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Abstract
A novel approach using Bayesian inference has been implemented to interpret the filamentary
dynamics measured by a Langmuir probe fixed to a reciprocating assembly on MAST. The
model describes the system as a superposition of time-displaced filaments and a fixed
background component. Each filament is parameterised in terms of a characteristic rise and fall
time and maximum amplitude centred on local maxima in the measured data time-series. A
distinctive feature of the approach is that no minimum threshold is set for the existence of
filaments. It is observed that whereas large amplitude filaments are well characterised in terms
of rise times, smaller amplitude filaments are often unconstrained by the data and are limited by
the details of the prior. Based on these findings, a new definition for the plasma filaments is
proposed based on the uncertainty in the filament rise times. The remaining filaments together
with the constant background component forms a new time-dependent signal referred to as the
computed background fluctuation signal. The characteristics of these signals (for the plasma
filaments and for the background fluctuations) are reported in terms of their spatial variation as
the probe moves through the SOL and into the core plasma.

Keywords: plasma physics, bayesian inference, edge plasma, tokamak physics, plasma filaments

(Some figures may appear in colour only in the online journal)

1. Introduction

The edge region of the plasma presents a unique set of chal-
lenges. It is often referred to as the plasma exhaust in recog-
nition of the important role it fulfills to remove the fusion
products from the tokamak reactor. From the earliest exper-
iments using Langmuir probes, it was evident that this region
experiences significant fluctuations. Early evidence of the
‘filamentation’ of D-alpha light on TFTR was reported by
Zweben in 1989 [1]. Improvements in diagnostic capabilit-
ies led to a rekindled interest in imaging of the scrape-off-
layer (SOL). These revealed a dynamic behaviour of plasma
‘blobs’ being ejected from the well-confined plasma inside
the magnetic separatrix [2]. The structures were generally
observed to be be aligned with field structures and became
known as filaments [3]. Understanding the filament dynam-
ics in the edge region is complicated by many factors: the
magnetic topology transitions from a geometry of closed field

lines across a separatrix to an open field line geometry; for
divertor configurations, there is a field null (usually referred
to as an X-point) on the separatrix; there are strong gradients
of plasma density, temperature and electric fields; particularly
in the colder plasma regions the role of the neutral particles
is critical; and finally, a significant component of the heat and
particle flux is carried by three-dimensional structures.

In early work, the emphasis was to characterise observed
edge fluctuations in terms of standard statistical techniques [4–
6]. Analytical tools used included cross- and auto- correla-
tion functions, moments of the distributions of the signal amp-
litudes, and power spectra. Later experimental interpretation
in terms of filaments usually relied on defining a threshold
criterion. A common choice is to specify the threshold with
respect to a local peak in the signal amplitude relative to
the background level [7] . Supplementing this procedure [8]
uses an additional exclusion zone to prevent filament over-
lap. Another approach is to define a selection criterion as the
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Figure 1. The left figure shows the outer shield of the MAST Gunderstrup probe indicating locations of the pins for 8 Langmuir probes
arranged in a ring. The right figure indicates the labelling of the Langmuir probes and relative to the magnetic field vector.

existence of filaments within a bounded amplitude interval [9,
10]. Based on the threshold detection, studies of filamentary
dynamics have been carried out using 1-D time-series data
from Langmuir probes (see for example [7]), blob tracking
with 2D Langmuir array data [11] and the identification of
filaments in 3D turbulence simulations [12, 13]. A different
approach proposed by [14] regards the measured signal as an
additive sum of contributions from filaments, each with an
identical pulse shape plus a Gaussian noise component. Con-
ditional averaging sampling (CAS) [15] regards the edge tur-
bulence fluctuations as a superposition of coherent structures
with additive zero-mean random and time independent com-
ponents and has been widely used for analysis of 1-D time-
traces of Langmuir probe data [7, 8, 16–25]. CAS has also been
applied to the analysis of 2D blob structures obtained from
Langmuir probe data [10] and 3D structures computed by tur-
bulence codes [13]. It provides compelling evidence to support
the view that the ion saturation current signal is dominated by
large amplitude bursts [24] and has been used as an interme-
diate metric to compare with theoretical models [21]. Exper-
imental evidence [26–28] supports theoretical developments
[29] regarding the coherent turbulence as similar structures
with a uniform random temporal distribution consistent with
a Poisson process; this work has been subsequently extended
to include an attenuation source draining the filaments due to
parallel generic losses [30, 31]. There is evidence of variation
in the wave shape of filaments; usually the leading edge rises
faster than the trailing edge [16, 27], but there are examples
where the waveforms are symmetric [21]. Nevertheless, the
application of CAS has a number of disadvantages. One of
these is that whilst seeking to determine the averaged filament
characteristics, it discards the statistical variability between fil-
aments. Another problem is that the filaments used in CAS
are generally obtained via a threshold identification proced-
ure based on a criterion which can be difficult to justify. In
addition, the overlap of filaments can reduce the asymmetry
between leading and trailing edges [27].

This paper addresses the issues relating to the use of
CAS and threshold detection by implementing a data-driven
model describing filamentary dynamics using the principles
of Bayesian Inference. Similar to [27, 31], the edge turbu-
lence data is regarded as a superposition of filaments, with
an asymmetric pulse shape. However, in this case, there is no
restriction enforcing uniformwaveforms for the filaments, and
the minimum amplitude threshold providing a condition for

Figure 2. Contours of equilibrium poloidal flux with the location of
the reciprocating Gunderstrup probe indicated. The position of the
magnetic axis is indicated in the figure.

existence of filaments is relaxed. As the main purpose of this
work is to demonstrate the applicability of Bayesian Inference
to the study of filamentary dynamics, analysis concentrates on
the time-trace data from a single Langmuir probe; it is anticip-
ated that future work will extend the analysis to include more
data signals. Section 2 describes the experimental setup. Sec-
tion 3 describes a Bayesianmodel of the filamentary dynamics.
Section 4 describes results from single Bayesian inference cal-
culations corresponding to fixed positions and section 5 con-
siders radial dependencies as the probe move through the SOL
and into the edge of the plasma core ( henceforth this region
will be referred to simply as the plasma core).

2. Experimental description

Results are presented from the Mega Ampere Spherical Toka-
mak (MAST) [32] designed to study low aspect ratio ( R/a ~
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Figure 3. Time series of the ion saturation current fluctuations of Langmuir probe 5 during a single reciprocation of the Gundestrup probe
assembly. The position of the probe (in red) is take from the equilibrium reconstruction and should be regarded as indicative.

0.85 m/0.65 m = 1.3), highly elongated (κ = 2) plasma con-
figurations with plasma current, Ip≤ 1.5MA and toroidal field
at the tokamak geometric axis, Bt≤ 0.52 T). The analysis uses
experimental data from the connected double null discharge
21 712, during an ohmic L-mode phase (the same dataset is
used by [21]). The core plasma conditions has a plasma cur-
rent of Ip = 400 kA, a confining magnetic field of BT = 0.4 T
at R= 0.66 m (the resulting safety factor is q95≈ 6.2). During
the flat-top phase, the core electron temperature is Te≈ 650 eV
and the line-averaged density n≈ 1.7× 1019m−3. The meas-
urement data analysed were obtained with a Gundestrup probe
[33] containing 8 separate Langmuir probes equally positioned
at the end of a cylindrical assembly (see figure 1). The probe
was installed on the outboard mid-plane and reciprocated a
distance of 10 cm across the scrape-off-layer to just within
the separatrix and back during the flat-top phase, acquiring
data at 500 kHz (see figure 2). Each Langmuir probe was
biased to -200 V in order to measure the ion saturation cur-
rent, Isat ∼ n

√
Te. Results presented are uncalibrated, denoted

in graphs as au (i.e. arbitrary units), because we would need
the collection angle of the probe to get a physically meaningful
quantity. Figure 3 plots the time dependence of the signal from
Langmuir probe 5. The radial position of the probe relative to
the separatrix position is taken from the magnetic equilibrium
reconstruction, and should be regarded as indicative. The ana-
lysis carried out in this paper is based on the data from Lang-
muir probe 5 in the time range 0.2< t[s]<0.3 when the probe
assembly is travelling through the SOL and into the the closed
field line region in the edge of the plasma core. The horizontal
position of the probe relative to the separatrix for specific time
ranges referred to later in this paper are shown in table 1.

3. Bayesian model

In order to study the characteristics of the fluctuations at differ-
ent radial positions, the time-series plot shown in figure 3 was
partitioned into 263 subsets each with nd = 200 data points of
duration 0.4 ms in the time range 0.1948< t[s]< 0.3 during

Table 1. Horizontal distance from separatrix of the Gunderstrup
probe at specific time intervals (negative values are when the probe
is within the separatrix). The values are taken from the magnetic
equilibrium reconstruction and should be regarded as indicative.

time range [ms] distance from separatrix[cm]

240< t< 241 2.51± 0.03
242.8< t< 243.2 2.308± 0.01
280< t< 280.4 −2.89± 0.02
280< t< 281 2.90± 0.03
195< t< 210 4.9± 0.3
218< t< 228 3.8± 0.3
249< t< 255 0.2± 1.1
255< t< 261 −1.1± 0.2
261< t< 263 −1.4± 0.1
263< t< 265 −1.7± 0.1
265< t< 267 −1.8± 0.2
267< t< 269 −1.9± 0.2
269< t< 273 −2.2± 0.3
273< t< 280 −2.7± 0.2

when the probe is moving through the SOL and into the plasma
core. Figure 4 shows details of the signal when the probe is
(i) in the far SOL and (ii) in the plasma core. By inspection,
the signal can be described as the summation of a fluctuat-
ing component and a constant component. Both the constant
and fluctuating components are larger in the plasma core than
in the far SOL. The average signals in the SOL and plasma
core are 0.059 and 0.601 respectively; the maximum fluctu-
ation amplitudes in the SOL and plasma core are 0.263 and
1.03 respectively. From these we determine that the ratio peak
fluctuation amplitude:background increases from a value of
1.7 to 4.5 between the plasma core and the far SOL.

The time-dependent behaviour shown in figure 4 suggests
a model that assumes the signal is composed of a superposed
set of time-displaced filaments above a constant background.
For simplicity, each filament is assumed to have a positive
amplitude; previous work has demonstrated that superposition

3
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Figure 4. Ion saturation current data from Langmuir probe 5: (a) top probe is in outer SOL; (b) bottom probe is in core plasma. The average
signal value in each case is denoted by a green dashed line. The toffset refers to the position in the time-series from which the data is taken
(see figure 3). For indicative radial positions see table 1.

of closely-spaced filaments can give the impression of fila-
ments with negative amplitude [29]. Each filament is represen-
ted with two exponential functions for the leading and trailing
edges. Denoting the rise time, fall time, the time of maximum
filament amplitude and, the amplitude of the ith filament as
τ
(i)
1 , τ (i)2 , t(i)0 , and A(i) respectively, the computed signal is the
superposition of the background and N filaments:

f(t) =B+
N∑
i=1

A(i)

(
exp

[
−
t(i)0 − t

τ
(i)
1

]
H(t(i)0 − t)

+ exp

[
−
t− t(i)0
τ
(i)
2

]
H(t− t(i)0 )

)
(1)

whereH is the Heaviside function in whichH(x)= 0 for x< 0
and H(x)= 1 for x≥ 0. In each data subset, the set of times
{t(i)0 } for the N filaments correspond to local maxima in the
data, which for the ith point centred at themth data value has the
property for three consecutive data points {dm−1,dm,dm+1}
that (dm−1 − dm)(dm+1 − dm)> 0. This choice effectively sets
a minimum threshold at the data digitisation level. During the
course of carrying out the current work, different strategies for
defining filaments were chosen. In the end it was decided to
use the above definition as the one guaranteed to identify the
most number of filaments. If there wasmore information avail-
able from other diagnostics, it would be possible to be more
discriminating. However, as will be described in the following

section, when using this definition it is possible to apply a fil-
ter based on the statistics of a Bayesian inference calculation
to discriminate between two different classes of of filaments.

The complete model has 3 N+1 free parameters and the
task is to solve the system consistent with the nd data points,D.
This is a non-linear inverse problem, which is not guaranteed
to fulfill Hadamard’s postulates [34] of well-posedness (These
are the following conditions: (i) a solution exists; (ii) the solu-
tion is unique and (iii) the solution’s behaviour changes con-
tinuously with the initial conditions.). Determining a prac-
tical solution usually involves invoking a regularisation, how-
ever, issues relating to uniqueness and algorithmic stability
can remain [35]. An alternative approach adopted in this article
is to apply Bayesian inference. The deterministic problem is
replaced by a statistical problem for which multiple solutions
are anticipated. The Bayesian approach has been shown to be
well-posed for many classes of inverse problem [35–37]. The
method has an additional attraction in the context of data ana-
lysis because the model is defined explicitly together with any
approximations, which would conventionally be contained in
regularisations.

The method of Bayesian inference arises from the Bayes’
rule:

P(H|D) =
P(D|H)P(H)

P(D)
(2)

where D and H are multivariate distributions for the data and
the model parameters respectively; P(H|D) and P(D|H) are
conditional probabilities, meaning the ‘probability of H given

4
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Figure 5. Experimental data and computed values using MAP parameter values in the SOL. The green diamonds are the locations of the
filaments identified according to the criterion defined in section 3. For indicative radial positions see table 1.

D’ and the ‘probability of D given H’ respectively. The equa-
tion is a manifestation of the joint distribution P(D,H) and
shows that the reciprocal conditional probabilities P(D|H)
and P(H|D) (known as the likelihood and posterior respect-
ively) are related via a scaling of the probabilities P(D) and
P(H) (known as the evidence and the prior). Equation (2) is
key to obtaining inverse solutions as it enables the computa-
tion of model parameters from a set of observations. Exclud-
ing the denominator term P(D) which is independent of the
model parameters and consequently unimportant unless rank-
ing models (commonly referred to as model selection [38, 39])
yields the proportionality condition:

P(H|D) ∝ P(D|H)P(H) (3)

The left hand term P(H|D) is the posterior distribution. In this
paper we take the proportionality constant to be unity, i.e.

P(H|D) = P(D|H)P(H) (4)

The maximum of P(H|D) is known as the the Maximum a
Posteriori (MAP) value; in the case where the distribution
P(D|H) and P(H) are multivariate Normal distributions, the
MAP solution coincides with the least-squares solution [35].
This is straightforward to demonstrate for a uniform prior and
a normally distributed likelihood with a diagonal covariance
matrix. In this case

lnP(H|D) = lnP(D|H) =−nd ln
√
2πσ

−
nd∑
k=1

(dk− f(tk))2

2σ2
(5)

where σ is the model error, taken to be constant for all datum
samples. It is evident that the MAP solution occurs when the
second term in the equation is minimized; this is the well
known ''least-squares'' condition.

The conventional interpretation of σ is to regard it as the
error or uncertainty in the data. However, in a Bayesian context
the situation is more subtle. The level of agreement between
model and data values is determined by the quality of the
model. This has two important consequences. Firstly, an inad-
equate agreement between model and data motivates model
enhancements. Secondly, the value of σ must reflect the abil-
ity of the model to fit the data and as this is not known prior
to computing the inference, σ should be included as an addi-
tional degree of freedom, increasing the total number of free
parameters to 3 N+2. A further advantage of including σ as
a free parameter is that the value of σ inferred automatically
ensures that the model will not overfit the data.

The Bayesian inference problem has been implemented in
the Minerva Bayesian analysis framework [40]. Details are
described in the appendix. The model calculations carried out
in this paper compute inferences using measurement data par-
titioned into 0.4 ms segments. The number of filaments (N)
identified at the outset of each simulation is typically around
30.

4. Filamentary characteristics

Figure 5 plots the measured and computed signals using the
MAP parameters of a single Bayesian Inference calculation
for the data subset 0.2428< t[s]< 0.2432 (at this time the
probe is in the SOL). The MAP parameters were computed
using the method of Hooke and Jeeves as explained in the
appendix. The number of filaments identified is 32 (this is the
number of local maxima in accordancewith the criterion stated
in section 3) and there is good agreement between measured
and computed signals. For this time range, the background
B= 0, and the model error is σ= 6× 10−3 corresponding to
~ 10% of the average signal ~ 0.06 (see figure 4). Over all
data subsets, the MAP background signal is observed to be

5
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Figure 6. The distribution P(B|D) assembled with 104 MCMC samples for the data subset 0.2428< t[s]< 0.2432 (probe is in SOL
region).

Figure 7. The distribution P(σ|D) assembled with 104 MCMC samples for the data subset 0.2428< t[s]< 0.2432 (probe is in the SOL
region).

6
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Figure 8. Variance of sampled values of log10τ1 for each filament in the data subset 0.2428< t[s]< 0.2432 plotted against its respective
MAP amplitude (the probe is in the SOL). The results are for 32 separate filaments; the arrow indicates results of two filaments that are
indistinguishable on the plot. The shaded regions indicate (i) filaments with large amplitude and small variance (violet) (ii) filaments with
small amplitude and large variance (green).

Figure 9. Samples from the distribution P(log10 τ
(i)
1 |D) for each of 32 filament in the data subset 0.2428< t[s]< 0.2432 plotted against its

respective MAP amplitude (the probe is in the SOL). The parameter δ log10 τ1 denotes the range of sampled values of log10 τ1. Results of
some filaments are overlapping.

zero for 96% of cases. (This includes data subsets where the
probe has crossed into the core plasma region.) Figure 6 plots
the probability distribution P(B|D). The figure confirms that
whereas the MAP-value of the background (i.e. the value of B

at the peak of the distribution), is zero there is nevertheless a
small non-zero expectation value. A similar result is observed
for other data subsets. The probability distribution P(σ|D)
is shown in Figure 7 and is symmetric with the majority of

7
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Figure 10. Samples from the distribution P(log10 τ
(i)
2 |D) for each of 32 filament in the data subset 0.2428< t[s]< 0.2432 plotted against

the respective MAP amplitude (the probe is in the SOL). Results of some filaments are overlapping.

Figure 11. Samples from the distribution P(A(i)|D) for each of 32 filament in the data subset 0.2428< t[s]< 0.2432 plotted against the
respective MAP amplitude (the probe is in the SOL). Results of some filaments are overlapping.

samples maintaining a value of σ ~ 10% of the average signal
level.

To explore more fully the characteristics of the pos-
terior, MCMC sampling (see the appendix for details) was
undertaken. Figure 8 shows the variance for each of 32 fil-
aments identified in the data subset 0.2428< t[s]< 0.2432
plotted versus its respective MAP amplitude. An interesting
result is that the filaments cluster mainly into two classes:
(i) large amplitude filaments with a small variance and (ii)
small amplitude filaments with a large variance. Figure 9 plots
details of the sampled distributions. The colour indicates the
value of the posterior distribution of each sample with sample
points having larger posterior probability values plotted over

any with lower values. On the premise that the sample density
is related to the value of P(H|D) the colour can be regarded
as an indicator of the density of sample points, however, as
the samples are from a marginalised posterior distribution,
the precise interpretation will depend on the details of the
posterior distribution. Black vertical bars indicate the limits
of the sample ranges and help to distinguish between fila-
ments in the cases where the MAP amplitudes are similar.
The figure has two separate plots in accordance with the sep-
arate classes identified in figure 8: filaments for which the
range of sampled log10 τ1 values (denoted as δ log10 τ1) sat-
isfies δ log10 τ1<3 appear in the upper panel whilst those in
which δ log10 τ1≥3 are in the lower panel. The figure reveals

8
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Figure 12. Interpretation in terms of plasma filaments and a fluctuating background component for the data subset 0.2428< t[s]< 0.2432
(the probe is in the SOL). Figures from top to bottom: (i) the plasma filaments are indicated in green and the background filaments in purple.
The measured data and computed signal using MAP parameters are shown; (ii) The computed signal for the filaments and the background
fluctuations using MAP parameters are shown; (iii) and (iv) multiple computed signals for the filaments and background fluctuations
over-plotted using MCMC sampled parameter values; calculations using parameters with high probability appear in preference to those with
lower probability.

that for larger amplitude filaments −6⪅ log10 τ1 ⪅−4, whilst
smaller amplitude filaments have a considerably larger range
of log10 τ1, in many cases extending to the limits of the prior
distribution. Figure 10 is a similar plot for log10 τ2. (The place-
ment of the filaments whether in the upper or lower panel is
still determined by the variation of log10 τ1.) As before, the
variation of log10 τ2 correlates strongly with the filament MAP
amplitude. Furthermore, the rise (τ 1) and fall (τ 2) time scales
are in the same range suggesting that the filaments are essen-
tially symmetric; this result concurs with previous analyses of
filaments on MAST [21]. Figure 11 is a similar plot for the
sampled filament amplitude. (The placement of the filaments
whether in upper or lower panel is still determined by the vari-
ation of log10 τ1.) The results indicate that filaments with small
MAP amplitudes mainly have sampled amplitude in the range
0≤ A⪅ 2AMAP, ie the fractional uncertainties are ~ 100% and
include the possibility of non-existence (defined as the range
of sampled amplitudes divided by AMAP). In contrast, larger
amplitude filaments mainly have smaller fractional uncertain-
ties apart from filaments that are closely spaced in time.

Previous studies on MAST provide good evidence that fila-
ments are structures that have been ejected from the plasma
core and travel at a relatively constant velocity across flux
surfaces [41]. Furthermore, the filaments are presumed to
pass through and interact with a quiescent plasma background
[42]. However, the interpretation of experimental data often
involves applying a smoothing function, for example using
the method of time-window averaging [43], and the results
of Bayesian inference calculations do not provide compel-
ling evidence that there is a finite quiescent background. An
alternative possibility is that the background itself is fluctu-
ating. The difference between the plasma filaments and the
background fluctuations would be in their structure and dir-
ectional velocity, aspects that cannot be determined from a
single Langmuir probe time series. The results presented in
figures 9 and 10 show that many filaments, generally those
with larger amplitude, have relatively well defined structures
(characterised by small variations in τ 1 and τ 2) in comparison
with small amplitude filaments. One interpretation is that fil-
aments with well-defined structures have been ejected from

9
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Figure 13. Details of the computed filaments and background fluctuations for the data subset 0.28< t[s]< 0.2804 when the probe is in the
plasma core. For further explanation of the plots, refer to figure 12.

the core. In the remainder of this paper, filaments will refer to
the subset of structures identified by Bayesian Inference cal-
culations satisfying δ log10 τ1<3; the remaining structures are
considered to contribute to the background fluctuations. Fig-
ure 12 shows the computed filaments and background fluctu-
ations for 0.2428< t[s]<0.2432 (the probe is in the SOL). The
top plot shows the locations of the individual structures; also
the computed and measured time-series. The second plot from
the top shows the MAP computed signal components for the
filaments and for the background fluctuations. The bottom two
plots are the signals computed using parameter values sampled
from the posterior distribution. The plots are the results of mul-
tiple calculations superimposed. The signals have been plotted
in decreasing value of the posterior probability of each sample
such that signals with highest probability are plotted above
those with lower probability. The brown colouration of these
plots indicates that the maximum uncertainty of the filament
and background fluctuations is already explored using only ~
10% of the data set with the highest values of P(H|D).

The same analysis has been carried out for data subsets
throughout the SOL and into the plasma core. Figure 13 shows
the an example at 0.28< t[s]<0.2804 when the probe is in the
core plasma region. Compared to the earlier time, both fila-
ment and background fluctuation components are larger, and

the filaments dominate the background fluctuations through-
out the time-range. For each time range, the uncertainty in the
filament and background signals are similar (this is evident
from the two lower plots).

In summary, the key findings for analyses of all data subsets
carried out are as follows:

(a) The MAP background is usually zero, and the expectation
value from the background has a small finite value. This
result is consistent with previous work that demonstrates
that the background can be the constructed from the super-
position of filamentary waveforms [14, 30].

(b) The model uncertainty σ is approximately10% of the
average signal.

(c) The values of log10 τ
(i)
1 ≈ log10 τ

(i)
2 for each filament in

a particular subset region (i.e. the filaments are symmet-
rical).

(d) Filaments have larger MAP amplitude values compared to
the background fluctuations.

(e) We postulate that filaments are the same structures as iden-
tified in previous studies (see for example [41]); these are
well defined structures that originate from the plasma core
in contrast to background fluctuations which we suggest
have shorter coherence lengths.

10
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Figure 14. Time-variation of computed filament and fluctuating background amplitudes using MAP parameters. The probe is in the SOL at
0.2 s moving across the separatrix and is in the plasma core at 0.3 s. The black lines are the average values, and the shaded regions indicate
the range of amplitudes in time-moving subsamples of 2 ms duration.

Separation of the filaments into two components, (filaments
and a fluctuating background) is an interpretation of the model
results. The underlying hypothesis is that the measured fluc-
tuations arise from a different source and that the diagnostic
probe is better able to discriminate the structure of the larger
filaments than the background fluctuations. In future work, it
will be interesting to understand whether further diagnostic
information supports the underlying model; this would be
apparent in a reduction of the variance of the posterior.

5. Radial dependencies

In this section we use the new definition of plasma filaments
and background fluctuations postulated in section 4 to explore
statistical variations across the SOL and into the outer plasma
core region. Figure 14 plots the variation of the computed
filament and background fluctuations with time as the probe
moves from the SOL into the plasma core. Whereas the equi-
librium reconstruction (see figure 3) indicates that the probe
crosses the separatrix at ~ 0.25 s, results from the probe shown
in figure 14 and subsequent figures indicates a transition
change somewhat later, at ~ 0.26 s. The signals are computed
using the MAP parameters and have been averaged in 2 ms
time-intervals. The plots show the average and range of fluc-
tuation amplitudes in the five 0.4 ms time-intervals that are

within each 2 ms time window. It is evident that although the
range of amplitudes (shown in blue) for each 2 ms time bin
is large compared to the average denoted by the black line,
the variation between each 2 ms time bin is noticeably smal-
ler. Both the background and filament signals increase as the
probe approaches the plasma core. Between t = 0.255 s and
0.27 s the averaged filament amplitudes increases more than
the averaged background fluctuations. One interpretation for
the change in amplitude is that the drain rate of filaments
changes, mirroring the magnetic topology transition across
the separatrix from closed field lines within the plasma core
to field lines that terminate at the divertor. This is consistent
with 2D numerical modeling of the filamentary dynamics in
the SOL which identifies parallel transport along open field
lines as a significant drain component affecting filament amp-
litudes [44]. Differences between the changes in the filament
and background fluctuation amplitude could indicate differ-
ences in the fundamental mechanisms affecting these plasma
components. As noted earlier, uncertainty in the computed
magnetic configuration means that it is not possible to identify
the precise location of the steepest gradient in filament amp-
litude at ~ 0.26 s relative to the position of the separatrix. Fur-
ther evidence for the existence of a transition for the filament
drain rate is provided by calculations of the probability dis-
tribution functions (pdf) of the computed filament signal at
various time-intervals shown in figure 15. The shape of the
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Figure 15. The pdf of the computed filament signal (f ) defined as ( f−< f>)/σf for ten time-ranges from the SOL through to the plasma
core. In this figure < f> and σf denote respectively the time-average and standard deviation of f. Subsequent figures use the same definition
with b and w replacing f . The probe is in the SOL at 0.2 s moving across the separatrix and is in the plasma core at 0.3 s. The indicative
radial position corresponding to the time range of each plot is given in table 1.

pdf corresponding to different positions in the SOL during the
times 0.195< t[s]< 0.263 are very similar. Approaching the
confinement region, there is a sudden change for t[s] > 0.263.
In comparison, the pdf of the computed background fluctu-
ations for the same time-intervals shown in figure 16 exhibit
a more gradual evolution of the pdf structure. Figure 17 plots
the pdf of filament waiting times (defined as the time inter-
val between adjacent filaments) for eight time ranges from
the SOL through to the plasma core. The dashed line indic-
ates an exponential distribution. The results indicate that the
distribution of filament waiting times in the SOL (but not in
the plasma core) are exponentially distributed over two dec-
ades. A similar series of plots for the background fluctuations
is shown in figure 18; in this case waiting times appear to be
exponentially distributed in the SOL and core plasma over two
decades.

Figure 19 plots the variation in waiting times for the com-
puted filaments and background fluctuations as the probe
moves from the SOL into the plasma core. Whereas the aver-
age waiting times for background fluctuations is larger in the
plasma core than in the SOL, average waiting times for fila-
ments show very little variation with position. The maximum
waiting times in both cases have some interesting features:
(i) the maximum waiting times of filaments are larger in the
SOL than in the core (i.e. the solid blue bars in the lower plot
exhibit a rising trend from right to left); (ii) the maximum

background fluctuations exhibit a reduction in the proximity
of the separatrix (around t = 0.25 s); (iii) maximum waiting
times of background fluctuations are less in the SOL than in
the plasma core.

5.1. Discussion

Section 5 presented results for the radial variation of the
computed background fluctuations and the filaments. It was
observed in figure 17 that the pdf of waiting times of filaments
exhibited a significant structural change in the proximity of
the separatrix. Assuming that the radial filament velocity of
filaments remains constant the result can be explained by the
presence of a filament source in this region generating new
filaments. In contrast, observed variations in the pdfs of the fil-
aments across the plasma shown in figure 15 can be explained
both by the presence of sinks (for example of parallel trans-
port in the SOL region) and by the presence of signal sources
across the plasma.

The pdf of waiting times for the background fluctu-
ations was shown in figure 18 to be exponentially distributed
throughout the plasma core and the SOL. These results are
similar to those reported on other tokamaks [26, 45] and are
consistent with a source generating random uncorrelated fluc-
tuations in the core plasma and the SOL. The justification for
this statement is that a probability of waiting times between
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Figure 16. The pdf of the computed background signal (b) defined as (b−< b>)/σb for ten time-ranges from the SOL through to the
plasma core. The probe is in the SOL at 0.2 s moving across the separatrix and is in the plasma core at 0.3 s. The indicative radial position
corresponding to the time range of each plot is given in table 1.

Figure 17. The pdf of the computed filament waiting times (w) defined as (w−< w>)/σw for eight time-ranges from the SOL through to
the plasma core. The probe is in the SOL at 0.2 s moving across the separatrix and is in the plasma core at 0.3 s. The dashed lines shows the
characteristic of a distribution. The indicative radial position corresponding to the time range of each plot is given in table 1.

independent events which is exponentially distributed is the
result of a classical Poisson process (of random uncorrelated
events) [46, 47].

Without information about the radial velocities it is not
possible to separate the source due to spontaneous generation
of fluctuations and that due to radial transport of fluctuations
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Figure 18. The pdf of the computed background fluctuation waiting times (w) defined as (w−< w>)/σw for eight time-ranges from the
SOL through to the plasma core. The probe is in the SOL at 0.2 s moving across the separatrix and is in the plasma core at 0.3 s. The dashed
lines shows the characteristic of a exponential distribution. The indicative radial position corresponding to the time range of each plot is
given in table 1.

Figure 19. Time-variation of computed filament and background fluctuation waiting times. The probe is in the SOL at 0.2 s moving across
the separatrix and is in the plasma core at 0.3 s. The black line are the average values, and the shaded regions indicate the range of waiting
times in time-moving subsamples each containing 30 events (ie 30 waiting times).
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across field lines. However, the further observation shown in
figure 19 that the average waiting time for background fluctu-
ations is constant in each region and is approximately smal-
ler by a factor of 2 in the SOL region suggests that either
the radial transport of fluctuation encounters a barrier in the
proximity of the magnetic separatrix and/or the source gener-
ating fluctuations is different between the SOL and the plasma
core.

The pdf of waiting times for the filaments shown in
figure 17 is Exponential-like in the SOL and exhibits more
symmetric Gaussian characteristics in the plasma core.
The results have more scatter than those for the back-
ground, explained by the smaller number of observed
events. Nevertheless the results are consistent with previous
observations [21], and can be interpreted that there is a source
of filaments in the proximity of the separatrix generating ran-
dom uncorrelated filaments that subsequently move radial out-
ward through the SOL region. The further observation shown
in figure 19 that the average waiting time for filaments is con-
stant across the SOL and plasma core regions is unexpected.
The result may be coincidental and needs to be confirmed
with more data. An observation that the average waiting time
is independent of position would suggest that the dynamics in
the two regions are linked and if this is true the variation in the
forms of the pdf could be explained by variations in the radial
velocities of the filament.

The pdfs of the filament signals shown in figure 15 are sim-
ilar in form to the pdfs of the waiting times throughout the
plasma core and SOL (figures 17 and 18). This suggests that
changes in the structure of the pdfs are affected by differences
in radial velocity and spontaneous generation of filaments at
each location. In the SOL region the structure of both signal
and waiting times pdf are exponentially distributed over 2 dec-
ades. The further observation shown in figure 14 that the mean
filament amplitude is smaller in the SOL than in the plasma
core can be explained by parallel transport. The rate of decay
is less for the filaments than for the background fluctuations;
this observation could be due to enhanced transport of fila-
ments due to E×B drift [41]; furthermore, phenomena like
blob spinning [2] can increase coherence and lifetime.

6. Summary and conclusions

A novel approach using Bayesian inference has been imple-
mented to interpret the filamentary dynamics measured by a
Langmuir probe fixed to a reciprocating assembly on MAST.
The model describes the system as a superposition of time-
displaced filaments and a fixed background component. Each
filament is parameterised in terms of a characteristic rise and
fall time and maximum amplitude centred on local maxima
in the measured data time-series. A distinctive feature of the
approach is that no minimum threshold is set for the existence
of filaments. Furthermore, the model uncertainty is provided
as an additional free parameter. Data is analysed in short sub-
sampled intervals characterising fixed positions in the SOL
and core plasma corresponding to the position of the recip-
rocating probe assembly. The results obtained achieve a fit to

the model with an error of ~ 10%. The MAP background sig-
nal is found to be zero in over 95% of subsample intervals.
Results of Markov chain Monte Carlo sampling of the pos-
terior distribution provide uncertainties on all model paramet-
ers. Differences in the MAP values for the rise and fall are
small compared to the computed uncertainties in these para-
meters. This result is in line with previously reported find-
ings that filaments on MAST are symmetric. It is observed
that whereas large amplitude filaments are well characterised
in terms of rise times, smaller amplitude filaments are often
unconstrained by the data and are limited by the details of the
prior. Based on these findings, a new definition for the fila-
ments is proposed based on the uncertainty in the filament
rise times. The remaining filaments together with the con-
stant background component forms a new time-dependent sig-
nal referred to as the computed background fluctuation signal.
The characteristics of these signals (for the plasma filaments
and for the background fluctuations) are reported in terms of
their spatial variation as the probe moves through the SOL and
into the core plasma. It is shown that the pdf of both the wait-
ing times and signal amplitude in the SOL for the computed
filaments are exponentially distributed over more than 2 dec-
ades. The pdf of waiting times for the background fluctuations
are exponentially-distributed throughout the plasma core and
the SOL. The mean waiting times of the background fluctu-
ations are constant in the core plasma and SOL regions, with
the magnitude in the SOL approximately 50% the magnitude
in the plasma core. The mean waiting times of the filaments
is constant throughout the plasma core and SOL regions even
though details of the pdf change from a Exponential-like dis-
tribution in the SOL to a more symmetric distribution in the
plasma core.

It is important to note that the filament-based model on
which the current work is predicated is essentially an ad hoc
model that is based on observations of the data rather than on
theoretical foundations. Whereas it may be reasonable to sup-
pose that the evolution of the explosive events that generate
filaments could results in exponential signal components, the
extension to include the background component is not substan-
tiated. Nevertheless it is an interesting result that the fit of the
model to the data is achieved to within ~ 10%. The separation
of the signal components into two time-dependent fluctuating
components is novel. It permits the calculation of a fluctuating
background signal that is consistent with the Bayesian model,
and the mean value of both background fluctuations and fila-
ments are observed to decrease across the SOL region. Future
work should establish a definition for these signals on the basis
of theoretically-based constraints.

The novelty of the approach described in the paper is that
it replaces the threshold for the existence of a filament based
on its amplitude and waiting time with a criterion based on
the probability that a filament fits a specific model. Specific-
ally the work employs a filament model containing two expo-
nential functions. The criterion for the existence of a filament
is expressed as the probability that the filament exists with
this functional form. In the future, the approach described
in this work would enable a quantified assessment of differ-
ent functional forms for the filaments. A further novelty of
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Figure A1. Graphical model employed by Bayesian inference problem.

the approach described in the paper is that the information
from the background is retained as a “fluctuating background”,
and is not removed as is the case with the conditional aver-
aging sampling procedure. Typical computational times on an
I7 chipset are around 7 minutes for a calculation of a single
Bayesian computation using a 0.4 ms data subset. This is an
indicative time; execution times can be reduced using more
modern chipsets and with parallellisation.
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Appendix A.

Figure A1 is a graphical representation of the Bayesian
model implemented in Minerva. The ellipses denote probabil-
ity distributions. The components of the prior are shaded in
blue: P(A), P(log10 τ1), P(log10 τ2) and P(B) and P(log10σ)
to denote that these correspond to the free parameters in the
model whereas the likelihood P(D|H) is shaded in grey. All
component distributions are multivariate apart from P(B) and
P(σ). The arrows shown in the figure follow the conventions
of a Directed Acyclic Graphical model [48] corresponding to
a factorization of the joint probability distribution i.e. from the
graph, the joint distribution is identified as

P(D,A, log10 τ1, log10 τ2,B log10σ)

= P(D|H)P(A)P(log10 τ1)P(log10 τ2)P(B)P(log10σ) (A1)

with the likelihood P(D|H)≡ P(D|A, log10 τ1, log10 τ2,B,
log10σ)

A detail of the model is that parameters relating to τ 1, τ 2
and σ are represented using the logarithm to the base 10. The
reason is that it enables all free parameters to have similarmag-
nitudes which generally improves computational tractability
of high dimensional sampling problems. The specific choice of
parameter can be compensated by appropriate transformation
of the random variable distribution [49]. In the present case
we employ random uniform distributions excluding negat-
ive background and amplitudes, but otherwise providing large
bounds in order to minimize the information content of the
prior distributions:

−10 ≤ log10 τ
(i)
1 [s]≤ 0∀i ∈ N,1≤ i≤ N

−10 ≤ log10 τ
(i)
2 [s]≤ 0∀i ∈ N,1≤ i≤ N

0 ≤ A(i) ≤ 3∀i ∈ N,1≤ i≤ N

0 ≤ B≤ 3

−4 ≤ log10σ ≤−1

The remaining elements in figure A1 are either parameters that
can be set for a specific run (for example, pulse, tmin and tmax)
or a computational step (for examplemastReciprocatingData-
Source reads and prepares data whereas predicted computes
the signal for a particular set of parameters).

The MAP solutions are obtained using the method of
Hooke and Jeeves [50]. Exploration of the posterior distribu-
tion is carried out using Markov chain Monte Carlo (MCMC)
sampling [51]. The MCMC algorithm utilizes an adaptive
algorithm to compute the covariance of the jump distribu-
tion which is rescaled following an initial “burn-in” phase to
ensure an acceptance condition of around 0.75 [52]. The burn-
in phase and subsequent posterior exploration phases each
used 5× 106 samples with 104 (ie 1:100) sample points stored
for subsequent processing.
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