch–Schlüter currents but can be approximated 
from the jump of the normal derivative of the perturbed flux 
∆Nl = [(l − Nq(0))/q(0)][[∂ψXNl]] according to [30] and given 
by

Nucl. Fusion 59 (2019) 126028



M.S. Anastopoulos-Tzanis et al

5

Figure 1.  Normalised radial equilibrium plasma profiles for (a) the pressure, outer mid-plane current density and q-profile as well as (b) 
the normalised PB growth rate for the cbm18_dens6 equilibrium.

Figure 2.  Normal displacement �ξ (1)
N · n̂(0)

0  (m) and Fourier decomposition of the normal magnetic field �B(1)
N · n̂(0)

0  (T) for the (a) resonant 
and (b) non-resonant N  =  3 MP configuration at the plasma surface. The solid blue line represents the resonant location q(0)

a N = 8.13 of the 
plasma surface.
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µ0�J
(1)
||N screening = −

∑
l

l∆Nlδ(ψ
(0) − ψ

(0)
l )

n2
∮

B(0)2
0 /|∇ψ

(0)
0 |2dS

× exp [−i(lθ∗0 − Nφ0)]�B
(0)
0

�
(30)

where ψl corresponds to the poloidal flux at a rational surface. 
The corresponding coupling coefficients that arise from this 
contribution are given by

F(1)
nm screening = −

∫
�ξ (0)†

n · (�J (1)
||N screening × �δB

(0)
m ) dV .� (31)

3.  Application to RMPs

The calculation of the non-axisymmetric part of the equilib­
rium begins with an initial axisymmetric equilibrium that is 
stable to low n toroidal modes but unstable to intermediate to 
high n ballooning modes, to which MP fields are applied. We 
examine such an equilibrium for a large aspect ratio circular 

cross-section plasma of core pressure P(0)
0 = 22.8 (kPa), core 

magnetic field B(0)
0 = 1.8 (T), core parallel current density 

J(0)
||0 = 0.7 ( MAm−2) and edge safety factor q(0)

a = 2.71. The 

axisymmetric equilibrium plasma profiles and PB stability 
analysis are illustrated in figure 1.

3.1.  Linear plasma responce to MPs

Two cases are examined, one for a resonant magnetic field and 
one for a non-resonant magnetic field at the plasma–vacuum 
interface for a toroidal mode number N  =  3 MP field. Figure 2 

illustrates the normal displacement �ξ (1)
N · n̂(0)

0  that represents 
the boundary condition, and the poloidal mode structure of 

the corresponding normal magnetic field �B(1)
N · n̂(0)

0 , where 
n̂(0)

0 = ∇ψ
(0)
0 /|∇ψ

(0)
0 | is the unit vector normal to the magn­

etic flux surfaces of the axisymmetric reference equilibrium.
In the resonant case the plasma response is characterised 

by a strong peeling-like normal displacement (strong edge 

(4,3) (5,3) (6,3) (7,3)(8,3)

(a)

(4,3) (5,3) (6,3) (7,3)(8,3)

(b)

(c) (d)

Figure 3.  The radial dependence of the poloidal Fourier harmonics ξl for l = [0, 70] of the normal displacement �ξ (1)
N · n̂(0)

0  (m) as a function 

of ψ(0)
0  for (a) a resonant and (b) a non-resonant N  =  3 MP field. The harmonics that peak around resonant surfaces are the corresponding 

resonant harmonics. In addition, the reconstruction of the poloidal cross section of the mode for the resonant (c) and non-resonant (d) case 
respectively.

Nucl. Fusion 59 (2019) 126028



M.S. Anastopoulos-Tzanis et al

7

localisation), while in the non-resonant case a kink-ballooning 
response is observed (penetration further inside the plasma). 
The normal displacement is strongly peaked around rational 
surfaces in both cases, due to resonance with the corresponding 
poloidal harmonics, leading to large local response and potential 

break down of the linear response. Although, away from the 

rational surfaces (�ξ (1)
N · n̂(0)

0 )/R(0)
0 ∼ (�B(1)

N · n̂(0)
0 )/B(0)

0 , such 
that a linear response is valid in the majority of the plasma 
volume and in many cases is observed to match with a non-
linear plasma response model [31]. The mode structure and 

(a) (b)

(c) (d)

Figure 4.  The (a), (c) normal component of magnetic field �B(1)
N · n̂(0)

0  (T) and (b), (d) its poloidal mode structure B(1)
Nl  (T) in a straight 

field-line angle coordinate system as reconstructed from ELITE output data for (a), (b) a resonant and (c), (d) a non-resonant N  =  3 MP 
configuration. The straight white line indicates the position of the q-profile. 

(a) (b)

Figure 5.  The parallel current density J(1)
||N  (A m−2) as reconstructed from ELITE output data for the (a) resonant and (b) non-resonant 

N  =  3 MP configuration.
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the poloidal cross-section reconstruction of the normal dis­
placement are depicted in figure 3.

In this ideal MHD model, individual poloidal har­
monics of the normal magnetic field are screened at their 
corresponding rational surfaces so that island formation 
is prohibited, since field line bending is minimised, i.e. 

(�B(0)
0 · ∇) ∝ (l − Nq(0)) = 0. Nevertheless, this screening is 

imperfect due to poloidal coupling in toroidal geometry. In 
the non-resonant case, this screening effect is reduced since 
the poloidal harmonics of the vacuum MP field are already 
minimised at the rational surfaces. However, in the resonant 
case the harmonics of the vacuum MP field are maximised at 
the rational surfaces and strong screening is observed, leading 
to significant modification of the prior MP vacuum field. The 
normal field and its poloidal mode structure are illustrated in 
figure 4.

The calculation of the current density becomes straight 
forward once the magnetic field and metrics of the coordi­
nate system are known. Figure 5 illustrates the parallel current 

density J(1)
||N  created around rational surfaces, which has two 

contributions. One contribution corresponds to the existence 
of Pfirsch–Schlüter current density due to quasi-neutrality 
and non-vanishing pressure gradient. The second contrib­
ution arises due to screening currents at rational surfaces. The 
ideal plasma response results in large Pfirsch–Schlüter cur­
rent density for both MP configurations, which is the domi­
nant contribution to the current density. The final perturbed 
quantity is the non-axisymmetric pressure calculated using the 

linearised perturbation P(1)
N = −�ξ

(1)
⊥N · ∇P(0)

0 . For the toroidal 
mode coupling coefficients the pressure gradient ∇P(1)

N  is 
needed and obtained through the linearised force balance 
�J (1)

N × �B(0)
0 +�J (0)

0 × �B(1)
N = ∇P(1)

N . The non-axisymmetric 
pressure profile is shown in figure 6.

In order to verify that the computed non-axisymmetric 
equilibrium as resulted from ELITE is valid, BOUT++ 
[32] is used to model the linear plasma response imposing a 

fixed parallel magnetic potential A(1)
||N at the outer boundary 

of the computational domain. At first the A(1)
||N is computed 

using the original coordinate system [∇ψ
(0)
0 ,∇θ

(0)
0 ,∇φ

(0)
0 ] 

(a) (b)

Figure 6.  The plasma pressure P(1)
N  (Pa) as reconstructed from ELITE output data for the (a) resonant and (b) non-resonant N  =  3 MP 

configuration.

(a) (b)

Figure 7.  The (a) parallel current density J (1)
||N  (A m−2) and (b) plasma pressure P(1)

N  (Pa) as calculated from BOUT++ for the resonant 
N  =  3 MP configuration.
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and then transformed into a field aligned coordinate system 

[∇ψ
(0)
0 ,�B(0)

0 ,∇(φ
(0)
0 − q(0)θ

(0)∗
0 )] that BOUT++ uses, em-  

ploying the transformation A(1)
||N ≡ A(1)

||N exp [−i(q(0)Nθ
(0)∗
0 )]. 

The physics model under consideration is based on a reduced 
ideal MHD model appropriate for flute-like and incompress­
ible perturbations, where more information can be found in 
[32] and [33]. As it can be observed from figures 7 and 8, the 
non-axisymmetric equilibrium pressure and parallel current 
density match well with ELITE. Some discrepancy occurs 
close to rational surfaces, which is attributed to the non-uni­
form grid spacing along the normal direction that allows very 
fine resolution close to rational surfaces with ELITE, and as a 
result sharper features can be resolved.

3.2.  Impact of symmetry breaking on ideal MHD stability

Once the 3D equilibrium magnetic configuration and the 
axisymmetric peeling–ballooning eigenmodes are computed 
the corrections due to the MP can be obtained. Figure  9 
shows the calculation of the normalised growth rate of the 
system for the resonant and non-resonant case. In the reso­
nant case, it can be observed that the growth rate of unstable 
PB modes increases indicating further destabilisation and 
stronger coupling with the m  =  n  −  N toroidal modes. 
However, it should be noted that the increase is small at 
experimentally relevant MP field amplitudes. On the other 

hand, in the non-resonant case it can be seen that the growth 
rate of unstable PB modes reduces, indicating stronger cou­
pling with the m  =  n  +  N toroidal modes and stabilisation 
of PB modes from the applied MP field. However, in both 
cases the lower n modes become more stable. In addition, 
the impact in the non-resonant case is stronger, even though 
the plasma response is smaller. Such a feature indicates the 
importance of the poloidal spectrum of the applied MP field, 
and not only its absolute magnitude, to influence plasma 
stability. Finally, 3D MHD stability indicates the existence 
of distinct mode families, i.e. coupling of a whole range of 
toroidal modes. However, the notion of mode families in this 
perturbative analysis is misleading, since weak coupling is 
assumed between the toroidal modes where only first neigh­
bour coupling is retained. As a result the axisymmetric 
notion of distinct toroidal modes is preserved but replaced 
by the triplet mode {n − N, n, n + N}.

The reconstruction of the 3D normal displacement of the 
instability results in a concentration of the mode structure into 
distinct poloidal locations as can be observed from figure 10, 
due to the interplay of different primary poloidal harmonics 
from each toroidal eigenmode, provided that the coupling 
between these harmonics is strong enough. Specifically, the 
3D mode is maximised between locations where the pressure 
gradient is amplified from the plasma response and the normal 
displacement of the plasma response crosses zero.

(a) (b)

Figure 8.  Comparison of the plasma pressure poloidal mode structure in the straight field line angle coordinate system between (a) ELITE 
and (b) BOUT++ results.

(a) (b)

Figure 9.  Perturbative 3D PB normalised growth rates γ/ωA as a function of external B(1)
N /B(0)

0  and toroidal mode number n for (a) the 
resonant and (b) non-resonant N  =  3 MP configuration.
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4.  Conclusion

To summarise, applied MP fields that break the axisymmetric 
nature of tokamak plasmas, are widely used to control ELMs. 
The 3D plasma stability can be studied in a perturbative way, as 
long as the full 3D equilibrium and the axisymmetric toroidal 
modes are known. The stability code ELITE has been used 
to obtain both the axisymmetric toroidal eigenmodes required 
for the toroidal coupling and also the fixed boundary linear 
plasma response to the applied MP field. In addition, screening 
current density is captured but has not been observed to have a 
strong impact on MHD stability. On the contrary, the 3D equi­
librium profiles and the geometrically induced toroidal mode 
coupling had a significant impact on MHD modes above a 
certain phenomenological threshold for the amplitude of the 
applied field. We illustrate these results by perturbing an axi­
symmetric equilibrium, which is stable for n  <  8, and has an 
increasing growth rate for n � 8. The growth rate is enhanced 
by the magnetic perturbation in the case of a resonant applied 
field, due to stronger coupling with the lower n sideband. On 
the other hand, decrease of the linear growth rate is observed 
due to stronger coupling with the higher n sideband of the 
axisymmetric system in the non-resonant case. It should be 
noted that in axisymmetric equilibria, where extrema exist in 
the growth rate spectrum, a variety of trends can exist. In addi­
tion, the absolute amplitude of the response is not the only key 
factor for efficient toroidal coupling, and consequent impact 
on the PB growth rates, i.e. the poloidal spectrum of the per­
turbation is also very important.

The coupling of toroidal harmonics can significantly 
influence the ballooning instability even for a low MP field 

of B(1)
N /B(0)

0 ∼ 10−3. This then raises questions about the 
validity of our perturbative approach in which we couple 
toroidal eigenmodes, without taking into account the influ­
ence of the MP field on the axisymmetric mode structure of 
the triplet. In order to resolve such an issue, a more general 
variational approach can be followed using the individual 
poloidal and toroidal Fourier modes from the axisymmetric 
PB modes as a basis for trial functions, summing over both 
with coefficients to be determined by minimisation of the 
energy functional. This provides significantly more degrees 
of freedom, allowing the MP field to influence the ballooning 
structure of each constituent axisymmetric mode. Future work 
will focus on implementing such a variational formulation 
of the 3D stability and provide further insight regarding the 
physics mechanisms that allows an ELM-free operational 
state necessary for the advanced operation of ITER.
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