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Abstract
The poloidal harmonics of the toroidal normal modes of an unstable axisymmetric tokamak
plasma are employed as basis functions for the minimisation of the 3D energy functional. This
approach presents a natural extension of the perturbative method considered in Anastopoulos
Tzanis et al (2019 Nucl. Fusion 59 126028). This variational formulation is applied to the
stability of tokamak plasmas subject to external non-axisymmetric magnetic fields. A
comparison of the variational and perturbative methods shows that for D-shaped, high βN
plasmas, the coupling of normal modes becomes strong at experimentally relevant applied 3D
fields, leading to violation of the assumptions that justify a perturbative analysis. The variational
analysis employed here addresses strong coupling, minimising energy with respect to both
toroidal and poloidal Fourier coefficients. In general, it is observed that ballooning unstable
modes are further destabilised by the applied 3D fields and field-aligned localisation of the
perturbation takes place, as local ballooning theory suggests. For D-shaped high βN plasmas,
relevant to experimental cases, it is observed that the existence of intermediate n unstable
peeling-ballooning modes, where a maximum in the growth rate spectrum typically occurs,
leads to a destabilising synergistic coupling that strongly degrades the stability of the 3D system.

Keywords: RMP plasma response, RMP ELM control, 3D MHD stability, peeling-ballooning
modes

(Some figures may appear in colour only in the online journal)

1. Introduction

H-mode tokamak plasma operation, which has beneficial char-
acteristics for fusion power performance and will be the
baseline operational mode in International Thermonuclear
Experimental Reactor (ITER) [1], is intrinsically linked with
the destabilisation of ideal magneto-hydrodynamic (MHD)
instabilities, called the peeling-ballooning (PB) modes [2–4].
Those ideal MHD instabilities arise due to the establish-
ment of steep pressure gradient and large current density in
a narrow ‘pedestal’ region at the edge of the core plasma.
The PB modes are postulated to drive edge localised modes
(ELMs), which are field-aligned filamentary structures that
erupt from the pedestal plasma, leading to large particle and
heat transport. In large scale tokamak devices like ITER, these

transient phenomena, if uncontrolled, will exceed the melting
point of the divertor tiles [5, 6], shortening the life of the
divertor.

One promising method to control ELMs applies non-
axisymmetric magnetic perturbations (MPs) that lead to
ELM mitigation [7–10], i.e. increase of ELM frequency and
decrease of ELM energy loss, or complete ELM suppression
[11–14], i.e. no ELMs. The key physics component that allows
and defines the existence of those two operational states is
still an active area of research. However, recent experimental
and theoretical analysis, points towards a role for the degrada-
tion of the local and global stability of the tokamak plasma.
In particular, the imposed 3D fields lead to local changes
of plasma equilibrium parameters, that play a crucial role
in determining the stability of the plasma. This leads to the
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destabilisation of high n4 ideal ballooning modes, where n is
the toroidal mode number of the perturbation, which is loc-
alised about the most unstable magnetic field lines [15–17].
Such a feature is computationally and experimentally observed
in ASDEXUpgrade (AUG) discharges, when ELMmitigation
occurs [18].

Additional numerical investigation of the PB stability of
ELM mitigated discharges in AUG, showed that those dis-
charges should be stable against global PB modes [19, 20].
However, this analysis is based on stability codes for axisym-
metric equilibria, where coupling of the toroidal normalmodes
is prohibited, i.e. the toroidal mode number remains a ‘good’
quantum number. To improve our understanding it is import-
ant to consider the local and global stability of the 3D plasma
equilibrium. An additional indication of the degradation of
the global MHD stability boundary in such cases is related
to experimental observations, where ELM suppression occurs
below a pressure contour [14], of lower pressure compared to
the stability boundary of the axisymmetric case. As such, the
difference between ELM mitigation and suppression is postu-
lated in reference[20] and reference[21] to be a competition
between density pump-out that reduces the plasma pressure,
i.e. global PB modes become more stable, and the degradation
of the global idealMHD stability boundary due to the presence
of the 3D MPs.

The axisymmetric equilibrium geometry of the tokamak
plasma provides a set of eigenmodes with discrete toroidal
Fourier modes that can be studied individually. Therefore,
the numerical complexity of the global plasma stability is
reduced and is routinely and efficiently calculated with codes
like ELITE [22] or MISHKA [23]. However, if a non-
axisymmetric equilibrium is established, different Fourier har-
monics of a particular toroidal mode number are coupled
together satisfying the condition n± n′ = λN, where n, n′ are
the toroidal mode numbers of the perturbation and N is the
primary toroidal mode number of the non-axisymmetric equi-
librium, with λ an integer. For a fixed n, a set of toroidal modes
n′ are coupled to form a ‘supermode’ [24] of the nth family.
This feature significantly increases the numerical complex-
ity for the stability of the system. This is especially true for
edge localised perturbations, where large poloidal and toroidal
mode numbers must be considered, and then this feature sig-
nificantly limits the radial resolution. As a result, the exam-
ination of unstable intermediate to high n perturbations that
drive the onset of ELMs becomes truly challenging in non-
axisymmetric geometry.

In order to minimise the numerical complexity of the
non-axisymmetric system, a perturbation theory was intro-
duced [25–27], considering an applied 3D magnetic field, BN ,
which is several orders of magnitude lower than the con-
fining axisymmetric magnetic field B0; typically BN/B0 ∼
10−5–10−3. The perturbative approach assumes weak coup-
ling, restricting consideration to λ= [0, ± 1], and leading

4 We will typically refer to low n∼ 1–5 which are global modes spanning
the full minor radius, intermediate n∼ 5–20 which are radially localised and
tap into the kink drive, and high n which are highly localised pressure driven
ballooning modes with negligible kink drive.

to the formation of triplets of toroidal Fourier harmonics
n−N, n, n+N. To leading order the spatial structure of the
three toroidal normal modes that couple is provided by the
axisymmetric system. Such a perturbative approach requires
weak coupling of toroidal normal modes, which is observed
to be violated for strongly shaped, high βN plasmas. In addi-
tion, the perturbative method does not allow freedom for the
3D field to adjust the relative size of the poloidal harmon-
ics that couple to form each toroidal normal mode of the
axisymmetric system. The above restrictions can be over-
come by considering a variational formulation of the non-
axisymmetric energy functional that uses the poloidal Fourier
harmonics of the toroidal normal modes of the axisymmetric
system as basis functions. The energy can be minimised with
respect to the poloidal coupling coefficients that are introduced
to vary the relative amplitude of these poloidal and toroidal
harmonics.

Such an approach can be physically motivated as fol-
lows. In an axisymmetric tokamak plasma, intermediate to
high toroidal mode number, n, PB modes involve a single
toroidal Fourier harmonic, but couple a number of poloidal
Fourier harmonics. For the ballooning component, each pol-
oidal harmonic, m, has the same shape, and each is centred
on its corresponding rational surface where m= nq (q being
the safety factor). The relative amplitude of these Fourier
modes is determined by to the radial variation of the equi-
librium. With the application of a 3D MP there is an addi-
tional coupling of the toroidal Fourier harmonics and, in addi-
tion, this can influence the relative amplitude of the poloidal
Fourier harmonics. However, the radial shape of each pol-
oidal harmonic is not expected to be modified by the applied
MP. Guided by this physics understanding, we employ a
new variational approach where the trial function is the set
of axisymmetric poloidal Fourier harmonics (each with a
radial dependence corresponding to that for the axisymmet-
ric plasma) and treat the coefficients that scale each as a set
of variational parameters, obtained by minimising the energy
functional.

The paper is set as follows. Section 2 presents our new
variational formulation of the non-axisymmetric energy func-
tional, which is composed of an axisymmetric and non-
axisymmetric component, that leads to a generalised eigen-
value problem to be solved numerically. Section 3 presents
results from the application of this technique to applied MPs
for different plasma βN and cross-section shapes, in an attempt
to understand the underlying difference between the stabil-
ity of an axisymmetric and non-axisymmetric system. Finally,
section 4 discusses the obtained results and their relation to
experimental observations.

2. Variational 3D MHD Stability

In this section, the non-axisymmetric tokamak plasma sta-
bility theory is described using a new variational approach.
The general numerical framework for a perturbative approach,
i.e. calculation of non-axisymmetric plasma response and sta-
bility, based on the axisymmetric stability code ELITE, was
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presented in reference [27]. Here, we extend that formal-
ism to develop a new variational approach to stability that
is valid for a wide range of 3D magnetic fields. ELITE
provides a particularly efficient and accurate approach to cal-
culate the radial dependence of each axisymmetric Fourier
mode, providing our set of basis functions for the variational
method.

The ideal MHD stability of tokamak plasmas under the
application of external non-axisymmetric MPs of single tor-
oidal mode numberN is considered. The stability problem res-
ults in a generalised eigenvalue problem of the force operator
F and the stability of the system will depend on the eigen-
values of this operator. The variational approach employs a
set of orthogonal basis functions for the representation of a
non-zero plasma displacement δξ ̸= 0 and provides a method
that determines an appropriate superposition of these basis
functions that minimises the potential δW and kinetic δK
energy change of the non-axisymmetric equilibrium state. This
provides the most unstable mode that can be produced from
the particular basis set. Considering that the applied 3D fields
are much smaller than the axisymmetric equilibrium fields,
the poloidal Fourier coefficients derived from the axisymmet-
ric equilibrium are adopted as appropriate trial functions for
energy minimisation. The radial dependence of the poloidal
Fourier harmonics is taken to be the same as for the axisym-
metric system, each weighted by a ‘coupling coefficient’ to
adjust their relative size. Coupling of different toroidal Fourier
harmonics is also accommodated in our approach. The minim-
isation of the energy functional determines the coupling coef-
ficients.

2.1. Potential and Kinetic Energy Terms

The coordinate system is based on the axisymmetric normal
n̂=∇ψ0/|∇ψ0|, binormal t̂= (B0 ×∇ψ0)/(B0|∇ψ0|) and
parallel b̂= B0/B0 components. Here ψ0 labels the flux sur-
faces and B0 is the magnetic field of the axisymmetric equilib-
rium, i.e. before application of the 3D MP. The parallel com-
ponent of the displacement δξ∥ contributes only to the kinetic
energy δK and fluid compression ∇· δξ. Therefore, at mar-
ginal stability minimisation of the potential energy δW with
respect to δξ∥ requires∇· δξ = 0. For most magnetic config-
urations, the minimisation of fluid compression is achieved by
setting an appropriate form for the parallel displacement δξ∥
[28]. This is the so-called incompressible limit, and neglects
the contribution of δξ∥ to inertia, leading to an overestimate
for the growth rate. Although, its contribution can in principle
be accounted for by scaling the growth rate by 1/

√
1+ 2q2

[29]. We shall adopt this incompressible model, and as such,
only the perpendicular dynamics are considered. The displace-
ment is then reduced to the two components perpendicular to
b̂, which we denote X and U,

δξ → δξ⊥ =
X

|∇ψ0|
n̂+U

|∇ψ0|
B0

t̂ (1a)

Minimisation of the axisymmetric magnetic compression,
relates the two components,

[
f

B2
0

(B0 ·∇)− ∂ϕ]U= [∂ψ + ∂ψ(lnJ0B
2
0)+

2µ0∂ψp0
B2
0

]
(1b)

where f (ψ)=RB0t, B0t is the toroidal magnetic field, J0 is the
Jacobian of the orthogonal coordinate system and p0 is the
plasma pressure. Therefore, the displacement δξ becomes a
function of X.

Considering an ideal and incompressible limit for the sta-
bility, a displacement δξ (i.e. the PBmode) of the plasma equi-
librium (i.e. axisymmetric + non-axisymmetric) will result in
a force,

F= J× δB+ δJ×B+∇(δξ ·∇p) (2)

where (δξ, δB, δJ) represent the perturbed displacement,
magnetic field and current density associated with the instabil-
ity. In order to expressF in an ordered way, the plasma equilib-
rium can be split into an axisymmetric and non-axisymmetric
part, i.e. B= B0 +BN, J= J0 + JN and p= p0 + pN. The per-
turbed quantities, that arise from the displacement δξ, are lin-
ear with respect to equilibrium quantities and similarly,

δB= δBn+
∑
±

δBn±N (3a)

δJ= δJn+
∑
±

δJn±N (3b)

δp= δpn+
∑
±
δpn±N (3c)

where the subscript indicates the toroidal mode number of the
perturbation.

Substituting equation 3 into the linearised force naturally
results in ordered axisymmetric and non-axisymmetric contri-
butions. Specifically, writing F= F0 +F1 +F2, we have:

F0 = J0 × δBn+ δJn×B0 +∇(δξn ·∇p0) (4)

F1 =
∑
±

[J0 × δBn±N+ J±N× δBn+ δJn×B±N+ δJn±N

×B0 +∇(δξn ·∇p±N)] (5)

F2 =
∑
±
J±N× δBn±N+ δJn±N×B±N (6)

where δBn =∇× (δξn×B0) and δBn±N =∇× (δξn×
B±N). The zeroth order force, F0, is due to the original
axisymmetric equilibrium and the first order, F1, arises due to
the non-axisymmetric equilibrium that provides the coupling
between the toroidal axisymmetric modes. The second order
force, F2, is dropped from the calculation, as it is assumed
that F2 ≪ F1. This is justified by the fact that F2 ∝ (BN/B0)

2,
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while F1 ∝ (BN/B0) and BN ≪ B0. Considering equation 5
and taking the inner product with the complex conjugate per-
turbed displacement δξ∗n , after some algebraic manipulation,
we derive the following contribution to the perturbed energy.
The kinetic energy,

δK(δξ∗n ,δξn) =
1
2

ˆ
δξ∗n · δξn J0dψdθ

∗dϕ (7)

the part of the potential energy associated with perturbations
about the axisymmetric part of the equilibrium,

δW(δξ∗n ,δξn) =
1
2

ˆ {
|δBn⊥|2 −

J0 ·B0

B2
(δξ∗n⊥ ×B0) · δBn⊥

− 2(δξn⊥ ·∇p0)(δξ∗n⊥ ·κ0)
}
J0dψdθ

∗dϕ

(8)
the part of the potential energy associated with perturbations
about the 3D part of the equilibrium,

δY(δξ∗n ,δξn′) =−1
2

ˆ {
[δξ∗n · (JN× δBn′ + δJn′ ×BN)]

+ [∇× (δξ∗n × J0)] · (δξn′ ×BN)

− δJ∗n · (δξn′ ×BN)
}
J0dψdθ

∗dϕ

(9)
and a surface contribution due to the 3D part of the equilib-
rium,

δS(δξ∗n ,δξn′) =−1
2

ˆ
{(δξ∗n ·n)[(δξn′ ×BN) · J0

− δBn′±N ·B0] + δB∗
n · [BN(δξn′ ·n)

− δξn′(BN ·n)]+ (δξ∗n ·n)(δξn′ ·∇pN)}
J0dθ

∗dϕ
(10)

where n ̸= n′ are the toroidal mode numbers of the displace-
ment δξ and θ

∗
is straight field-line poloidal angle.

2.2. Variational Formulation of Energy Functional

The ideal MHD system defines a Hermitian stability problem,
so that δWn,n′ = δWn′,n, where δWn,n′ = δW(δξ∗n ,δξn′). Thus,
it can efficiently be solved by expanding in a set of discrete
normal modes. Considering the stability of the axisymmetric
system and non-degenerate eigenvalues ω2

n′ ̸= ω2
n for n

′ ̸= n,

(ω2
n′ −ω2

n)(δKn′,n− δKn,n′) = (δWn′,n− δWn,n′) = 0 (11)

and leads to δKn,n′ = δn,n′ , where δKn,n′ = δK(δξ∗n ,δξn′). As
a result, the axisymmetric normal modes δξ(0)n are orthogonal
and can be used to define a basis set, through which any per-
turbation can be expressed as a superposition of these modes.
Let us now define δξ(0)n to be the displacement eigenfunc-
tion associated with the axisymmetric system. This displace-
ment δξ(0)n can be expressed as a sum of terms each linear in
the radial displacement Xn(ψ,θ∗) [28]. Expanding in poloidal
Fourier modes, Xn(ψ,θ∗) =

∑
mXn,m(ψ)exp[−imθ∗], where

the radially dependent function Xn,m(ψ) can be provided by
ELITE. Note that for any constant dn, δξ(dnXn) = dnδξ(Xn).

Furthermore, the linearised force is linear with respect to
the displacement, and therefore Xn; thus F(dnXn) = dnF(Xn)
and similarly δW(d∗n′X

∗
n′ ,dnXn) = d∗n′dnδW(X∗

n′ ,Xn). The same
applies to δK, δY and δS.

In order to create orthogonal normal modes, the toroidal
dependence of the displacement is expressed through Fourier
harmonics. As such, a displacement can be expressed as a lin-
ear superposition of axisymmetric normal modes δξn,

δξn(ψ,θ
∗,ϕ) =

∑
n′

dn′δξ
(0)
n′ (ψ,θ

∗)ein
′ϕ

=
∑
n′

dn′δξ
(0)
n′ (Xn′)e

in′ϕ (12)

In the case where the plasma equilibrium is axisymmetric,
the energy functional results in a toroidally decoupled sys-
tem and dn′ = δn,n′ for a specific n. This simplifies the prob-
lem and allows the ψ-dependence and relative size of all
Fourier coefficients Xn,m(ψ) (see above) to be calculated in a
code like ELITE. If non-axisymmetric fields are present, tor-
oidal modes become coupled through the non-axisymmetric
potential energy δY and δS and the resulting energy principle
becomes,∑

n

|dn|2ω2
nδKn,n =

∑
n

|dn|2δWn,n

+
∑
n,n′

d∗ndn′δYn,n′δn,n′±N

+
∑
n,n′

d∗ndn′δSn,n′δn,n′±N

(13)

where δYn,n′ = δY(δξ∗n ,δξn′), δSn,n′ = δS(δξ∗n ,δξn′) and N
is the toroidal mode number associated with 3D equilibrium
quantities in the energy terms. This approach will later be
referred to as ‘Variational Toroidal Mode Coupling’.

If the δYn,n′ and δSn,n′ coefficients are small, weak coup-
ling occurs and it is expected that the above variational method
is equivalent to the perturbative method presented in refer-
ence [27]. An advantage of the variational method is that it
is not restricted to weak coupling as larger values of δYn,n′
and δSn,n′ can accommodate strong or broadband coupling of
toroidal modes. However, in both approaches the trial func-
tion forces the mix of poloidal Fourier harmonics to equal that
of the axisymmetric normal modes δξ(0)n (ψ,θ∗,ϕ). As a res-
ult, any influence of the applied 3D field on the coupling of
the individual poloidal harmonics cannot be captured by this
approach and the structure of the non-axisymmetric normal
mode is likely overly constrained.

In order to resolve this issue, we adopt a trial function that
expands in both poloidal and toroidal Fourier harmonics of the
axisymmetric system δξ(0)n,m(ψ),

δξn(ψ,θ
∗,ϕ) =

∑
n′,m′

cn′,m′δξ
(0)
n′,m′(ψ)e−(im′θ∗−n′ϕ)

=
∑
n′,m′

cn′,m′δξ
(0)
n′,m′(Xn′,m′)e−i(m′θ∗−n′ϕ) (14)

4
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Figure 1. The flux dependence of the equilibrium pressure p [10 kPa] and parallel current density J|| [MA m−2] as well as the q-profile for
the (a) circular (cbm18) and (c) D-shaped (dbm9) equilibria. The growth rate spectrum of the unstable peeling-ballooning modes as a
function of toroidal mode number n for the (b) circular (cbm18) and (d) D-shaped (dbm9) axisymmetric equilibria.

where Xn′,m′(ψ) are the Fourier coefficients derived from the
axisymmetric system. For the axisymmetric system, such a
representation results in a system of normalmodes, where each
has a single toroidal Fourier mode, but is a superposition of
many poloidal Fourier modes due to poloidal inhomogeneity
of the axisymmetric equilibrium. Thus, for the axisymmetric
system cn′,m′ = 1. It is straight forward to derive an energy
principle for the non-axisymmetric system, which becomes∑

n,m,m′,m′′

c∗n,mcn,m′ω2
nδK

m,m′

n,n δm,m
′+m′′

=

∑
n,m,m′,m′′

c∗n,mcn,m′δWm,m′

n,n δm,m
′+m′′

+
∑

n,n′,m,m′,m′′

c∗n,mcn′,m′δYm,m
′

n,n′ δ
m,m′+m′′

n,n′±N

+
∑

n,n′,m,m′,m′′

c∗n,mcn′,m′δSm,m
′

n,n′ δ
m,m′+m′′

n,n′±N

(15)

where δKm,m
′

n,n = δK(δξ(0)n,m,δξ
(0)
n,m′), δWm,m′′

n,n = δW(δξ(0)n,m,

δξ
(0)
n,m′), δY

m,m′

n,n′ = δY(δξ(0)n,m,δξ
(0)
n′,m′), δS

m,m′

n,n′ = δS(δξ(0)n,m,

δξ
(0)
n′,m′), m′′ is the poloidal mode number and N the tor-

oidal mode number associated with equilibrium quantities
in the energy terms. Taking the coefficients cn′,m′ as vari-
ational parameters, and minimising the energy with respect
to c∗n,m, provides a set of equations for the numerical coeffi-
cient cn′,m′ . These equations depend on the matrix elements

δKm,m
′

n,n , δWm,m′

n,n , δYm,m
′

n,n′ and δSm,m
′

n,n′ , which can all be derived
from axisymmetric ELITE calculations for a given toroidal
mode number (n or n± N). This approachwill later be referred
to as ‘Variational Poloidal & Toroidal Mode Coupling’.

It can be observed from equation (15) that this minim-
isation will adjust the coupling of poloidal harmonics for
each toroidal normal mode and this can be significant when
strong coupling occurs providing greater flexibility in the
trial function to optimise the poloidal mode structure. In this

5
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Figure 2. Linear, ideal MHD plasma response to an applied N= 3 even MP. The radial dependence of the straight field line poloidal
harmonics of the normal displacement functional ξN ·∇ψ [m] for the (a) circular (cbm18_dens6) and (c) D-shaped (dbm9) equilibrium. The
reconstruction in the poloidal cross-section of the normal magnetic field BN · n̂ [T] for the (b) circular (cbm18_dens6) and (d) D-shaped
(dbm9) equilibrium.

case, the structure of each toroidal normal mode in the pres-
ence of a 3D MP can differ significantly from the axisym-
metric modes. In principle, such a feature can allow the
3D MP to adjust the coupling between external kink/peeling
modes and core ballooning modes, as the corresponding pol-
oidal harmonics can change independently. In addition, in a
tokamak plasma, elongation and triangularity lead to coup-
ling of m,m± 1,m± 2 poloidal modes, whereas in a non-
axisymmetric plasma additional shaping effects can signific-
antly increase the number of coupled poloidal harmonics,
indicating the importance of allowing freedom in their coup-
ling. Together with our physics understanding of balloon-
ing modes in an axisymmetric plasma, i.e. that the Xn,m(ψ)
are all very similar for a given n for all m, only the relat-
ive coupling adjusts; this gives us confidence that our trial
function will accurately capture the effect of MPs on the PB
stability.

3. Application to External MPs

3.1. Linear Plasma Response to Applied MPs

The ELITE code has been extended, and used at marginal sta-
bility to obtain the linear, ideal MHD plasma response for a
given non-axisymmetric magnetic flux perturbation of toroidal
mode number,N, at the plasma-vacuum interface, as described
in reference [27]. Due to the low N applied field the low-n ver-
sion of ELITE [30] is used. Two plasma shapes are considered,
one for a large aspect ratio circular plasma cross-section based
on the circular cross-section (cbm18) equilibrium configura-
tions and a second for a D-shaped (dbm9) equilibrium con-
figuration created using the TOQ fixed boundary equilibrium
code [31]. In both cases, an even N= 3 MP field is applied.

Considering first the circular (cbm18_dens6, cbm18_dens7
and cbm18_dens8) equilibrium configurations, the

6
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Figure 3. The coupling coefficients of a primary n= 21 mode for the circular cbm18_dens6 equilibrium of a nonuplet
{n,n±N,n± 2N,n± 3N,n± 4N} mode, (a) as a function of the toroidal mode number and (b) applied field strength BN/B0 using the
‘variational toroidal coupling’ method. (c) Illustrates a comparison between the perturbative and ‘variational toroidal coupling’ methods for
a triplet n, n± N and nonuplet {n,n±N,n± 2N,n± 3N,n± 4N} mode.

inverse aspect ratio ε= 0.3, βN = [1.06, 1.31, 1.54] and
qa= [2.97, 3.01, 3.04], respectively. Those axisymmetric
plasma equilibria are ballooning unstable for n> [7, 5, 3]
for the three cases respectively. For the D-shaped (dbm9)
equilibrium configuration, the inverse aspect ratio is ε= 0.3,
βN = 2.83 and qa= 2.65. This axisymmetric plasma equilib-
rium is unstable to low to intermediate n kink-ballooning
modes, while the standard ballooning modes occur for
high n> 30− 40. In addition, to examine the impact of
the applied MP on shaped high βN plasmas where the
kink modes are suppressed (due to shaping or a conduct-
ing wall), for the D-shaped (dbm9) equilibrium an ideal
conducting wall is introduced close to the plasma surface.
The ideal wall is introduced by coupling ELITE with the
VACUUM code [32]. The ideal wall has the same shape
as the plasma boundary at a distance (aw− a)/a= 2%,
where aw and a are the wall and plasma minor radius
respectively.

The axisymmetric equilibrium profiles of the circular
(cbm18) and D-shaped (dbm9) cases, as well as the associated

growth rate spectrum of the unstable PB modes, are shown
in figure 1. The linear plasma response for an even (up/down
symmetric) N= 3 MP field is shown in figure 2. Both
responses are characterised by an external kink/peeling
response.

3.2. Comparison of Perturbative and Variational Toroidal
Mode Coupling

In this section, we employ the variational approachwhich fixes
the poloidal spectrum (equal to the axisymmetric spectrum),
and use variational theory to determine the coupling of dif-
ferent n ballooning modes. The matrix elements Fnn′ for the
perturbative approach described in reference [27] and the vari-
ational approach described in this work, come from a sim-
ilar set of equations and the only difference occurs in norm-
alisation of the individual basis set. A straightforward relation
exists between the two methods, if the relative poloidal coup-
ling of the axisymmetric normal modes remains unchanged for
a given n, such that
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Figure 4. The coupling coefficients of a primary n= 18 mode for the D-shaped dbm9 equilibrium of a septuplet {n,n±N,n± 2N,n± 3N}
mode, (a) as a function of the toroidal mode number and (b) applied field strength BN/B0 using the variational method. (c) Illustrates a
comparison between the perturbative and variational methods for a triplet n, n± N and septuplet {n,n±N,n± 2N,n± 3N} mode.

F(1)
nn′ =

δYn,n′±N+ δSn,n′±N√
δKn,nδKn′,n′

(16)

As a result, a direct comparison of the two approaches
becomes possible. In addition, we can define a quantity, called
the coupling coefficient Vnn′ = ||dn||= ||F(1)

nn′/(ω
2
0n−ω2

0n′)||,
that measures the contribution of sideband harmonics n± N
to the displacement.

3.2.1. Circular cbm18 Case. Initially the circular
cbm18_dens6 equilibrium with the lowest βN = 1.06 is con-
sidered, and only nearest neighbour coupling is taken into
account, i.e. coupling of n with n± N. For applied field
strength BN/B0 < 10−3, where weak coupling occurs, the
‘variational toroidal coupling’ method results in the same
outcome as the perturbative method. Figure 3(c) illustrates a
comparison for the growth rate between the two approaches
considering a triplet mode with primary toroidal mode num-
ber n= 21. As can be observed up to BN/B0 ∼ 10−3 the
two approaches agree very well, but as the field strength

is increased a disagreement starts to build up and the two
approaches diverge. The growth rate of the triplet in the vari-
ational case is observed to increase slower with the applied
field since the coupling to the destabilising lower n modes
becomes weaker in this case. In addition, in the perturbative
analysis, the assumption of weak toroidal coupling means
that the coupling coefficient of the primary mode n is unity,
i.e. ||dn||= 1. In the variational approach this assumption
is relaxed and ||dn|| ̸= 1, such that the perturbative method
results in unphysical behaviour as BN/B0 increases.

Furthermore, the variational method allows the coupling
of multiple toroidal normal modes. Since perturbation the-
ory deviates at BN/B0 ∼ 10−3, it is expected that strong
coupling occurs requiring more toroidal normal modes to be
retained. As can be observed from figure 3, with increasing
applied field, multi-mode coupling takes place and in this
case for BN/B0 ∼ 2.25 · 10−3 even 3rd neighbouring coup-
ling is required, and further destabilisation is observed due
to the inclusion of additional degrees of freedom. The n= 21
mode couples strongly to lower n neighbours, as indicated

8
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Figure 5. (a) The growth rate of the 3D triplet modes as a function of primary toroidal mode number n and applied field strength BN/B0 for
a resonant N = 3 MP. (b) Comparison between the different perturbative and variational methods for a n= 21 triplet mode as a function of
BN/B0. (c) The 3D reconstruction of the structure of a n= 12 mode for the axisymmetric equilibrium geometry. (d) The 3D reconstruction
of the structure of a triplet n= 12 mode for the non-axisymmetric equilibrium geometry, which is scaled by a factor of 15 such that the
non-axisymmetric equilibrium displacement is visible. The black line indicates the (c) axisymmetric and (d) scaled non-axisymmetric
equilibrium plasma boundary for BN/B0 = 1.5 · 10−3.

Figure 6. A comparison between the axisymmetric modes and the
3D triplet mode for the relative amplitude of the constituent poloidal
harmonics for each toroidal normal mode of the n= 12 triplet for
N= 3 and BN/B0 = 1.5 · 10−3.

from the perturbative method considering only first neighbour
coupling, with the 3rd neighbour contributing ~ 10%. In addi-
tion, the stronger coupling to lower n modes leads to further
destabilisation, as can be observed from figure 3. In addition, it

can be observed that with increasing field strength BN/B0 the
weak coupling assumption ||dn||= 1 is indeed violated and for
that reason the perturbative approach becomes inaccurate.

3.2.2. D-shaped dbm9 Case. Finally, the non-
axisymmetric stability of the D-shaped dbm9 equilibrium
is studied. In this case a n= 18 primary toroidal mode is
examined with multi-mode toroidal coupling of seven tor-
oidal normal modes. As can be observed from figure 4, a
similar outcome in comparison to the cbm18_dens6 equilib-
rium is drawn. However, in this case an order of magnitude
lower applied field results in similar relative coupling due to
stronger plasma response, which is possibly a consequence of
the larger βN . Therefore, the stronger coupling leads to a break
down of the perturbative assumptions at much lower applied
field strength BN/B0. In addition, the stronger coupling affects
the variational result in the case of a triplet mode, as multiple
toroidal normal modes need to be coupled for convergence to
be achieved.

3.3. Variational Poloidal & Toroidal Mode Coupling

We now turn into the full variational approach, which allows
the poloidal Fourier spectrum to adjust in addition to coupling

9
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Figure 7. (a) The normalised growth rate and (b) the change in the normalised growth rate of the n= 15 triplet as a function of the applied
field strength BN/B0 for different βN for the cbm18 set of axisymmetric circular cross-section equilibria. (c) The non-axisymmetric
equilibrium normal displacement δξN · n̂ as a function of normalised ψ for applied field strength BN/B0 = 10−4.

Table 1. Comparison of growth rates and contributions to δW in terms of destabilising ballooning and kink/peeling terms and stabilising
field line bending between the ELITE result and the reconstructed result for the cbm18_dens6 equilibrium case.

Growth Rate Balloon Kink Bending

n = 12
ELITE 0.109 6 −2.858× 10−02 −3.838× 10−03 2.905× 10−02

Reconstruct 0.113 4 −2.907× 10−02 −3.615× 10−03 2.974× 10−02

n = 15
ELITE 0.155 0 −4.325× 10−02 −4.648× 10−03 4.095× 10−02

Reconstruct 0.158 2 −4.404× 10−02 −4.451× 10−03 4.204× 10−02

n = 18
ELITE 0.187 6 −7.308× 10−02 −6.514× 10−03 6.536× 10−02

Reconstruct 0.186 9 −7.448× 10−02 −6.298× 10−03 6.731× 10−02

of toroidal Fourier modes. Neither the perturbative method nor
the ‘variational toroidal coupling’ method discussed in section
3.2, allows changes in the coupling of the poloidal harmon-
ics in response to the 3D MP. Since the applied field is com-
posed of a wide range of poloidal harmonics, and strong coup-
ling takes place at experimentally relevant applied fields, it is

expected that the poloidal coupling within each toroidal nor-
mal mode will be affected. To test this hypothesis, we allow
the coupling between the poloidal harmonics to change in
this more general variational approach. However, in this case
the axisymmetric potential and kinetic energy matrices need
to be reconstructed. The reconstruction of those matrices is

10



Nucl. Fusion 60 (2020) 106003 M.S. Anastopoulos Tzanis et al

Figure 8. (a) The dependence of the growth rate of a n= 15 triplet on the phase∆ϕ of the imposed MP for the βN = 1.54 cbm18_dens8
axisymmetric circular cross-section equilibrium case. (b) The non-axisymmetric equilibrium normal displacement ξN · n̂ [cm] as a function
of normalised ψ for applied field strength BN/B0 = 10−4. The radial dependence of the straight field-line angle mode structure of
BN · n̂ 10−4 [T] for (c) the even and (d) odd MP field.

performed in two ways. In the first way, those matrices are
input variables and taken from ELITE, provided the plasma
is up-down symmetric or the low n version is not used. In
the second way, those matrices are calculated considering
the axisymmetric δW and δK for the displacement ELITE
provides and so the low nmodes or up-down asymmetric plas-
mas configurations can be considered.

To begin with, the circular cbm18_dens6 equilibrium is
used in order to verify that the calculation of the axisym-
metric and non-axiisymmetric matrices is correct. As can be
observed from table 1, where a comparison of the growth
rate and the axisymmetric destabilising/stabilising energy
contributions are listed, the reconstruction agrees with the
ELITE result. At this stage, where the axisymmetric energies
can be computed accurately, the impact of the applied field
on the coupling of poloidal and toroidal harmonics can be
examined.

3.3.1. Circular cbm18 Case. The circular cbm18_dens6 is
considered for the even N= 3 MP used previously. Figure 5

illustrates the growth rate of 3D PB modes as a function of
primary toroidal mode number n and applied field strength
BN/B0. Initially, only first neighbour toroidal coupling is con-
sidered, i.e. triplet modes n−N, n, n+N, retaining all the con-
stituent poloidal harmonics and allowing freedom in the pol-
oidal coupling. From figures 5(a) and (b) it becomes appar-
ent that the freedom in the poloidal coupling results in strong
destabilisation of the ballooning mode, and for an applied field
of BN/B0 ∼ 2 · 10−3 the growth rate increased by ~ 60% in
comparison to the previous methods where only a difference
of ~ 5% occurred. The applied field interacts strongly with
specific poloidal harmonics in such a way that field line bend-
ing is minimised and the driving terms are maximised. How-
ever, from figure 5 it can be concluded that the resulting mode
structure is in good qualitative agreement with the perturb-
ative method as calculated in reference [27]. Direct compar-
ison of the coupling coefficients is not possible, as the toroidal
coefficients are replaced by a set of toroidal/poloidal coeffi-
cients. Nevertheless, the difference in the poloidal spectrum
of the axisymmetric normal mode compared to the 3D mode
can be studied. Figure 6 illustrates the relative amplitude of the
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Figure 9. Growth rate of the 3D triplet modes as a function of the primary toroidal mode number n and applied field strength BN/B0 for the
dbm9 equilibrium case and a N= 3 resonant applied MP for (a) the case with no wall and (b) the case with an ideal conducting wall at
aw/a= 2%.

Figure 10. The 3D reconstruction of the n= 9 triplet mode (a) without and (b) with an ideal conducting wall. A comparison between the
axisymmetric modes and the 3D triplet mode for the relative amplitude of the constituent poloidal harmonics for each toroidal normal mode
(c) without and (d) with an ideal conducting wall; BN/B0 = 10−3 for an even N= 3 MP.

poloidal coupling coefficients for each axisymmetric toroidal
normal mode compared to the poloidal coupling coefficients
of the 3D mode. The (independent) toroidal modes of the
axisymmetric system have been normalised to the same max-
imum amplitude as the 3D calculation. Each toroidal mode

has an increasing poloidal mode number in the left direction.
As can be observed, the poloidal coupling is affected by the
3D field; in this case we find that the 3D field pushes the bal-
looning mode outwards in the radial direction, since the pol-
oidal harmonics that resonate with edge of the plasma and the
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Figure 11. (a) and (b) The 3D reconstruction of the n= 18 triplet mode and (c) and (d) the comparison between the volume average
amplitude of the axisymmetric modes and the 3D triplet mode for the constituent poloidal harmonics for each toroidal normal mode;
BN/B0 = 10−4 (left) and BN/B0 = 10−3 (right) for an even N= 3 MP.

vacuum region are amplified. In addition, the variation with
respect to poloidal coupling leads to a different relative coup-
ling in comparison to the perturbative method since the higher
sideband n′ = n+N is observed to be larger than the lower
sideband n′ = n−N. Within the perturbative method stabil-
isation would be expected for stronger coupling to the higher
sideband, but the observed destabilisation in the variational
approach is attributed to the difference in the poloidal coup-
ling. Specifically, the greater coupling to vacuummodes could
drive the external kink mode more.

Furthermore, the impact of MPs is examined with respect
to βN and ∆ϕ variations, where ∆ϕ is the phase differ-
ence between the upper and lower 3D coils that sets the
parity of the applied MP field. The circular cbm18_dens6,
cbm18_dens7 and cbm18_dens8 equilibria are considered for
βN = [1.06, 1.31, 1.54] with qa= [2.97, 3.01, 3.04]. Figure 7
illustrates the dependence on βN for a n= 15 triplet mode
considering the even N= 3 MP. As can be observed, further
destabilisation due to the applied MP is observed in all three
cases. In addition, it can be observed that for a certain βN the
growth rate is almost linear with BN/B0. The stronger destabil-
isation occurs for the higher βN = 1.54 case. For a fixed nor-
mal magnetic field at the plasma boundary a larger plasma
response, i.e. normal flux surface displacement, is expected

with increasing βN . However, this will largely depend on the
poloidal spectrum of the applied field. The maximum response
within the pedestal region occurs for the βN = 1.54 case and
significant destabilisation is observed with increasing BN/B0.
The lowest response within the pedestal is observed in the
βN = 1.31 (although the largest at the plasma boundary) and it
can be observed that the fractional change in growth rate with
increasing BN/B0 is smaller in comparison to βN = 1.54 and
similar to βN = 1.06. Therefore, since the relation is not linear
with βN it can be concluded that the poloidal mode structure of
the appliedMP itself is a crucial factor for the plasma stability.

Figure 8 illustrates the dependence of the n= 15 triplet for
the βN = 1.54 case on the applied MP phase, where ∆ϕ= 0
is the even MP and ∆ϕ=π is the odd MP, with BN/B0 =
5 · 10−4. As can be observed, a small variation of the growth
rate occurs with ∆ϕ, with the odd MP configuration result-
ing in the most unstable case. From figure 8 it is clear that
although the odd MP has a smaller edge displacement in com-
parison to the even MP indicating a less resonant response
(presumably a peeling physics effect), the overall displace-
ment in the pedestal region is larger. The additional non-
axisymmetric displacement of the flux surfaces seems to fur-
ther destabilise the ballooning mode, as kink/peeling modes
are stable for this equilibrium. The even and odd configuration
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Figure 12. (a) The 3D reconstruction of the n= 18 septuplet mode
and (b) the comparison between the volume average amplitude of
the axisymmetric modes and the 3D modes for the constituent
poloidal harmonics for each toroidal normal mode; BN/B0 = 10−3

(right) for an even N= 3 MP.

of the non-axisymmetric MP had very different poloidal spec-
tra and this indicates once again the importance of the pol-
oidal spectrum in the penetration of its constituent poloidal
harmonics.

3.3.2. D-shaped dbm9 Case. The D-shaped dbm9 equi-
librium case has also been examined as it represents a more
experimentally relevant case, and again the resonantN= 3MP
field is considered. Figure 9 illustrates the growth rate of the
triplets as a function of primary toroidal mode number n and
applied field strength BN/B0. For the case without an ideal
conducting wall, the growth rate of triplets around the peak
of the growth rate spectrum of the axisymmetric system (n ~
8− 10), which mainly correspond to unstable kink modes, are
significantly destabilised by a factor of ~ 2.8. The rest of the

triplets are also observed to be further destabilised but at lower
levels and this provides an indication that kink modes become
more unstable with the applied MP field. This observation is
similar to the perturbative method, where strong destabilisa-
tion is expected at modes around the peak of the growth rate
spectrum, due to destabilising coupling from both lower and
higher sidebands. Figure 9 illustrates the growth rate when an
ideal conducting wall surrounds the plasma. In this case the
wall is placed close to the plasma surface (aw− a)/a= 2% to
fully minimise the kink component of the instability. As can be
observed, the strong destabilisation of the kinkmodes is absent
(as they are stable in the first place) and strong destabilisation
of ballooning modes is observed especially for n ~ 20.

A comparison between the mode structure of the the n= 9
triplet in the case with and without an ideal conducting wall
shows the absence of the kink instability. Figure 10 illustrates
the cases with/without an ideal conducting wall and demon-
strates that the case without a wall has an external kink/PB
structure where the displacement from the instability peaks at
the very edge of the plasma surface. It can also be observed
that the mode structure of the constituent toroidal harmonics is
similar to their axisymmetric structure. On the other hand, the
case with an ideal conducting wall has a ballooning like struc-
ture where the displacement peaks within the pedestal. In this
case, it can be observed that the mode structure of the constitu-
ent toroidal modes is significantly different from their axisym-
metric structure, and the mode moves radially inwards. An
additional interesting feature that occurs in the case without
an ideal conducting wall, is the complete reorganisation of
modes away from the kink peak of the growth rate spectrum.
Figure 11 illustrates the n= 18 triplet for BN/B0 ∼ 10−4 and
BN/B0 ∼ 10−3. The individual toroidal modes are reorgan-
ised with the external kink/peeling poloidal harmonics being
minimised and the 3D mode moves radially inwards at suffi-
ciently high BN/B0 ∼ 10−3. This feature is not observed for
kink modes close to the peak of the growth rate spectrum n ~
9, which retain their kink like structure, in the case without an
ideal conducting wall (see figure 10).

Finally, especially for the D-shaped dbm9 equilibrium case
where strong toroidal coupling is observed even for small
BN/B0, the impact of multi-mode coupling of the toroidal nor-
mal modes is examined, including freedom in the relative pol-
oidal coupling. The n= 18 mode is considered as the primary
harmonic of a triplet n−N, n, n+N, a quintuplet {n− 2N,n−
N,n,n+N,n+ 2N} and a septuplet {n− 3N,n− 2N,n−
N,n,n+N,n+ 2N,n+ 3N} 3D mode for BN/B0 ∼ 10−3. As
can be observed from figure 12, strong coupling occurs
between the individual toroidal normal modes even consid-
ering a septuplet mode. The relative shape of the poloidal
spectrum of the individual normal modes is not significantly
altered by considering more normal modes in the coupling,
but their relative amplitude changes. This results in a signi-
ficantly more poloidally localised 3D mode minimising field
line bending, such that the growth rate of the mode increases
further, from γ/ωA= 0.55 for the triplet to γ/ωA= 0.62 for the
septuplet.
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4. Conclusion

The linear stability of non-axisymmetric tokamak plasmas has
been examined within a new numerical framework based on
a variational approach that builds on the eigenvalue axisym-
metric stability code ELITE. The framework first computes
the linear plasma response, i.e. the new 3D equilibrium com-
ponent as a result of the application of an external MP field,
and the axisymmetric PB eigenfunctions. Considering a vari-
ational formulation of the energy principle, all this informa-
tion is used to construct the linear non-axisymmetric stability
of global ideal MHD modes.

The coupling of toroidal harmonics by MPs can signific-
antly influence the ballooning instability for D-shaped high
βN plasmas, for experimentally relevant MP field strength
of BN/B0 ∼ 10−5–10−3. This then raises questions about the
use of perturbation theory to couple toroidal normal modes
for realistic 3D field amplitudes. In addition, the perturbative
approach does not take into account the influence of the MP
field on the relative coupling in the poloidal mode structure of
the triplet. In order to resolve this issue, a new more general
variational approach, has been developed in this paper. This
uses the individual poloidal and toroidal Fourier modes from
the normal modes of the axisymmetric system, as a basis for
trial functions with coefficients to be determined by minim-
isation of the energy functional. This is shown to provide sig-
nificantly more degrees of freedom, allowing the MP field to
influence the PB structure of each constituent toroidal Fourier
mode used in the basis.

The variational method revealed the impact of the MP field
in the poloidal coupling of the individual axisymmetric normal
modes. The change in the poloidal coupling of the basis func-
tions resulted in further destabilisation of ballooning modes.
This is especially apparent in cases where strong toroidal
coupling is observed; for example in the D-shaped dbm9 equi-
librium case, the PB mode was completely reorganised and
it was observed that the peeling component of the instabil-
ity, i.e. poloidal harmonics that resonate in the vacuum region,
were suppressed for sufficiently high applied field BN/B0 and
toroidal mode number n. However, for kink unstable modes
close to the peak of the growth rate spectrum, the external
kink-like structure was retained, and those modes were highly
destabilised by the 3D field. Such a feature could be relevant
for experimental high βN plasmas, where unstable internal or
external kink modes are expected for low to intermediate n
modes. The significant increase in the growth rate of the most
unstable kink mode potentially indicates a faster ELM crash
of similar mode number n; a feature which is observed exper-
imentally in ELM mitigation [33]. In addition, since plasma
shaping and wall position are important for the stabilisation
of low to intermediate n kink modes, ELM suppression could
be a manifestation of the absence of a strong kink peak, that
results in more unstable high n ballooning modes that can be
suppressed by diamagnetic effects, leading to softer transport
properties and relaxation of the pedestal, i.e. no ELM crash.
In any case, global plasma stability seems to be degraded by
the applied MP field and could provide an insight in experi-
mental observation that suggests unstable plasmas in regions

where the axisymmetric J|| − p′ diagram indicates stable oper-
ation [20]. Therefore, differences between mitigation and sup-
pression could be due to the competition between the stabil-
ising relaxation of the pedestal due to density pump out and
the potential degradation of the stability boundary due to the
3D effects.

Finally, due to strong coupling of toroidal modes, the notion
of a triplet modemight be insufficient andmore toroidalmodes
may be needed for an accurate representation of the 3D mode.
The variational approach allows the inclusion of a whole set
of toroidal normal modes. Such a case was examined retaining
only toroidal coupling for the circular cbm18_dens6 equilib-
rium case and significant contribution from the ± 2N and ±
3N sidebands was observed leading to further destabilisation.
A similar analysis was performed for the D-shaped dbm9 equi-
librium case, but allowing freedom in the poloidal coupling of
the toroidal basis functions, and a similar outcome could be
drawn. The inclusion of more toroidal modes resulted in fur-
ther destabilisation and stronger poloidal localisation of the
PB mode. The strong poloidal and field-line localisation in 3D
geometry is a feature that is observed experimentally in AUG
in cases of ELM mitigation [18], and was successfully repro-
duced by theory based on a local ballooning analysis [17]. In
those cases the 3D ballooning mode was localised around spe-
cific field lines, that coincided with locations where the plasma
response crosses zero, i.e. ξN~ 0. A numerical investigation
in MAST using MPs, revealed similar behaviour for the 3D
local ballooning mode [16]. It was shown that for those field
lines, changes in local torsion lead to further destabilisation.
The perturbative and variational methods for experimentally
relevant BN/B0 provided similar results for the localisation of
the mode for the circular cbm18 and D-shaped dbm9 cases.
Although, the 3D mode seemed to be shifted between the
region of ξN~ 0 and ξN ∼ ξmin. This could indicate the con-
tribution of the global and kink effects in the mode structure.
However, due to the complex interplay of local shear/torsion,
curvature and pressure gradient, a more rigorous examination
is needed with respect to the non-axisymmetric energy terms
in order to understand the localisation of the 3D mode. In our
current formulation, it is not clear whether the different terms
of the non-axisymmetric potential energy are positive (stabil-
ising) or negative (destabilising). In general, further destabil-
isation is observed in all cases examined. Future work will
focus on further understanding the non-axisymmetric structure
and field-line localisation of the 3D global mode.
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